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Abstract: To calculate the tension in cables with different boundary conditions, the relationship
between cables with fixed–fixed and hinged–hinged boundary conditions in terms of the frequency
was determined according to frequency characteristic equations of cables with the two boundary
conditions. In this way, a simple calculation formula for tension with fixed–fixed boundary conditions
was deduced. Similarly, a calculation formula for the tension in cables with a fixed–hinged boundary
condition was proposed using the method. Results show that the proposed formulae, with high
computational accuracy and wide ranges of application, can be used to calculate the cable tension
under a dimensionless parameter (ξ) not lower than 6.9, so it is convenient to apply the formulae
to calculate tension in practice. Meanwhile, changes in the frequency ratios of cables with different
boundary conditions than those with a hinged–hinged boundary condition were analyzed. Results
show that when ξ is not lower than 25, the frequency ratios of cables of various orders tend to be
the same. The boundary coefficient(λ) was introduced. Given the cable stiffness, the tension and
boundary coefficient(λ) can be calculated through linear regression. The method considers influences
of unknown rotational end-restraints of cables and accurately calculates the cable tension. By using
simulation examples and engineering examples, the method was verified to be accurate in calculating
the cable tension, thus providing a novel, practical method for estimating tension in cables, booms,
and anchor-span strands of suspension bridges.

Keywords: cables; frequency method; cable tension estimation; boundary condition; practical formulae

1. Introduction

Cable structures have been widely used in large-span beam structures such as cable-
stayed bridges, suspension bridges, and half-through and through arch bridges, wherein
the tension directly influences the internal force distribution and geometric shape of struc-
tures. Therefore, it is necessary to estimate, both timeously and accurately, the tension in
construction and normal operating periods [1–4]. At present, the estimation methods of
tension mainly include the hydrometer method, pressure sensor method, magnetic flux
method, and frequency method. The method based on pressure gauge readings from jacks
and the pressure sensor method are only applicable to tension monitoring in the construc-
tion period; when using the magnetic flux method to determine the tensions in operating
bridges, magnetic flux sensors need to be installed in the field, which is complicated and
unsuited to large-scale tension estimation [5,6]. In comparison, the frequency method can
be flexibly applied to tension estimation in each stage of bridges, with simple operation
and high accuracy, and this method has been used to estimate the tension on bridges in the
majority of engineering cases [7,8].

The methods of calculation of tension by cable frequency are mainly classified into the
model methods (finite element model and theoretical model) and formulaic computation.
The model methods [9–13] can consider the shape, boundary condition, and intermediate
support of cables (these methods generally require computer programming).
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With regard to formula computation, it is necessary to establish the explicit relationship
between the tension and natural vibration frequency, which is mainly realized in two
ways. One is to use the differential equation of cable vibration to construct the frequency
characteristic equation, which is solved according to the boundary conditions. For cables
with a hinged–hinged boundary condition, the explicit expression of the tension and
frequency can be obtained; under the fixed–fixed and fixed–hinged boundary conditions
of cables, the resulting frequency equations are transcendental equations, so it is difficult
to attain an explicit expression for the tension and frequency. To solve this problem,
Zui et al. [14] constructed a set of practical formulae for calculating the tension on the
basis of the high-accuracy approximate solution to the cable equation considering the
bending stiffness. Based on the lateral vibration equation for tensioned cables with a
fixed–fixed boundary condition, Fang et al. [15] fitted the numerical relationships of the
tension with the flexural stiffness, length, linear density, and vibration frequency of cables.
By introducing a correction coefficient to correct the tension calculated using string theory,
Huang et al. [16,17] derived formulae for the tensions in cables with fixed–fixed and fixed–
hinged boundary conditions. The other way entails obtaining the mode shape functions
of cables and using the theory of strain energy to determine the relationship between
the tension and frequency. Through the use of the energy method and curve fitting, Ren
et al. [18] considered influences of cable sag and flexural stiffness and constructed a practical
formula for calculating the tension in cables with fixed–fixed boundary condition based on
the fundamental frequency.

The aforementioned formulae rely on the explicit boundary conditions of cables,
while the boundary conditions remain uncertain in some cases. For example, there are
elastic supports at splay saddles and anchor spans of suspension bridges. To solve this
problem, Yan et al. and Chen et al. [19–23] identified zero-amplitude points of mode
shapes by testing the vibration mode of cables and calculated the tension of the cable
between zero-amplitude points according to the fixed–fixed boundary condition. Such an
approach can reveal the tension in a cable with unknown boundary conditions. Zhang
et al. [24–27] established a cable model (finite element model or theoretical model) and
solved for the cable tension under complex boundary conditions by combining neural
networks and the swarm intelligence optimization algorithm. By applying the finite
difference method, Ma [28] developed a numerical model for the motion of stay cables
and proposed an iterative method for identifying the tension in an inclined cable with
unknown boundary conditions. Although the aforementioned methods can reveal the
tension in cables with unknown boundary conditions, multiple sensors are needed for data
acquisition when searching for the zero-amplitude points, which is tedious. Likewise, the
computational processes required in particle swarm optimization and neural networks are
very complicated.

A simple calculation formula for tensions with explicit physical meaning, high com-
putational accuracy, and a wide range of applications was constructed by using frequency
characteristic equations of cables with fixed–fixed and hinged–hinged boundary conditions
and determining the relationship of the two with frequency. Similarly, the frequency rela-
tionship of cables with fixed–hinged and hinged–hinged boundary conditions was derived,
obtaining the calculation formula for the tension in cables with a fixed–hinged boundary
condition. The frequency ratios of cables with fixed–fixed and fixed–hinged boundary
conditions to those with hinged–hinged boundary condition were compared and studied.
Results show that when the dimensionless parameter of cables is not lower than 25, the
frequency ratios of various orders are basically identical. Therefore, a boundary coefficient
was introduced to construct the calculation formula for tensions considering cables with
arbitrary rotational restraint stiffness at each end through linear regression.
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2. Practical Formulae for Calculating Tensions in Cables with Different
Boundary Conditions
2.1. Theoretical Solution of Free Vibration of Cables

The coordinate system of a tensioned cable is illustrated in Figure 1. When ignoring
the influences of the sag and damping, Formula (1) is the free vibration equation of cables.

EI
∂4u
∂x4 − T

∂2u
∂x2 + m

∂2u
∂t2 = 0, (1)

where u is the displacement of various points of cables at moment t, and m, L, EI, and T
represent the linear density, length, flexural stiffness, and the tension, respectively, and are
all constants, that is, they do not change with time and location.
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Figure 1. Coordinate system of a tensioned cable.

The equation is solved by separation of variables. The general solution is

φ(x) = A1 sin(αx) + A2 cos(αx) + A3sinh(βx) + A4 cosh(βx) (2)
α =

√√
ζ4 + γ4 − ζ2

β =
√√

ζ4 + γ4 + ζ2

γ4 = mω2

EI
ζ2 = T

2EI

, (3)

where Ai (i =1, 2, 3, 4) is an undetermined coefficient related to the boundary condition,
and ω is the angular frequency of vibration of the cable.

When there are elastic supports at both ends of a cable, the boundary condition is
shown in Figure 2, that is,

T ∂φ
∂x

∣∣∣
x=0

− EI ∂3 φ

∂x3

∣∣∣
x=0

= k1 φ|x=0

EI ∂2 φ

∂x2

∣∣∣
x=0

= k2
∂φ
∂x

∣∣∣
x=0

T ∂φ
∂x

∣∣∣
x=L

− EI ∂3 φ

∂x3

∣∣∣
x=L

= −k3 φ|x=L

EI ∂2 φ

∂x2

∣∣∣
x=L

= −k4
∂φ
∂x

∣∣∣
x=L

, (4)

where k1 and k3 are the vertical support stiffness at either ends of a cable, respectively, and
k2 and k4 are the rotational restraint stiffness at either end of a cable, respectively.
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Under the hinged–hinged boundary condition, by setting k1= k3 = ∞ and k2 = k4 = 0,
the following frequency equation is obtained:

(α2 + β2) sin(αL)sinh(βL) = 0 (5)
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Meanwhile, the explicit relationship between the cable tension and frequency under
the hinged–hinged boundary condition is determined as follows:

ω2
nss =

(nπ

L

)2 T
m

+
(nπ

L

)4 EI
m

(6)

T = 4mL2
(

fn

n

)2
−

(nπ

L

)2
EI, (7)

where fn is the nth-order natural vibration frequency.
Under the fixed–hinged boundary condition, the following is obtained when k1 = k3= ∞,

k2 = ∞, and k4 = 0:

αsinh(βL) cos(αL)− β sin(αL) cosh(βL) = 0 (8)

Under the fixed–fixed boundary condition, k1 = k3 = k2 = k4 = ∞ is set, and the following
frequency equation is determined:

2αβ[1 − cos(αL) cosh(βL)] + (β2 − α2) sin(αL)sinh(βL) = 0 (9)

When both ends of the cable have arbitrary rotational stiffness, that is, k1 = k3 = ∞, the
frequency equation is obtained by substituting Equation (4) into Equation (2):
∣∣∣∣∣∣

k2α EIα2 + EIβ2 k2β
sin(αL) cos(αL)− cosh(βL) sinh(βL)

EIα2 sin αL − k4α cos αL EI
[
α2 cos(αL) + β2 cosh(βL)

]
+ k4(α sin αL + βsinhβL) −EIβ2sinh(βL)− k4β cosh(βL)

∣∣∣∣∣∣ = 0 (10)

The physical parameters of the cable are substituted into Equations (6), (8), and (9),
thus ascertaining vibration angular frequencies ωnss, ωnfh, and ωnff of the cable with hinged–
hinged, fixed–hinged, and fixed–fixed boundary conditions, respectively; n is the order of
the mode of vibration. Equations (8)–(10) are transcendental, so no explicit solution can
be obtained.

2.2. Fixed–Fixed Boundary Condition

Parameters of some representative booms and cables are listed in Tables 1 and 2, in
which ξ is a dimensionless parameter that reflects the relative flexural stiffness of cables,
as expressed by Equation (11) [18]. The lower the value of ξ is, the greater the relative
stiffness of cables. Given m, L, EI, and T, the frequency ratio (zn) of cables with a fixed–fixed
boundary condition to those with a hinged–hinged boundary condition can be obtained by
combining Equations (6) and (9), as expressed by Equation (12).

ξ = L

√
T
EI

(11)

zn =
ωn f f

ωnss
(12)

Table 1. Parameters pertaining to booms.

Boom m (kg·m−1) L (m) D (mm) L/D EI (N·m2) T (kN) ξ

A1 10.1 2 40 50 25,133 300 6.9
A2 10.1 2 40 50 25,133 500 8.9
A3 10.1 2 40 50 25,133 800 11.3
A4 14.49 5 48 104.2 52,115 510 15.6
A5 14.49 5 48 104.2 52,115 710 18.5
A6 16.33 10 51 196.1 66,417 750 33.6
A7 16.33 14 51 274.5 66,417 750 47.0
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Table 2. Parameters pertaining to cables.

Cable m (kg·m−1) L (m) D (mm) L/D EI (N·m2) T (kN) ξ

B1 18.88 20.00 55 363.6 89,836 985.00 66
B2 46.63 50.91 84 606.1 488,784 2431.42 114
B3 65.82 90.88 105 865.5 1,193,320 3911.50 165
B4 74.08 134.73 108.5 1241.7 1,360,564 4576.98 247
B5 83.37 172.66 115.5 1494.9 1,747,140 5729.86 313
B6 93.16 226.97 122.5 1852.8 2,208,750 7242.58 411

The frequency ratios (zn) of booms A2, A4, and A6 and cables B1, B2, and B3 are
analyzed in Figure 3. It can be seen from Figure 3 that the smaller the ξ value of booms is,
the greater the frequency ratio (zn), and the frequency ratio declines with rising order. The
frequency ratios of various orders of the same cable are basically identical, and the values
of zn of cables B1, B2, and B4 reduce successively.
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A dimensionless parameter (yn) is proposed, as expressed by Equation (13), and
the yn–zn relationship is fitted. On this basis, the frequency ratio (zn) can be calculated
with unknown tension. Equation (12) can be used to calculate the frequency ratio (zn) of
various orders of cables with different values of ξ; the yn–zn relationship curves of the
first six frequencies are shown in Figure 4. Through polynomial fitting, various possible
combinations of first-order to fourth-order polynomials are compared. Considering the
computation accuracy and for the convenience of application, the combination of the first-
order and third-order polynomials is fitted, and the fitting formula for the frequency ratio
(zn) of the first six orders is expressed by Equation (14). The solid line in Figure 4 denotes
the results arising from use of the regression formula, which conforms to the theoretical
calculation results.

yn =
n
fn

√
EI

mL4 (13)



z1
z2
z3
z4
z5
z6

 = 1 + 1.03



y1
y2
y3
y4
y5
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24.7y3
1

34.3y3
2

47.9y3
3

64.2y3
4

83.6y3
5

105.1y3
6

 (14)

The unified calculation formula for the frequency ratio (zn) is further fitted, as shown
in Equation (15), according to which the calculation formula for tensions is obtained as
Equation (16).

zn = 1 + 1.03yn + (17.4 + 5.7n + 1.5n2)y3
n (15)

T = 4mL2
(

fn

nzn

)2
−

(nπ

L

)2
EI (16)
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2.3. Fixed–Hinged Boundary Condition

The theoretical frequency ratio(z′n) of cables with fixed–hinged boundary conditions
to those with hinged–hinged boundary conditions can be obtained (Equation (17)) by
combining Equations (6) and (8).

z′n =
ωn f h

ωnss
(17)

The theoretical frequency ratio(z′n) is calculated (Figure 5) according to the physical
parameters of cables in Tables 1 and 2. The theoretical frequency ratios(z′n) of booms A2, A4,
and A6 increase with decreasing ξ, while they reduce with increasing order of frequency.
The theoretical frequency ratios(z′n) of cables B1, B2, and B4 decrease successively, while
their individual frequency ratios of various orders are similar.
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By using the dimensionless parameter (yn), the formulae for yn and z′n of the first six
frequencies are obtained via polynomial fitting, as expressed by Equation (18). The yn–z′n
relationship curves are shown in Figure 6.
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The unified calculation (Equation (19)) of the frequency ratio(z′n) is obtained by further
fitting, thus attaining the calculation formula for the tension of cables with fixed–hinged
boundary conditions (Equation (20)).

z′n = 1 + 0.5yn + (1.95 + 1.78n + 0.61n2)y3
n (19)

T = 4mL2
(

fn

nz′n

)2
−

(nπ

L

)2
EI (20)

2.4. Calculation Formula for Tension in a Cable with Arbitrary Rotational End-Restraints

The theoretical frequency of cables with rotational end-restraints and different values
of rotational stiffness is calculated using Equation (10). Different boundary conditions
of cables are displayed in Figure 7. Boundaries A and C are hinged-rotational and fixed-
rotational boundary conditions, respectively, while boundary E indicates arbitrary rota-
tional restraints at both ends, under which the rotational stiffness is k = pEI/L. Therein, EI/L
is the linear stiffness, and p is a multiple of rotational stiffness over linear stiffness (EI/L)
and is between 0 and 700. The cables in Table 3 were selected to evaluate changes in the
fundamental frequency of cables with rotational end-restraints under different values of
rotational stiffness. The red point in Figure 8 is the fundamental frequency with p between
0 and 700, and the blue points are the fundamental frequencies with p values of 2, 5, 10,
20, 40, 100, and 500. At p = 500, the error in the fundamental frequency of cables with the
fixed–fixed boundary condition is lower than 0.5%, so this can be deemed equivalent to the
fixed–fixed boundary condition. The blue points in the figure exhibit uniform frequency
variation, so these representative points can be adopted for detailed tension analysis.
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Table 3. Parameters pertaining to the analyzed booms.

Cable m (kg·m−1) L (m) D (mm) L/D EI (N·m2) T (kN) ξ

C1 14.49 5 48 104.2 52,115 830 20
C2 14.49 6 48 104.2 52,115 900 25
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Equation (16) is deduced from the fixed–fixed boundary condition of cables. In fact,
apart from fixed–fixed and hinged–hinged boundary conditions, the boundary of cables
can also show rotational support somewhat between the two. Summarizing the analysis in
Sections 2.2 and 2.3 shows that, for the frequency ratios of various orders of a cable, the z′n
of the cable with a fixed–hinged boundary condition is smaller than the zn of that with the
fixed–fixed boundary condition. In addition, as ξ increases, the frequency ratios of various
orders of the cable with the two boundary conditions tend to be the same. Therefore, the
boundary coefficient(λ) is introduced to assume 1/zn

2 = λ in Equation (16). In this way, the
tension in cables with boundary conditions involving arbitrary rotational restraint stiffness
at both ends can be written as follows:

T = 4mL2
(

fn

n

)2
λ −

(nπ

L

)2
EI (21)
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According to Equation (21), each equation has two unknown quantities, namely T
and λ. Two arbitrary frequencies are substituted into Equation (21) to obtain the following
linear equation set: 

T = 4mL2
(

fi
i

)2
λ −

(
iπ
L

)2
EI

T = 4mL2
( f j

j

)2
λ −

(
jπ
L

)2
EI

(22)

Given the EI, the tension (T) and boundary coefficient(λ) can be obtained by solving
the equation set. The cable in Table 3 is analyzed, at both ends of which different rotational
restraints are set, and the value of rotational stiffness is valued in the range of 0~500 EI/L.
In the table, k2 and k4 are the multiples of rotational restraint stiffness at either end over
linear stiffness EI/L, respectively, and they are valued to be 0, 2, 5, 10, 20, 40, 100, and 500,
which are combined to obtain 36 boundary conditions. The tension is computed using the
above method, and the errors are listed in Tables 4–7.

Table 4. Computation errors of cable C1 (Formula (22); i = 1 and j = 2) (%).

k4

k2 0 2 5 10 20 40 100 500

0 0.26 1.10 1.88 2.48 2.69 2.28 1.32 0.24
2 — 1.97 2.80 3.45 3.70 3.33 2.37 1.30
5 — — 3.67 4.38 4.68 4.34 3.41 2.34

10 — — — 5.14 5.50 5.20 4.29 3.23
20 — — — — 5.92 5.67 4.78 3.73
40 — — — — — 5.45 4.58 3.54
100 — — — — — — 3.74 2.71
500 — — — — — — — 1.68

Table 5. Computation errors of cable C1 (Formula (22); i = 2 and j = 3) (%).

k4

k2 0 2 5 10 20 40 100 500

0 0.31 1.17 2.03 2.79 3.23 3.06 2.26 1.24
2 — 2.06 2.95 3.75 4.23 4.09 3.30 2.28
5 — — 3.89 4.73 5.26 5.14 4.37 3.35

10 — — — 5.62 6.20 6.13 5.38 4.37
20 — — — — 6.84 6.81 6.09 5.09
40 — — — — — 6.82 6.12 5.14
100 — — — — — — 5.45 4.48
500 — — — — — — — 3.51

Table 6. Computation errors of cable C2 (Formula (22); i = 1 and j =2) (%).

k4

k2 0 2 5 10 20 40 100 500

0 0.27 0.82 1.37 1.85 2.08 1.83 1.04 0.04
2 — 1.39 1.96 2.46 2.72 2.49 1.71 0.71
5 — — 2.56 3.08 3.37 3.16 2.39 1.39

10 — — — 3.64 3.96 3.78 3.03 2.03
20 — — — — 4.32 4.17 3.44 2.45
40 — — — — — 4.05 3.33 2.35
100 — — — — — — 2.62 1.65
500 — — — — — — — 0.69
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Table 7. Computation errors of cable C2 (Formula (22); i = 2 and j = 3) (%).

k4

k2 0 2 5 10 20 40 100 500

0 0.30 0.86 1.45 2.00 2.35 2.24 1.55 0.59
2 — 1.44 2.04 2.61 2.99 2.89 2.21 1.25
5 — — 2.66 3.26 3.66 3.58 2.92 1.96

10 — — — 3.88 4.31 4.26 3.62 2.66
20 — — — — 4.79 4.77 4.14 3.19
40 — — — — — 4.77 4.17 3.23
100 — — — — — — 3.57 2.65
500 — — — — — — — 1.72

Tables 4–7 show that at i = 1 and j = 2, the computation error of tension using
Equation (22) is lower than that at i = 2 and j = 3, and the error for cable C1 is slightly larger.
In the case of i = 1 and j = 2, the tension errors under six boundary conditions exceed 5%;
under i = 2 and j = 3, the tension errors under 14 boundary conditions exceed 5%, with a
maximum error of 6.84%. In comparison, the maximum tension error for cable C2 is only
4.79%, which is less than 5%.

The first five frequencies of cables are studied. The tension in a cable is calculated by
substituting the ith and jth (condition kij) natural vibration frequencies under 36 boundary
conditions into Equation (22), thus obtaining 36 relative errors in the tensions. The largest
error is defined as eij (the black triangular point in Figure 9). Errors under each condition
are shown in Figure 9. A total of 10conditions are set for each cable, so there are a total of
360 relative errors.
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Figure 9. Tension errors in cables C1 and C2 under each condition.

Among the 360 errors of cable C1, 167 errors exceed 5%, which account for 46.4%;
the optimal computation accuracy is obtained under k12 among the ten conditions, under
which some errors are also larger than 5% though. Only 39 errors of cable C2 exceed 5%,
which account for 10.83%. The relative errors of tensions under conditions k12, k13, k14, and
k23 are all below 5%. Additionally, the eij values of the two cables under ten conditions
were compared, and the results show that the eij values of cable C1 are all larger than those
of cable C2. This indicates that as ξ increases, Equation (22) is found to be more accurate.

The relative tension errors of cables C1 and C2 under boundaries A, C, and E are
displayed in Figure 9. The majority of errors of the two cables under boundary A are
smaller than 5%. To be specific, the errors of cable C2 under boundary A are all lower than
4%, suggesting favorable computation accuracy. Among the 70 errors of cable C1 under
boundary C, 36 errors are higher than 5%, which exceeds 50%. Except for four errors of
cable C2 under conditions k35 and k45 that are larger than 5%, errors under other conditions
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are all lower than 5%, showing moderate computational accuracy. The accuracy of the
two cables under boundary E is lower, and the eij values under the ten conditions are all
obtained under boundary E. The relative tension errors of cable C2 under four conditions
(k12, k13, k14, and k23) are all under 5%.

The cables in Table 8 are analyzed, and emax1 is defined as the maximum eij (a total
of 10 conditions). Meanwhile, the fundamental frequencies of cables are substituted
into Equation (7) to calculate the tensions of cables under 36 boundary conditions. The
maximum relative tension error is defined as emax2. The results are summarized in Table 9.

Table 8. Parameters pertaining to the analyzed cables.

Cable m (kg·m−1) L (m) D (mm) L/D EI (N·m2) T (kN) ξ

C2 14.49 6 48 104.2 52,115 900 25
A6 16.33 10 51 196.1 66,417 750 33.6
A7 16.33 14 51 274.5 66,417 750 47
B1 18.88 20 55 363.6 89,836 985 66
B2 46.63 50.91 84 606.1 488,784 2431 114
B3 65.82 90.88 105 865.5 1,193,320 3911 165
B4 74.08 134.73 108.5 1241.7 1,360,564 3000 200

Table 9. Cable tension errors (%).

Cable e12 e13 e14 e23 emax1 emax2 ξ

C2 4.32 4.60 5.00 4.79 6.82 17.50 25
A6 2.84 2.98 3.20 3.09 3.95 12.27 33.6
A7 1.98 2.04 2.11 2.07 2.37 8.29 47
B1 1.43 1.44 1.46 1.45 1.57 5.57 66
B2 0.90 0.86 0.86 0.84 0.90 2.98 114
B3 1.15 0.93 0.85 0.79 1.15 1.82 165
B4 3.35 1.77 1.23 0.84 3.35 1.45 200

It can be seen from Table 9 that when Equation (22) is used to calculate the tension
using an arbitrary set of two of the first five natural vibration frequencies, the emax1 of cable
C2 is 6.82%, and e12, e13, e14, and e23 are all no larger than 5%; with regard to cables with
25 ≤ ξ ≤ 114, as ξ increases, emax1 decreases and tends toward 1%; if 114 ≤ ξ ≤ 200, emax1
increases with increasing ξ, whereas, emax2 continues to decrease with increasing ξ, and
the emax2 values of cables B3 and B4 are both less than 2%, suggesting slight influences of
changes in the boundary conditions on cables with large ξ values. A comparison of the
emax1 and emax2 values of the cables in Table 9 shows that when the ξ value of cables is
approximately 165, emax1 and emax2 are both less than 2%; as ξ continues to increase, emax1
increases, while emax2 decreases.

According to the above analysis, the relative tension errors of cables with arbitrary
rotational stiffness at both ends calculated by Equation (22) under conditions k12, k13, k14,
and k23 are all below 5% when 25 ≤ ξ ≤ 165; if 34 ≤ ξ ≤ 165, the relative errors are all
below 4% when calculating the tension using the first five natural vibration frequencies
predicted using Equation (22); as ξ increases, the accuracy of the formula is improved.

3. Results and Discussion
3.1. Verification of Calculation under the Fixed–Fixed Boundary Condition

To verify the accuracy and range of application of the proposed calculation formulae
for tensions, the booms and cables in Tables 1 and 2 were selected to calculate their tensions
using the fundamental frequency, and some booms and cables were selected to calculate
their tensions using the higher-order frequencies. The results were compared using the
following equations.
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Huang provides the following formulae for the fixed–fixed boundary condition and
the fixed–hinged boundary condition:

T = knTs (23)

Ts = 4mL2
(

fn

n

)2
(24)

The following formula is for the fixed–fixed boundary condition:

kn = −Anλ2
n − Bnλn + 1

λn =
√

EI
4mπ2 f 2

n L4

An = 98.2n4 + 87.64n3 + 65.37n2

Bn = 9.31n + 1.72

(25)

The following formula is for the fixed–hinged boundary condition:

kn = −Anλ2
n − Bnλn + 1

λn =
√

EI
4mπ2 f 2

n L4

An = 97.51n4 + 47.18n3 + 10.17n2

Bn = 4.78n + 0.5

(26)

Fang’s formula is expressed as follows:

T =
4mπ2L2 f 2

n
γ2

n
− EI

L2 γ2
n (27)



γn = nπ + A
√

EI
mω2

n L4 + B EI
mω2

n L4

An = −18.9 + 26.2n + 15.1n2

Bn =

{
290
0

(n = 1)
(n ≥ 2)

(28)

Ren’s formula is expressed as follows:

T =



3.432m(L f1)
2 − 45.191 EI

L2 0 ≤ ξ ≤ 18

m
(

2L f1 − 2.363
L

√
EI
m

)2
18 ≤ ξ ≤ 210

4m(L f1)
2 210 ≤ ξ

(29)

Zui’s formula is expressed as follows:

T =


4m(L f1)

2
[

0.865 − 11.6
(

C
f1

)2
]

6 ≤ ξ ≤ 17

4m(L f1)
2
[

1 − 2.2
(

C
f1

)
− 0.550

(
C
f1

)2
]

17 ≤ ξ

(30)

C =

√
EI

mL4 (31)

The tension errors in booms and cables calculated based on the fundamental frequency
are shown in Figure 10; the errors in booms calculated using Ren’s formula are below 2.5%,
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indicating high accuracy; the use of Zui’s formula yields similar results to Ren’s formula
in terms of computational accuracy; the tension errors are all below 2.5% when Fang’s
formula, Huang’s formula, and Equation (16) are used for computation, among which
Equation (16) performs best on the whole and shows tension errors of less than 1% for
booms. When using the five formulae to calculate tensions of cables with large ξ values, the
tensions calculated by five formulae show subtle differences, with errors all less than 2.5%.
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Figure 10. Tension errors when using the five formulae.

To verify the accuracy of Equation (16) in calculating tensions using the higher-order
frequencies, the first five frequencies of booms were substituted into Fang’s formula,
Huang’s formula, and Equation (16) to compute tensions. The relative errors are illustrated
in Figure 11. The tensions of boom A1 calculated by Fang’s formula are highly discrete,
which is indicative of large tension errors in the computation using higher-order frequencies,
with the maximum tension error exceeding 10%. The tension errors of booms calculated
by Huang’s formula and Equation (16) based on various frequencies are all lower than
2.5%, and Equation (16) performs better on the whole. Therefore, Equation (16) has the best
computational accuracy and a wider range of applications.
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Figure 11. Tension errors of fixed–fixed boundary booms and cables.

3.2. Verification of Calculation under the Fixed–Hinged Boundary Condition

Booms A1 and A6 and cables B1 and B2 were analyzed. The errors of tensions
calculated by different formulae with the real tensions are shown in Figure 12. The relative
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tension errors of boom A1 computed by Huang’s formula increase with rising order, and
the maximum relative error is −3.05%, while the relative tension errors calculated by
Equation (20) are less than 1.5%; the tension errors of boom A2 and cables B1 and B2
are always less than 1% when calculated using the two formulae, indicating the stable
computational accuracy of the two. In comparison, Equation (20) is found to have higher
computational accuracy under the fixed–hinged boundary condition.
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Figure 12. Tension errors of fixed–hinged boundary booms and cables.

3.3. Verification of Calculation under Arbitrary Rotational Restraint at Each End

The finite element model and data reported in previous research [16] were used to
verify Equation (22). The physical parameters of booms are listed in Table 10; the boundary
conditions and multi-order frequencies are listed in Table 11.

Table 10. Parameters pertaining to the analyzed boom.

Boom m (kg·m−1) L (m) EI (N·m2) T (kN) ξ

1 16.02 20 65,460 500 55.3

Table 11. Frequencies (Hz).

Boom Freq.
Order

Boundary Conditions

Fixed–Fixed Fixed–Hinged

1

1 4.591 4.506
2 9.227 9.055
3 13.951 13.691
4 18.805 18.455
5 23.831 23.387

Given the multi-order frequencies and physical parameters of the boom, Equation (22)
can be used to identify the cable tension. Tables 12 and 13 separately show the tension
errors of Formula (22) with real tensions under fixed–fixed and fixed–hinged boundary
conditions, which are also compared with the calculation results of Equations (16) and (20).
It can be seen from the table that the errors are always less than 0.2% when computed by
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Equations (16) and (20) based on the first five frequencies; the maximum relative error of
tensions calculated by Equation (22) according to the first and second frequencies is 1.7%,
and the relative error is always within 1% when computing tensions using frequencies
other than the fundamental frequency.

Table 12. Relative errors of T1 and T2 (fixed–fixed).

Cable
Equation (16) Equation (22)

Freq. Order T1 (kN) Relative Error (%) i j T2 (kN) Relative Error (%)

1

1 500.88 0.18 1 2 491.52 −1.70
2 500.74 0.15 2 3 497.29 −0.54
3 500.58 0.12 3 4 498.96 −0.21
4 500.42 0.08 4 5 496.64 −0.67

Table 13. Relative errors of T1 and T2 (hinged–fixed).

Cable
Equation (20) Equation (22)

Freq. Order T1 (kN) Relative Error (%) i j T2 (kN) Relative Error (%)

1

1 499.96 −0.01 1 2 504.94 0.99
2 499.84 −0.03 2 3 497.01 −0.60
3 499.83 −0.03 3 4 497.77 −0.45
4 499.82 −0.04 4 5 497.39 −0.52

The analysis objects in [16] were booms with the inclination of 90◦, which do not sag.
Here, the boom in Table 10 was taken as the object to analyze the accuracy of Equation (22)
for the tensions of cables under fixed–fixed boundary conditions and different inclinations
so as to study the influence of the sag thereon. Table 14 lists the relative errors of tensions
of cables with seven inclinations calculated by Equation (22). Under condition k12, that is,
calculating the tension using Equation (22) according to the first and second frequencies, the
relative error exceeds 30% when the inclination is 0; the error is large under the condition of
calculating the tension using Formula (22) based on the first frequency when the inclination
is small, while if the inclinations are 75◦ and 90◦, the errors are always less than 1%.

Table 14. Tension errors for cables with different inclinations (%).

Inclination (◦) k12 k13 k14 k15 k23 k24 k25 k34 k35 k45

0 30.86 9.28 4.70 2.88 −0.80 −0.51 −0.40 −0.30 −0.27 −0.25
15 28.14 8.55 4.34 2.65 −0.79 −0.51 −0.40 −0.31 −0.27 −0.24
30 21.24 6.62 3.34 2.03 −0.75 −0.51 −0.40 −0.33 −0.28 −0.24
45 12.93 4.09 2.01 1.20 −0.70 −0.51 −0.40 −0.37 −0.30 −0.24
60 5.68 1.67 0.72 0.38 −0.65 −0.51 −0.39 −0.40 −0.31 −0.23
75 0.93 −0.03 −0.21 −0.22 −0.61 −0.51 −0.39 −0.43 −0.32 −0.23
90 −0.71 −0.64 −0.55 −0.43 −0.60 −0.50 −0.39 −0.44 −0.32 −0.23

The reason for the poor computation accuracy of Equation (22) based on the first
frequency under small inclinations was ascertained. The frequency ratios of cables with
fixed–fixed boundary conditions to those with hinged–hinged boundary conditions under
inclinations of 0◦, 30◦, 60◦, and 90◦ were calculated (Figure 13); at an inclination of 90◦,
the frequency ratios of the first five orders of cables are consistent, while as the inclination
decreases, the frequency ratio of the first order enlarges abruptly, while those of other
orders remain largely unchanged. Therefore, when calculating tensions using Equation (22)
based on the first frequency, the smaller the inclination, the greater the changes in the
frequency ratio of the first order, which incurs larger tension errors. Considering this,
when calculating the tension in an inclined cable using Equation (22) in engineering
applications, using frequencies other than the fundamental frequency can improve the
computational accuracy.
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3.4. Engineering Applications
3.4.1. Hedong Cable-Stayed Bridge

To validate the effectiveness of Equation (16), measured vibration data from [16]
were adopted for analysis. The data were acquired from Hedong bridge in Guangzhou
Province, China.

Hedong bridge is a double-tower, three-span (144 + 360 + 144 m), cable-stayed bridge
that possesses 72 pairs of stay cables. The spacing between two adjacent cables is 9.5 m. The
shortest and longest cables (C18 and C36, respectively) were analyzed, and their physical
parameters are listed in Table 15. The inertia moments of cables were calculated by using
the material mechanics method, and the cable frequencies were determined according to
the frequency spectra of measured acceleration–time curves.

Table 15. Parameters pertaining to the cables on Hedong bridge [16].

Cable m (kg·m−1) L (m) EI (N·m2) T (kN) ξ

C18 35.4 47.66 292,500 2000 124.6
C36 68.4 184.14 1,047,150 4050 362.1

Table 16 compares the cable tensions calculated by different practical formulae, the
results of which are similar to the designed cable tensions, with relative errors below 2%.
Apparently, Fang’s formula and Equation (16) are both applicable to the computation of
cable tensions, while computation using Equation (16) is simpler.

Table 16. Comparison of computed cable tensions on Hedong bridge (unit: m).

Cable Freq.
Order f (Hz) Present Formula (16)

T1 (kN)
Fang’s Formulae

T2 (kN)
Relative Error

of T1 (%)
Relative Error

of T2 (%)

C18

1 2.521 1977.37 1968.96 −1.13 −1.55
2 5.045 1976.12 1966.65 −1.19 −1.67
3 7.577 1974.19 1970.14 −1.29 −1.49
4 10.117 1971.08 1970.98 −1.45 −1.45
5 12.665 1965.25 1967.90 −1.74 −1.61

C36

1 0.662 4013.59 4008.44 −0.90 −1.03
2 1.324 4018.16 4011.18 −0.79 −0.96
3 1.987 4022.52 4019.42 −0.68 −0.75
4 2.647 4010.49 4010.22 −0.98 −0.98
5 3.315 4025.51 4027.21 −0.60 −0.56

3.4.2. Anchor-Span Strands on Hangrui Dongting Bridge

Hangrui Dongting bridge, located at the confluence of Dongting Lake and the Yangtze
River, is an important project of the Linwu–Yueyang expressway. The bridge layout
is displayed in Figure 14. The anchor span on the Yueyang City side and the strand
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arrangement are shown in Figure 15. Strand #85 was studied and the relevant parameters
of which are shown in Table 17. The acceleration data of the strand sampled at a frequency
of 100 Hz within 10 min were analyzed by fast Fourier transform (FFT), obtaining the
frequency spectrum (Figure 16).
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Table 18 compares the calculation results of strand tensions of the proposed method
and Equation (7). The relative tension errors of strand #85 calculated by Equation (7) at
various frequencies are consistent and reach 2.17%; when calculating the strand tension
based on f 1 and f 2 using the proposed method, the relative error is 36%, which is caused
by the significant influence of the first frequency on sag according to the aforementioned
analysis. When calculating the strand tension using the higher-order frequency, the results
have a relative error lower than 0.6% with the design value. The computational accuracy of
the two practical formulae is lower than 5%, and Equation (22) returns a higher accuracy.

Table 18. Comparison of computed cable tensions on Hangrui Dongting bridge.

Cable Freq. Order
ij

Present Formula (22)
T1 (kN)

Relative Error
of T1 (%)

Freq.
Order

Beam Theory
T2 (kN)

Relative Error
of T2 (%)

#85

1 2 2739.69 35.90 1 2059.83 2.17
2 3 2019.06 0.15 2 2059.11 2.14
3 4 2027.17 0.55 3 2059.21 2.14
4 5 2024.22 0.41 4 2059.31 2.15

4. Conclusions

The frequency characteristic equations of cables with fixed–fixed, fixed–hinged, and
hinged–hinged boundary conditions were first constructed. The frequency ratios of ca-
bles with fixed–fixed and fixed–hinged boundary conditions to those with hinged–hinged
boundary conditions were obtained. In addition, a dimensionless parameter (yn) was
introduced. By fitting the explicit relationship between the frequency ratio and the dimen-
sionless parameter (yn), the calculation formulae for the tensions of cables with fixed–fixed
and fixed–hinged boundary conditions were deduced. Changes in the frequency ratios
of various orders of cables with different ξ values were analyzed in detail. The boundary
coefficient(λ) was introduced, and a novel method for calculating the tensions of cables
with arbitrary rotational restraints at both ends was proposed, which was proven to be
effective with reference to practical engineering examples.

(1) The dimensionless parameter (yn) was proposed, and its relationship with the fre-
quency ratio was fitted. Accordingly, the calculated frequency ratios of the first six
orders of cables with different ξ values were attained, which are similar to the theoret-
ical values. This relationship can be used to calculate the frequency ratios of cables
with fixed–fixed and fixed–hinged boundary conditions to those with hinged–hinged
boundary conditions when the tension is unknown.

(2) Practical formulae for calculating the tensions of cables with fixed–fixed and fixed–
hinged boundary conditions were proposed based on the frequency ratio, which can
be used to compute cable tensions with ξ values not lower than 6.9 based on multi-
order frequencies. The tensions of obviously sagged cables calculated based on the
fundamental frequency have a relative error smaller than 2.5%, while the error can be
kept below 1.5% when higher-order frequencies are used for computation. The two
formulae both result in high computational accuracy and a wide range of applications.
In engineering examples, the tension errors of two stay cables are both lower than 2%,
and the results are more accurate than the tensions calculated by Fang’s formula. This
indicates that the proposed formulae are applicable to cables with different values of
bending stiffness and sag.

(3) Changes in the frequency ratios of cables with fixed–fixed and fixed–hinged boundary
conditions to those with hinged–hinged boundary condition were evaluated. The
results indicate that as ξ increases, the frequency ratios of various orders of cables
tend to be the same. The boundary coefficient(λ) was introduced. Given the stiffness
and two arbitrary natural vibration frequencies of cables, the tension and boundary
coefficient(λ) can be obtained through linear regression. This method can be used
to calculate the tension of cables with 25 ≤ ξ ≤ 165 and with unknown rotational
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restraints at both ends. When computing the tension using any two of the first five
frequencies, most tension errors are below 5%; if the sag effect of cables is considered,
calculations based on frequencies other than the fundamental frequency ensure that
most errors are below 5%. The computational accuracy is highest when calculating
the tension using the second and third frequencies, with the errors both less than 5%.
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