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Abstract: The deep learning method has been widely used in the engineering field. The availabil-
ity of the training dataset is one of the most important limitations of the deep learning method.
Accurate prediction of pavement performance plays a vital role in road preventive maintenance
(PM) and decision-making. Pavement performance prediction based on deep learning has been
widely used around the world for its accuracy, robustness, and automation. However, most of
the countries in the world have not built their pavement performance historical database, which
prevents preventive maintenance using the deep learning method. This study presents an innovative
particle swarm optimization (PSO) algorithm-enhanced two-stage TrAdaBoost.R2 transfer learning
algorithm, which could significantly increase the pavement performance prediction database. The
Long-Term Pavement Performance (LTPP) database is used as the source domain data, and one of
the highways in China is chosen as the target domain to predict pavement performance. The results
show that the proposed PSO-Two-stage TrAdaBoost.R2 model has the highest accuracy compared
with AdaBoost.R2 model and traditional regression decision tree model. The validation case study
shows significant consistency between the predicted International Roughness Index (IRI) and the
whole-year measurement data with an R2 of 0.7. This study demonstrates the great potential of the
innovative instance-based transfer learning method in pavement performance prediction of a region’s
lack of data. This study also contributes to other engineering fields that could greatly increase the
universality of deep learning.

Keywords: instance-based transfer learning; preventive maintenance; long-term pavement
performance (LTPP); PSO-Two-stage TrAdaBoost.R2

1. Introduction

The deep learning method has been proven to be an effective method and has been
widely used in solving many engineering issues. One of the main disadvantages of deep
learning is that it depends on a large database. Some regions in the world, especially
developing countries, have not built their engineering database, which prevents them
from using the deep learning method. This study provides an alternative idea to take
advantage of the established open-source database by using an instance-based transfer
learning algorithm in the engineering field. The total mileage of roads in China reached
5.28 million km by the end of 2021, and in the United States, it reached 6.657 million
km by the end of 2020, according to the Ministry of Transpiration of China and the U.S.
Department of Transportation (DOT). Road surfaces will exhibit a variety of damages, and
maintenance is among the most important tasks of the road management department [1].
Timely preventive maintenance needs to be taken, which means making minor repairs
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before roads are seriously damaged [2]. Various studies have presented different artificial
neural network (ANN) models for predicting pavement performance recently. However,
the ANN method usually depends on big data to achieve acceptable accuracy. Most of
the pavement in the U.S. has been built over 50 years, and the U.S. DOT established the
Long-Term Pavement Performance (LTPP) database in the 1980s [3]. On the other hand,
the majority of roads in China have been built during the past 20 years, and there is no
network-level historical database. This situation can be extended to other developing
countries that lack pavement performance historical databases [4]. It is of great importance
to develop a method to take advantage of the existing database to predict the pavement
performance of new roads.

2. Literature Review

Pavement deterioration is a complex process determined by many factors, which
makes it difficult to predict precisely [5,6]. Pavement performance prediction models are
mainly divided into deterministic and probabilistic prediction models in traditional road
performance prediction. Deterministic models include the mechanical model, empirical
model, and mechanical–empirical model [7]. The difference is that the mechanical model
is based on physical and mechanical principles [8], while the empirical model is based
on statistical interpretation of observed field performance. Chen et al. [9] determined the
average stress state of the foundation layer according to the mechanical equation. They
incorporated the effect of load distribution into the model and proposed a new mechanical
empirical fault model. Dong et al. [10] combined two influencing factors and established a
multi-influencing factor model to analyze the influence of structural equation modeling
(SEM). Bayesian and Markov probabilistic prediction models are the main components of
probabilistic models. Khaled et al. [11] proposed a discrete-time Markov model based on
inverse calculation, achieving a prediction model for cost reduction. Khawaga et al. [12]
developed Markov chain-based and sigmoidal curve-based models to predict IRI. The
results show that the Markov chain-based model is better than the sigmoidal curve-based
model across comprehensive factors. Yang et al. [13] used the dynamic Markov model to
predict pavement cracking performance. The results show that the dynamic Markov chain
has higher prediction accuracy than the static Markov chain.

In recent years, artificial intelligence (AI) methods have been widely used in road
performance prediction for their strong nonlinear fitting abilities, complex theoretical
derivation, and real-time prediction capabilities. ANN has great potential when dealing
with large amounts of historical data. ANN has better performance than linear regression
in predicting IRI using the same stable data source [14]. Sollazzoa et al. [15] used ANN
to verify the relationship between roughness and structural performance of asphalt pave-
ment. Gong et al. [16] used the ANN method to predict pavement fatigue cracking. The
results showed that the performance of ANN was better than that of the fatigue cracking
(FC) transfer function, and the prediction performance of the models with multiple input
variables was much better than the models with only two input variables. Li et al. [17]
established a hybrid neural network model based on ten years of historical data from a
highway in China. The proposed model could predict pavement performance precisely
compared with traditional ANN methods. Liu et al. [18] proposed a Mask region-based
convolutional neural network model for the automatic detection and segmentation of small
cracks in asphalt pavement at the pixel level. Angela J. Haddad et al. [19] obtained a rutting
prediction model based on rutting data extracted from the LTPP database using a deep
neural network model for training, and the rutting prediction model showed stronger
prediction ability compared with commonly used models, and a sensitivity analysis was
performed. In addition, generic rutting prediction curves were developed to make rut-
ting predictions available for all road agencies. Wang et al. [20], using the ResNeXt101
network, balanced feature pyramid (BFP), and deformable convolutional (DCN), modified
the Hybrid Task Cascade (HTC), proposing an improved hybrid task cascade instance
segmentation model that accurately segments pavement surface distress. In addition to
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ANN methods, many other machine learning algorithms also have good performance in
road performance prediction. Freund and Schapire [21] proposed the AdaBoost model
based on the boosting algorithm in 1997, which is one of the most widely used algorithms.
Wang et al. [22] used the AdaBoost regression model to predict IRI and showed good results
compared with linear regression. The roughness of asphalt concrete pavement is caused by
many factors, such as cracks, ruts, and looseness, which contain both linear and nonlinear
relationships. The AdaBoost algorithm has the advantage of finding these relationships
through complex calculations, which provides the possibility for its application in IRI
modeling prediction.

The United States started to build the Long-Term Pavement Performance (LTPP)
database in the 1980s. The LTPP database contains a large amount of road historical data,
which is of great importance in the study of road-related factors and the development
of road performance prediction models. Many studies have used the LTPP database to
study pavement performance. Abdelaziz et al. [14] established a prediction model of IRI
based on the LTPP database, using both regression models and artificial neural networks to
evaluate the structural bearing capacity of pavements. Madeh et al. [23] built five machine
learning models to study the impact of climate change on pavement performance. Gong
et al. [24] used a random forest regression model to predict the IRI of pavements based on
the LTPP database.

One of the primary limitations of machine learning models is the size of the dataset. In
the above-mentioned studies, the machine learning models are all based on a large amount
of road historical data. However, not all roads have a large amount of historical data,
especially those that are newly constructed. It is impossible to build accurate prediction
models to provide guidance to road maintenance agencies. Therefore, it is necessary to
investigate methods that can predict pavement performance based on the current amount
of data [4]. Traditional machine learning methods usually assume that the data generation
mechanism does not change with the environment and that the source domain data and the
target domain data are required to have the same distribution. The emergence of transfer
learning breaks this limitation. It solves the problems of insufficient training datasets, low
model classification, and recognition accuracy in machine learning [25]. As long as there is
a certain relationship between the source domain and the target domain, the knowledge
that has been extracted from the source domain data and features can be used in training
the target domain classification model [26], enabling the reuse and transfer of learned
knowledge between similar or related fields, transitioning traditional learning from scratch
into cumulative learning. Zhang et al. [27] applied deep convolutional neural networks
based on transfer learning for model pre-training to classify road images into three types.
The experimental results show that the method can successfully distinguish different
types of pavement damage. Jang et al. [28] proposed a pre-trained deep convolutional
network model based on ImageNet, combined with the transfer learning method, and
fine-tuned the model to improve training accuracy and reduce time overhead. Similarly,
Gopalakrishnan et al. [29] proposed using a pre-trained deep convolutional neural network
model and transfer learning method for automatic pavement crack detection. It is proven
that this transfer learning method is successful in pavement crack recognition and detection.
Other scholars have also successfully explored the application of transfer learning in other
situations, such as visual-based automatic detection of concrete surface cracks [30–32].
Most of the transfer learning applications in road engineering utilize image recognition
technology, such as image-based pavement damage detection. Although transfer learning
techniques are the most common applications in the field of image analysis, these techniques
can be applied to any situation where target domain data is scarce and data from different
datasets (source data) are available. Marcelino et al. [4] proposed a transfer learning
method based on the Boosting algorithm to predict pavement performance in a limited data
environment. The study used the TrAdaBoost algorithm to predict pavement performance
using both the LTPP database and the Portuguese road database. However, their study
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chose separate sections of the road to make predictions, which makes it hard for the
maintenance department to use.

In addition, a few studies have attempted to use transfer learning in other engineer-
ing fields. Tang et al. [33] used road crash data from two Chinese cities, Shanghai and
Guangzhou, as source and target data domains, using the TrAdaBoost.R2 algorithm to
test the adaptability of transfer learning to small samples. Their results show that the
model constructed with TrAdaBoost.R2 has better performance than traditional calibra-
tion methods. Ahmad et al. [34] used the two-stage TrAdaBoost.R2 algorithm to study
knowledge acquisition from available source domain data to predict crash efficiency in
the target domain. Their results show that the boosting correction technique has better
prediction accuracy than the NB-based correction model with limited target area data. Lv
et al. [35] proposed a semi-supervised transfer learning approach for air quality assessment
in non-urban areas without air quality monitoring stations. Their results show that the
strategy of distinguishing between urban and non-urban areas and combining transfer and
semi-supervised learning is effective for air quality assessment. Chen et al. [36] proposed a
new TrAdaBoost-LSTM algorithm to use relevant knowledge from complete datasets to
increase prediction accuracy of low-quality datasets by 15% to 25%.

Overall, previous studies in other engineering fields have been based on a small
number of local databases and did not optimize hyperparameters. Most of the previous
studies made pavement performance predictions based on big historical databases, and
few studies used transfer learning methods for actual road performance prediction. In
addition, many studies have used data from the same period to train and verify the model,
lacking temporal prediction. In practice, however, the management department is eager to
predict the pavement performance of specific locations in the future. This study predicts,
for the first time, the road International Roughness Index (IRI) for a specific road at 100 m
intervals for the next year only based on a small amount of data using the instance-based
transfer learning method. The research framework is shown in Figure 1.
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Figure 1. Research framework.

The structure of the paper is organized as follows: first, the research background
and literature are introduced. Secondly, the test source data and target data are presented.
Section 4 introduces the methods and algorithms used in this study. Section 5 presents a
detailed analysis and shows the results. Finally, conclusions and summaries are made in
Section 6.

3. Data Preparation
3.1. Long-Term Pavement Performance (LTPP) Program

The Long-Term Pavement Performance (LTPP) database is the world’s largest and
most comprehensive pavement performance database. The LTPP program aims to study
how various road structural thicknesses, climatic conditions, traffic loads, materials, and
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maintenance practices affect pavement performance [24]. It is managed by the Federal
Highway Administration (FHWA) and includes pavement performance data for more than
2500 road sections. Inventory, maintenance, monitoring, repair, material testing, traffic,
and climate data of different types are stored in seven modules of the database. The LTPP
program includes two main components: General Pavement Studies (GPS) and Specific
Pavement Studies (SPS) the IRI geographical distribution map of the LTPP database shown
in Figure 2. The Circles of different colors and sizes in the upper right of the map represent
IRI indexes of different sizes, and the numbers in the circles in the map represent the
number of road sections in the location. In general, each LTPP test section is 152 m long,
each lane is 3.65 m, and all sections are monitored using the same standards. One of the
main purposes of the LTPP program is to provide high-quality data for research, and a
lot of studies have used the LTPP databases to understand the performance of various
maintenance and repair strategies [37–40] and optimize maintenance decision-making
processes [41]. The transfer learning conducted in this study requires a large amount of
road-related source domain data, and most of the data in the LTPP database are well-
observed. Therefore, the international roughness index (IRI), climate data, traffic volume,
and road structure information of asphalt pavement from the LTPP database are chosen as
the source domain data for this study. In this study, 2611 sets of LTPP data are used as part
of the source domain.
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3.2. Target Data Source

The experimental data used in this study pertain to a part of China’s G18 national
highway. The road pavement is asphalt concrete pavement [17]. The highway has
three lanes in both directions, as shown in Figure 3. To separate the lanes in both
directions, the lanes are named the upward direction and the downward direction. As
part of the data on the first lane are unavailable, the second and third lanes in both
directions are considered in this study. The structure of the pavement consists of the
following layers: 4 cm of fine-grained modified asphalt concrete (AC-13C), 6 cm of
medium-grained modified asphalt concrete (AC-20C), 8 cm of coarse-grained asphalt

https://infopave.fhwa.dot.gov/Media/LTPPSectionMapping
https://infopave.fhwa.dot.gov/Media/LTPPSectionMapping
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concrete (AC-25C), 18 cm of cement stabilized macadam, 18 cm of cement-stabilized
macadam, and 18 cm of lime fly ash soil. Although there are many differences between
Chinese standards and U.S. standards, the two nations use the same International
Roughness Index to evaluate the roughness of the pavement, according to the Highway
Performance Assessment Standards of China [42]. Therefore, this study chooses the
international roughness index (IRI) as the research target value.
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An intelligent road condition detection vehicle is used to measure road roughness. It
uses a flatness detection system within the vehicle to detect the road surface flatness and
measure the International Roughness Index (IRI) of the road in real-time. The sampling
interval is 10 cm, and test results are summarized every 100 m to evaluate road surface
flatness. The traffic data of the highway are represented by the annual average daily traffic
volume (AADT). The climate data, including the annual average temperature and the
annual total rainfall, are provided by the weather station,. In addition, road structure data
are divided into thickness of the asphalt layer and the road base.

In this study, data from the four lanes of the G18 highway were utilized as the target
domain, and each lane was used for transfer learning. The second and third lanes served
as the target domain in model development. After data cleaning, the second lane upward
had 202 sets of data, the second lane downward had 199 sets of data, the third lane upward
had 306 sets of data, and the third lane downward had 309 sets of data. Figure 4 shows the
data distribution of the international roughness index (IRI) from both the LTPP database
and the G18 database, respectively. It can be seen from the diagram that the distribution of
the IRI in the two databases takes the form of a skewed normal distribution. The data are
mostly distributed around 1.0 for the LTPP database and 1.5 for the G18 dataset. This may
be due to the G18 having a big ratio of heavy traffic, resulting in a large IRI. On the other
hand, the two databases have a certain similarity, which should be helpful for subsequent
data migration.
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The sections used in this study are both asphalt concrete pavement. Six variables,
including road age, annual average daily traffic volume, annual average temperature,
annual total rainfall, asphalt surface thickness, and road base thickness, are chosen as
input features in the model, with IRI as the output feature. These selected features are
all important variables that highly affect road deterioration. Tables 1 and 2 summarize
detailed statistical data for the LTPP and G18 datasets.

Table 1. Statistical data of LTPP features.

Road Age
(Year)

AADT
(Vehicle/Day)

Temperature
(◦C)

Precipitation
(mm)

Base Thickness
(mm)

Asphalt Layer
Thickness (mm)

IRI
(m/km)

Mean 19.78 5330.41 12.23 724.31 504.99 176.59 1.18
Std 12.31 6353.96 5.22 443.26 497.50 72.80 0.49
Min 1 63.00 0.90 10.50 25.40 12.70 0.33

25% quartile 8 1151.00 8.00 320.39 304.80 119.40 0.85
50% quartile 20 2829.80 10.90 696.70 416.60 162.50 1.07
75% quartile 30 6967.74 14.50 1052.80 604.50 213.40 1.35

Max 52 45,909.00 25.70 2447.69 2456.00 444.60 4.11

Table 2. Statistical data of G18 features.

Road Age
(Year)

AADT
(Vehicle/Day)

Temperature
(◦C)

Precipitation
(mm)

Base Thickness
(mm)

Asphalt Layer
Thickness (mm)

IRI
(m/km)

Mean 1.92 21,105.38 12.97 547.58 540 180 1.16
Std 0.79 1736.77 0.28 167.63 0 0 0.48
Min 1 19,154.37 12.54 422.66 540 180 0.39
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Table 2. Cont.

Road Age
(Year)

AADT
(Vehicle/Day)

Temperature
(◦C)

Precipitation
(mm)

Base Thickness
(mm)

Asphalt Layer
Thickness (mm)

IRI
(m/km)

25% quartile 1 19,286.29 12.75 422.66 540 180 0.84
50% quartile 2 22,723.40 12.87 513.59 540 180 1.05
75% quartile 2 22,723.40 13.17 513.59 540 180 1.34

Max 3 22,804.41 13.42 880.11 540 180 4.79

4. Methodology

Transfer learning aims to transfer data from the source domain to the target domain
with a certain correlation. As shown in Figure 5, although the data distribution between
the source domain and the target domain is different, transfer learning can help machine
learning models transfer learned knowledge from the source domain to the target domain
and assist the target domain training model in improving the accuracy of the target domain
model [43].
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4.1. AdaBoost.R2

AdaBoost is a machine learning algorithm based on boosting. Its main task is to
generate a strong classifier from a series of weak classifiers to improve prediction accu-
racy [44]. The AdaBoost mechanism involves training the weak learner from training
samples with the current weight and updating the weight of the training samples based on
the error rate. The weights of misclassified samples from the previous weak learner are
increased, while the weights of correctly classified samples are decreased and used again
to train the next weak learner. In addition, a new weak learner is added in each round of
iteration, and the weak learner will not be integrated into the final strong learner until a
predetermined error rate small enough or a prespecified maximum number of iterations
has been attained. Drucker [45] compared boosting with a single learner and bagging
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on the Friedman function, showing that boosting has better performance in dealing with
regression problems.

4.2. TrAdaBoost.R2

As an improvement of AdaBoost.R2, TrAdaBoost.R2 is an instance-based transfer
learning algorithm. Dai et al. [46] extended AdaBoost to the field of transfer learning. In
TrAdaBoost.R2, the training set is mainly divided into two groups, including source domain
data and target domain data. It allows the source domain to participate in training and ex-
tract knowledge to help the target domain build models. Although the distributions of the
assumed source and target domain data are different, the algorithm automatically adjusts
the weights of the source domain data. The source domain data with a similar distribution
as the target domain data will be given higher weights, which will improve the accuracy of
the model. Figure 6 shows the conceptual diagram of the TrAdaBoost.R2 algorithm, blue cir-
cles represent source domain data red triangles represent target domain data. Dai et al. [46]
investigated different ratios between training data of the same distribution and different
distributions as variables. The results show that the error rate of TrAdaBoost is consistently
lower than other support vector machine (SVM)-based algorithms in different datasets.
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The main difference between AdaBoost and TrAdaBoost is the strategy for updating
the weights of training data samples. For the target domain, both algorithms reduce the
weight of high error rate instances and increase the weight of low error rate instances.
However, for the source domain, TradaBoost.R2 reduces the weight of high error instances
because they may conflict with test data and increases the weight of low error instances to
contribute more to the learning process.

4.3. Two-Stage TrAdaBoost.R2

Since the original TrAdaBoost algorithm is a classification algorithm, the TrAdaBoost
framework is combined with AdaBoost.R2, which becomes TrAdaBoost.R2, to predict
regression problems. However, Pardoe and Stone [47] found two problems when imple-
menting the TrAdaBoost.R2 algorithm. Firstly, the weight of source instances similar to the
target data is often reduced to zero during the process of transfer learning. Secondly, the
target instance that is least similar to the source data is given a higher weight during the
training process. Therefore, Pardoe and Stone [47] introduced the two-stage TrAdaBoost.R2

to deal with the two main problems of TrAdaBoost. To avoid the problem of overfitting, the
weight of the source instance in the first stage of the Two-stage TrAdaBoost.R2 algorithm is
adjusted to a point specified by cross-validation through N steps. In the last iteration step,
the total weight is reduced to zero. In the second stage, the weight of the source instance
remains unchanged while updating the weight of the target instance by implementing
normal AdaBoost. The main steps of the algorithm are as follows:
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a. Initialize weights and assign weight distribution D1 to the training dataset, setting
the initial weight vector ω1

i as:

D1 =
(

ω1
1, . . . , ω1

s+t

)
; ω1

i =
1

s + t
for1 ≤ i ≤ s + t (1)

where D1 is the weight distribution of the training data, ω1
i is the weight distribution

of each data weight vector under D1, s is the dataset Tsource (of size s), t is the dataset
Ttarget (of size t). For n = 1, 2, 3, . . ., N:

b. Call a learner Gn(x) from the training dataset T with the weight distribution Dn.
c. Call AdaBoost.R2 with T = Tsource + Ttarget, a base regression estimator G(x), and the

weight vector ωj. Tsource stays unchanged. Calculate the errorj of Modelj using
F-fold cross-validation.

d. Call a learner G(x) with T with the weight distribution Dj.
e. Calculate the adjusted error ei

j of each instance in T using AdaBoost.R2.
f. Update the weight vector and the weight distribution.

ω
j+1
i =


ω

j
i β

ej
i

j
Zj

1 ≤ i ≤ s, f or Tsource
ω

j
i

Zj
s + 1 ≤ i ≤ s + t, f or Ttarget

 (2)

where Zj is the normalizing constant, β j is the weighting factor to result in a certain
total weight for the target instances, selected such that the observed weight of Ttarget
is t

s+t +
j

N−1
(
1 − t

s+t
)
.

g. Determine the output of the resulting Modelj:

f (x) = Modelj = fj(x), where j = argmini errori

4.4. Decision Tree

A Decision Tree is a supervised learning method that summarizes decision rules from
a series of data with features and labels and presents these rules with the structure of a
tree graph to solve classification and regression problems [48–50]. The decision tree is
mainly composed of one root node, multiple decision nodes, and leaf nodes. The root
node is the starting node, which includes all samples. The commonly used decision
trees are iterative dichotomiser 3(ID3) [51,52], classification and regression trees based on
information gain ratio (C4.5) [53,54], and Classification and Regression Tree (CART) [55–58].
The CART algorithm uses the division criteria of the Gini coefficient to deal with continuous
values in the regression problem. However, practice has proven that the fully grown
regression tree is prone to overfitting, and the prediction effect on new samples is poor.
Therefore, it is necessary to reduce the fully grown regression tree using pruning criteria
to obtain the optimal regression tree model. In addition, CART is suitable for large-scale
datasets, especially with complex samples and more variables. Since CART can solve both
classification and regression problems, it is used as a weak classifier for IRI prediction in
the above ensemble learning model.

4.5. Particle Swarm Optimization (PSO) Algorithm

Particle swarm optimization (PSO) [59] is an intelligent algorithm that simulates
the predation characteristics of birds. It stimulates the process of birds looking for food
in a certain area. Particle swarm optimization solves global optimization problems by
simulating biological populations [60]. In the PSO algorithm, each individual in the group
is regarded as a particle, and each particle moves at a certain speed in a given search space.
The algorithm can update speed and iteration dynamically according to the movement
of the particles themselves and the surrounding particles. The specific process is shown
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in Figure 7. The performance of the model depends largely on the hyperparameters in
the model training process. Kawther et al. [61] applied the PSO algorithm to optimize the
maintenance schemes. The results show that the PSO optimization scheme can improve
road conditions and save costs. Li et al. [1] used the Gated Recurrent Unit (GRU) neural
network enhanced by the particle swarm optimization (PSO) algorithm to predict the
pavement performance parameters based on seven years of historical data from a highway
in China. The results show that the predicted pavement performance parameters are
significantly consistent with the annual measurement data. Therefore, it is necessary to
adjust the hyperparameters of the model, such as decision tree depth, learning rate, number
of estimators, number of iterations, etc. The purpose of model hyperparameter tuning is
to obtain a set of optimal parameter values that produce the best predictive performance.
This process can greatly reduce human influence during model training and automatically
find the best hyperparameters.
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4.6. Input and Output Variables

The deterioration of pavement performance results from the interaction of environ-
mental factors and vehicle loads. The influence of environmental factors, vehicle load, and
road structure should be considered in the prediction model. In this study, annual average
temperature, annual rainfall, annual average daily traffic, road age, asphalt layer thickness,
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road base thickness, and the previous year’s road performance index are all used as the
pavement performance prediction model’s input variables.

Pavement performance data are time series data as performance decreases over time.
When the pavement performance model is established, the step size of time is 1, which
means that the pavement performance index in the second year is predicted by the pre-
determined data froom the previous year:

It = f (Ct−1, It−1) (3)

where I is the road performance index (IRI), C is the feature values, which include annual
average temperature, annual rainfall, road age, annual average daily traffic volume (AADT),
asphalt layer thickness, road base thickness, and t is the year.

4.7. Data Preprocessing

In this study, 2611 sets of data were chosen as the source domain from the LTPP
database. A total of 1016 sets of data were chosen as target domains, with 202 for the
second lane upward, 199 for the second lane downward, 306 for the third lane upward,
and 309 for the third lane downward. Each set contains two consecutive years of data
with all variables. To simulate transfer to a newly built road, the first two years’ data, thus
2010 and 2011, are chosen as the training set, and the data from 2012 are chosen as the
validation set. The data of the same milestone number in the training set are arranged
vertically, as shown in Figure 8, in which C represents the environment, load, and other
variables, and I represents the pavement performance index value. The pavement needs to
be maintained during service, and this may lead to abnormal fluctuations in the pavement
performance index. Some other abnormal fluctuations may be caused by human factors.
Both abnormal fluctuations caused by maintenance work and human factors are removed
in the preprocessing stage.
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5. Results
5.1. Model Evaluation Indexes

The Root Mean Square Error (RMSE), the Coefficient of Determination (R2), and the
Mean Absolute Percentage Error (MAPE) are used as evaluation indexes for the model.

RMSE =

√
1
n∑n

i=1(Yi − yi)
2 (4)

MAPE =
100%

n ∑n
i=1

∣∣∣∣Yi − yi
yi

∣∣∣∣ (5)

R2 = 1 − ∑(yi − Yi)
2

∑
(
Yi − yi

)2 (6)

where n is the amount of data in the test set, yi is a single true value of the test set, Yi is a
single predicted value of the test set, and Yi is the sample expectation of true value.

5.2. Prediction Result

In this study, three models: the decision tree model, AdaBoost.R2, and the Two-stage
TrAdaBoost.R2 model are compared to predict the IRI of the G18 highway based on
LTPP data as the source domain. To compare the improvement of the training dataset,
the prediction results using only G18 data are also compared, as shown in Table 3.
It is shown from Table 3 that the Two-stage TrAdaBoost.R2 model generally shows
better prediction performance than Adaboost.R2 and decision tree regression models.
The RMSE and MAPE of the Two-stage TrAdaBoost.R2 model are smaller than those
of AdaBoost.R2, the regression decision tree model, and the local regression decision
tree model. The R2 of the Two-stage TrAdaBoost.R2 model is higher than that of the
other three models. The AdaBoost R2 model has the second-best performance of all
models. The average R2 of the Two-stage TrAdaBoost.R2 model for the four lanes is 0.76,
which is 7.29% higher than the average R2 of the AdaBoost.R2 model, 21.2% higher than
the average R2 of the regression decision tree model, and 36.2% higher than the local
regression decision tree model. These results show that the Two-stage TrAdaBoost.R2

model has the best performance in predicting the IRI. By comparing the decision tree
model using different training datasets, it is shown that the model trained with LTPP
data together with local data has higher accuracy compared with the model trained
only with local data.

Table 3. Prediction results.

Two-Stage TrAdaBoost.R2 AdaBoost.R2 Decision Tree Decision Tree (Local)

RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2

Second lane upward 0.227 0.1107 0.83 0.261 0.1810 0.78 0.300 0.1551 0.71 0.316 0.1768 0.67
Second lane downward 0.273 0.1208 0.75 0.321 0.1449 0.65 0.347 0.164 0.60 0.389 0.1862 0.50

Third lane upward 0.246 0.1001 0.78 0.297 0.1286 0.68 0.340 0.1396 0.58 0.360 0.1480 0.53
Third lane downward 0.323 0.1037 0.67 0.344 0.1107 0.62 0.358 0.1241 0.59 0.385 0.1465 0.52

Figure 9a,c,e,g shows scatter plots of the predicted and measured IRI for the four lanes.
The horizontal axis and vertical axis represent the measured actual values and the predicted
values, and the 1:1 line is plotted as the reference line. It is shown from the figure that
the scatter points of the Two-stage TrAdaBoost.R2 model are evenly distributed around
the 11 line, and most of the scatter points range between 0.5 and 3.5, which means that
the Two-stage TrAdaBoost.R2 model matches the actual data very well. Compared with
the Two-stage TrAdaBoost.R2 model, the scattering of the other three models is more
scattered around the 1:1 line and more dispersed above or below the reference line, in-
dicating that the prediction accuracy of the other three models is lower than that of the
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Two-stage TrAdaBoost.R2 model. It also can be seen that the predicted values for the sec-
ond lane are distributed closer to the reference line compared with the third lane for both
directions, which indicates that the model has different accuracy levels for different lanes.
For a more intuitive comparison of the distribution of the predicted data, Figure 9b,d,f,h
plots box plots of the true values and the predicted results of the four models to com-
pare the distribution characteristics of the data, where black dots represent data outliers.
The quality of the model can be assessed through statistical analysis comparing observed
and predicted values. First, from the box plots, it can be seen that the 25–75% data dis-
tribution of the predicted values for the Two-stage TrAdaBoost.R2 model is more con-
centrated, and the boxes of the Two-stage TrAdaBoost.R2 positions are the same. The
other three models for the four lanes are all notably lower than the predicted values of
the Two-stage TrAdaBoost.R2 model. In addition, the number of outliers in the predicted
values for the Two-stage TrAdaBoost.R2 model is fewer than that of the other four models.
This shows that the Two-stage TrAdaBoost.R2 model can effectively transfer data and
predict pavement performance.
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lines represent the standard deviation. The standard deviation and RMSE of different in-
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Figure 9. Prediction results of IRI. (a) The scattergram of predicted IRI and actual IRI of the second
lane upward; (b) the box plot of predicted IRI and actual IRI of the second lane upward; (c) the
scattergram of predicted IRI and actual IRI of the second lane downward; (d) the box plot of predicted
IRI and actual IRI of the second lane downward; (e) the scattergram of predicted IRI and actual IRI
of the third lane upward; (f) the box plot of predicted IRI and actual IRI of the third lane upward;
(g) the scattergram of predicted IRI and actual IRI of the third lane downward; (h) the box plot of
predicted IRI and actual IRI of the third lane downward.

Figure 10, shows the Taylor diagrams of the four models. The purple lines represent
the Pearson correlation coefficient, the green lines represent the RMSE error, and the black
lines represent the standard deviation. The standard deviation and RMSE of different
indicators are scaled from 0 to 1, according to the proportion, to compare the four models
at the same time. In the Taylor diagram, the degree of agreement between the observed
and predicted IRI is revealed by the evaluation indicators of the four models. The figure
represents three index values of the predicted results. In the Taylor diagram, each model is
represented by a small circle, and a model closer to the observed value has better quality
and higher prediction accuracy. It can be seen from Figure 10 that the predicted values
of the Two-stage TrAdaBoost.R2 model for both lanes are more accurate than those of the
other models.
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5.3. Impact of Training Dataset

To study the impact of source and target domain training datasets on the transfer
learning model, a series of experiments were conducted. These experiments obtained
different results for the Two-stage TrAdaBoost.R2 model by gradually reducing the size of
the source and target domain datasets. Specifically, the experiments included 100%, 75%,
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50%, and 25% of the data in the source domain, using all the data in the target domain. The
model was trained using 100%, 75%, 50%, and 25% of the target domain data and all the
source domain data, as shown in Figure 11. Figure 12 shows the prediction results for the
four lanes, and specific statistical analysis results are shown in Tables 4 and 5.

Buildings 2024, 14, x FOR PEER REVIEW 21 of 29 
 

50% 0.350 0.1337 0.61 
25% 0.365 0.154 0.57 

 

 
(a) 

 
(b) 

Figure 11. Dataset change diagram. (a) Target dataset variable; (b) source dataset variable. Figure 11. Dataset change diagram. (a) Target dataset variable; (b) source dataset variable.



Buildings 2024, 14, 852 21 of 29

Buildings 2024, 14, x FOR PEER REVIEW 22 of 29 
 

 
(a) 

 
(b) 

Figure 12. Cont.



Buildings 2024, 14, 852 22 of 29

Buildings 2024, 14, x FOR PEER REVIEW 23 of 29 
 

 
(c) 

 
(d) 

Figure 12. Cont.



Buildings 2024, 14, 852 23 of 29

Buildings 2024, 14, x FOR PEER REVIEW 24 of 29 
 

(e) 

 
(f) 

Figure 12. Impact of different dataset changes on the Two-stage TrAdaBoost.R2 model. (a) Target 
dataset variable of RMSE; (b) target dataset variable of MAPE; (c) target dataset variable of R2; (d) 

Figure 12. Impact of different dataset changes on the Two-stage TrAdaBoost.R2 model. (a) Target dataset
variable of RMSE; (b) target dataset variable of MAPE; (c) target dataset variable of R2; (d) source dataset
variable of RMSE; (e) source dataset variable of MAPE; (f) source dataset variable of R2.



Buildings 2024, 14, 852 24 of 29

Table 4. Source domain dataset change.

Lane RMSE MAPE R2

Second lane upward

100% 0.227 0.1107 0.83
75% 0.232 0.1144 0.82
50% 0.235 0.1174 0.82
25% 0.265 0.1833 0.77

Second lane downward

100% 0.273 0.1208 0.75
75% 0.280 0.1255 0.74
50% 0.282 0.1281 0.73
25% 0.290 0.1305 0.72

Third lane upward

100% 0.246 0.1001 0.78
75% 0.252 0.1067 0.77
50% 0.257 0.1061 0.76
25% 0.266 0.1299 0.74

Third lane downward

100% 0.323 0.1037 0.67
75% 0.325 0.1045 0.66
50% 0.342 0.1568 0.62
25% 0.353 0.1673 0.60

Table 5. Target domain dataset change.

Lane RMSE MAPE R2

Second lane upward

100% 0.227 0.1107 0.83
75% 0.239 0.1327 0.81
50% 0.259 0.1122 0.78
25% 0.279 0.1218 0.75

Second lane downward

100% 0.273 0.1208 0.75
75% 0.310 0.1429 0.68
50% 0.325 0.1558 0.65
25% 0.352 0.1644 0.59

Third lane upward

100% 0.246 0.1001 0.78
75% 0.252 0.1052 0.77

50% 0.261 0.1114 0.75
25% 0.278 0.1219 0.72

Third lane downward

100% 0.323 0.1037 0.67
75% 0.332 0.1089 0.64
50% 0.350 0.1337 0.61
25% 0.365 0.154 0.57

Figure 12 shows that reducing the data in the source and target domains has different
effects on the prediction accuracy of the transfer learning model. Taking the determination
coefficient R2 of the model as an example, regardless of changes in the size of the source
or target domains, larger datasets all show better performance than smaller ones. Table 4
shows that for both the second and third lanes, predictive accuracy increases as the size
of the source domain data increases. Table 5 shows a similar trend for the target domain
datasets, showing that accuracy increases as the amount of target domain data is enhanced.
This means that when dealing with new roads with small datasets, it is helpful to use
available similar data and transfer learning methods to predict pavement performance. It
also shows that the increasing range of R2 when changing the target domain datasets is
larger than that when changing the source domain datasets, as evidenced by comparing
Tables 4 and 5. Other evaluation indexes follow the same trend, which means that the data
from the target domain has a greater impact on the transfer learning model. Therefore, a
higher percentage of target data does indeed help in obtaining better prediction accuracy
of pavement usage performance.
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The above introduction shows the great advantage of using transfer learning in pave-
ment performance prediction. In practical engineering applications, however, the pavement
management department needs to know the performance in advance at specific locations
to make corresponding maintenance plans accordingly.

Figure 13 shows the predicted IRI and the corresponding measured IRI values along
the mileposts of the road for the third lanes in both directions. The figure illustrates that
the PSO-Two-stage TrAdaBoost.R2 model has the best performance in following the trend
of measured IRI. The PSO-Two-stage TrAdaBoost.R2 model can precisely predict peak and
valley values compared with the other three methods. The prediction results using only
local data have the worst results, which means that prediction results with a small amount
of data are inaccurate. These prediction results can offer direct guidance to the maintenance
department for making plans at specific mileposts.
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6. Conclusions

Machine learning has been widely used in pavement performance prediction to help
road management departments take preventive maintenance. Traditional machine learning
method depend on large amounts of historical data for model training. This highly limits
the application of machine learning in pavement preventive maintenance. This study
provides an alternative method by training a deep learning model with insufficient data
to enhance knowledge. The study, for the first time, developed a method that can use
historical data from other roads to predict the performance of roads that lack data. The
well-known open-source LTPP database is chosen as the source domain, and one of China’s
national highways, G18, is chosen as the target domain. The first three years of the G18’s
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historical data are used to simulate a newly built road. The instance-based transfer learning
method Two-stage TrAdaBoost.R2 algorithm, optimized with PSO, is proposed to predict
the International Roughness Index of the road surface. The main contribution of the study
are summarized as follows:

(1) Four different methods are compared, including the decision tree model trained
only on local data, the decision tree model, AdaBoost.R2 model, and the Two-stage
TrAdaBoost.R2 model trained using historical data from both local and open-source
databases. The prediction results of the decision tree model using local data only and
both local data and LTPP data yield R2 values of 0.62 and 0.56, respectively. Although
this shows that prediction accuracy could improve by enlarging the database, the predic-
tion results still show low accuracy when using traditional machine learning methods.

(2) The proposed PSO-Two-stage TrAdaBoost.R2 transfer learning method has better
performance than the traditional machine learning method in predicting pavement
performance. The average R2 of the PSO-Two-stage TrAdaBoost.R2 transfer learning
method can reach 0.76 on average for all four lanes, which is 11% better than the
AdaBoost.R2 model and 22% better than the decision tree model. The best performance
of R2 is 0.83.

(3) The effects of the source domain and target domain are also examined in the study.
Two groups of combinations are presented, including training the model using 100%,
75%, 50%, and 25% of data in the source domain, using all data in the target domain,
and training the model using 100%, 75%, 50%, and 25% of data in the target domain
and all data in the source domain. The results show that when predicting the per-
formance of a new road with little dataset availability, it is helpful to use similar
available data and transfer learning methods. It also shows that the increasing range
of R2 when changing target domain datasets is larger than that when changing source
domain datasets.

In summary, this study has significant meaning for regions with no historical pavement
performance data. This study used a large amount of historical road data from an open-
source database and used the Two-stage TrAdaBoost.R2 algorithm optimized with the PSO
algorithm to predict the International Roughness Index of road surfaces, obtaining excellent
prediction results. In addition, the method’s robustness and stability are tested and verified
across different lanes, obtaining good prediction results. Finally, the study explores the
effect of varying the amount of data in different datasets on the model’s prediction results.
The experimental results show that changes in the amount of data in the target domain
have a greater impact on model accuracy. This method could help these regions take
advantage of the large amount of historical data from open-source databases. The local
road management department could make a preventive maintenance plan based on the
predicted results, thus saving the budget in the long term. In addition, the transfer learning
approach used in this study could be extended to other engineering fields to enhance
knowledge. Potential engineering fields include road safety performance functions, water
quality prediction, air quality prediction, etc. However, further investigations need to be
carried out to make the method more valuable in practical application. In this study, only
the performance prediction of asphalt pavements was investigated, and further research
is needed to address the performance prediction of cement concrete rigid pavements.
Moreover, transfer learning from multiple source domains should be studied. The influence
of features from the source domain should be further investigated, and more scenarios
should be explored.

Author Contributions: Conceptualization, J.L.; methodology, J.G.; software, J.G.; resources, B.L.;
writing—original draft preparation, J.G.; writing—review and editing, J.L.; supervision, B.L.; project
administration, L.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of Hebei Province
(No. E2022202007) and the Natural Science Foundation of Tianjin (22JCQNJC00400).



Buildings 2024, 14, 852 27 of 29

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: Author Lingxin Meng was employed by the company Wenzhou Xinda Trans-
portation Engineering Testing Co., Ltd. The remaining authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

References
1. Li, J.L.; Zhang, Z.S.; Wang, X.F.; Yan, W.X. Intelligent decision-making model in preventive maintenance of asphalt pavement

based on PSO-GRU neural network. Adv. Eng. Inform. 2022, 51, 101525. [CrossRef]
2. De la Garza, J.M.; Akyildiz, S.; Bish, D.R.; Krueger, D.A. Network-level optimization of pavement maintenance renewal strategies.

Adv. Eng. Inform. 2011, 25, 699–712. [CrossRef]
3. American Society of Civil Engineers. A Comprehensive Assessment of America’s Infrastructure: Infrastructure Report Card for America’s

Infrastructure; ASCE: Reston, VA, USA, 2021.
4. Marcelino, P.; De Lurdes Antunes, M.; Fortunato, E.; Gomes, M.C. Transfer learning for pavement performance prediction. Int. J.

Pavement Res. Technol. 2020, 13, 154–167. [CrossRef]
5. Titus-Glover, L. Reassessment of climate zones for high-level pavement analysis using machine learning algorithms and NASA

MERRA-2 data. Adv. Eng. Inform. 2021, 50, 101435. [CrossRef]
6. Yousaf, M.H.; Azhar, K.; Murtaza, F.; Hussain, F. Visual analysis of asphalt pavement for detection and localization of potholes.

Adv. Eng. Inform. 2018, 38, 527–537. [CrossRef]
7. Ferreira, A.; Picado-Santos, L.D.; Wu, Z.; Flintsch, G. Selection of pavement performance models for use in the Portuguese PMS.

Int. J. Pavement Eng. 2011, 12, 87–97. [CrossRef]
8. Titus-Glover, L. Unsupervised extraction of patterns and trends within highway systems condition attributes data. Adv. Eng.

Inform. 2019, 42, 100990. [CrossRef]
9. Chen, Y.; Saha, S.; Lytton, R.L. Prediction of the pre-erosion stage of faulting in jointed concrete pavement with axle load

distribution. Transp. Geotech. 2020, 23, 100343. [CrossRef]
10. Dong, Q.; Chen, X.Q.; Gong, H.R. Performance evaluation of asphalt pavement resurfacing treatments using structural equation

modeling. J. Transp. Eng. 2020, 146, 04019043. [CrossRef]
11. Abaza, K.A. Back-calculation of transition probabilities for Markovian-based pavement performance prediction models. Int. J.

Pavement Eng. 2016, 17, 253–264. [CrossRef]
12. El-Khawaga, M.; El-Badawy, S.; Gabr, A. Comparison of master sigmoidal curve and Markov chain techniques for pavement

performance prediction. Arabian J. Sci. Eng. 2020, 45, 3973–3982. [CrossRef]
13. Yang, J.D.; Gunaratne, M.; Lu, J.J.; Dietrich, B. Use of recurrent Markov chains for modeling the crack performance of flexible

pavements. J. Transp. Eng. 2005, 131, 861–872. [CrossRef]
14. Abdelaziz, N.; Abd El-Hakim, R.T.; El-Badawy, S.M.; Afify, H.A. International Roughness Index prediction model for flexible

pavements. Int. J. Pavement Eng. 2020, 21, 88–99. [CrossRef]
15. Sollazzo, G.; Fwa, T.; Bosurgi, G. An ANN model to correlate roughness and structural performance in asphalt pavements. Constr.

Build. Mater. 2017, 134, 684–693. [CrossRef]
16. Gong, H.R.; Sun, Y.R.; Hu, W.; Huang, B.S. Neural networks for fatigue cracking prediction using outputs from pavement

mechanistic-empirical design. Int. J. Pavement Eng. 2021, 22, 162–172. [CrossRef]
17. Li, J.L.; Yin, G.H.; Wang, X.F.; Yan, W.X. Automated decision making in highway pavement preventive maintenance based on

deep learning. Autom. Constr. 2022, 135, 104111. [CrossRef]
18. Liu, Z.; Yeoh, J.K.; Gu, X.Y.; Dong, Q.; Chen, Y.H.; Wu, W.X.; Wang, L.T.; Wang, D.Y. Automatic pixel-level detection of vertical

cracks in asphalt pavement based on GPR investigation and improved mask R-CNN. Autom. Constr. 2023, 146, 104689. [CrossRef]
19. Haddad, A.J.; Chehab, G.R.; Saad, G.A. The use of deep neural networks for developing generic pavement rutting predictive

models. Int. J. Pavement Eng. 2022, 23, 4260–4276. [CrossRef]
20. Wang, D.Y.; Liu, Z.; Gu, X.Y.; Wu, W.X. Feature extraction and segmentation of pavement distress using an improved hybrid task

cascade network. Int. J. Pavement Eng. 2023, 24, 2266098. [CrossRef]
21. Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst.

Sci. 1997, 55, 119–139. [CrossRef]
22. Wang, C.B.; Xu, S.Z.; Yang, J.X. Adaboost Algorithm in Artificial Intelligence for Optimizing the IRI Prediction Accuracy of

Asphalt Concrete Pavement. Sensors 2021, 21, 5682. [CrossRef]
23. Piryonesi, S.M.; El-Diraby, T. Climate change impact on infrastructure: A machine learning solution for predicting pavement

condition index. Constr. Build. Mater. 2021, 306, 124905. [CrossRef]
24. Gong, H.R.; Sun, Y.R.; Shu, X.; Huang, B.S. Use of random forests regression for predicting IRI of asphalt pavements. Constr.

Build. Mater. 2018, 189, 890–897. [CrossRef]
25. Trappey, A.J.; Trappey, C.V.; Lin, E. Intelligent trademark recognition and similarity analysis using a two-stage transfer learning

approach. Adv. Eng. Inform. 2022, 52, 101567. [CrossRef]

https://doi.org/10.1016/j.aei.2022.101525
https://doi.org/10.1016/j.aei.2011.08.002
https://doi.org/10.1007/s42947-019-0096-z
https://doi.org/10.1016/j.aei.2021.101435
https://doi.org/10.1016/j.aei.2018.09.002
https://doi.org/10.1080/10298436.2010.506538
https://doi.org/10.1016/j.aei.2019.100990
https://doi.org/10.1016/j.trgeo.2020.100343
https://doi.org/10.1061/JPEODX.0000152
https://doi.org/10.1080/10298436.2014.993185
https://doi.org/10.1007/s13369-019-04321-8
https://doi.org/10.1061/(ASCE)0733-947X(2005)131:11(861)
https://doi.org/10.1080/10298436.2018.1441414
https://doi.org/10.1016/j.conbuildmat.2016.12.186
https://doi.org/10.1080/10298436.2019.1580367
https://doi.org/10.1016/j.autcon.2021.104111
https://doi.org/10.1016/j.autcon.2022.104689
https://doi.org/10.1080/10298436.2021.1942466
https://doi.org/10.1080/10298436.2023.2266098
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.3390/s21175682
https://doi.org/10.1016/j.conbuildmat.2021.124905
https://doi.org/10.1016/j.conbuildmat.2018.09.017
https://doi.org/10.1016/j.aei.2022.101567


Buildings 2024, 14, 852 28 of 29

26. Li, J.R.; Horiguchi, Y.; Sawaragi, T. Counterfactual inference to predict causal knowledge graph for relational transfer learning by
assimilating expert knowledge--Relational feature transfer learning algorithm. Adv. Eng. Inform. 2022, 51, 101516. [CrossRef]

27. Zhang, K.G.; Cheng, H.; Zhang, B.Y. Unified approach to pavement crack and sealed crack detection using preclassification based
on transfer learning. J. Comput. Civ. Eng. 2018, 32, 04018001. [CrossRef]

28. Jang, K.; Kim, N.; An, Y.-K. Deep learning–based autonomous concrete crack evaluation through hybrid image scanning. Struct.
Health Monit. 2019, 18, 1722–1737. [CrossRef]

29. Gopalakrishnan, K.; Khaitan, S.K.; Choudhary, A.; Agrawal, A. Deep convolutional neural networks with transfer learning for
computer vision-based data-driven pavement distress detection. Constr. Build. Mater. 2017, 157, 322–330. [CrossRef]

30. Kim, B.; Cho, S. Automated vision-based detection of cracks on concrete surfaces using a deep learning technique. Sensors 2018,
18, 3452. [CrossRef]

31. da Silva, W.R.L.; de Lucena, D.S. Concrete cracks detection based on deep learning image classification. Proceedings 2018, 2, 489.
32. Gopalakrishnan, K.; Gholami, H.; Vidyadharan, A.; Choudhary, A.; Agrawal, A. Crack damage detection in unmanned aerial

vehicle images of civil infrastructure using pre-trained deep learning model. Int. J. Traffic Transp. Eng. 2018, 8, 1–14.
33. Tang, D.J.; Yang, X.H.; Wang, X.S. Improving the transferability of the crash prediction model using the TrAdaBoost. R2 algorithm.

Accid. Anal. Prev. 2020, 141, 105551. [CrossRef] [PubMed]
34. Yehia, A.; Wang, X.S.; Feng, M.J.; Yang, X.H.; Gong, J.; Zhu, Z.X. Applicability of boosting techniques in calibrating safety

performance functions for freeways. Accid. Anal. Prev. 2021, 159, 106193. [CrossRef] [PubMed]
35. Lv, M.Q.; Li, Y.F.; Chen, L.; Chen, T.M. Air quality estimation by exploiting terrain features and multi-view transfer semi-

supervised regression. Inf. Sci. 2019, 483, 82–95. [CrossRef]
36. Chen, Z.; Xu, H.; Jiang, P.; Yu, S.; Lin, G.; Bychkov, I.; Hmelnov, A.; Ruzhnikov, G.; Zhu, N.; Liu, Z. A transfer Learning-Based

LSTM strategy for imputing Large-Scale consecutive missing data and its application in a water quality prediction system.
J. Hydrol. 2021, 602, 126573. [CrossRef]

37. Hall, K.T.; Correa, C.E.; Simpson, A.L. Performance of rigid pavement rehabilitation treatments in the long-term pavement
performance SPS-6 experiment. Transp. Res. Rec. 2003, 1823, 64–72. [CrossRef]

38. Labi, S.; Lamptey, G.; Konduri, S.; Sinha, K.C. Analysis of long-term effectiveness of thin hot-mix asphaltic concrete overlay
treatments. Transp. Res. Rec. 2005, 1940, 2–12. [CrossRef]

39. Wang, Y.H. The effects of using reclaimed asphalt pavements (RAP) on the long-term performance of asphalt concrete overlays.
Constr. Build. Mater. 2016, 120, 335–348. [CrossRef]

40. Gong, H.R.; Huang, B.S.; Shu, X. Field performance evaluation of asphalt mixtures containing high percentage of RAP using
LTPP data. Constr. Build. Mater. 2018, 176, 118–128. [CrossRef]

41. Chen, X.Q.; Zhu, H.H.; Dong, Q.; Huang, B.S. Optimal thresholds for pavement preventive maintenance treatments using LTPP
data. J. Transp. Eng. 2017, 143, 04017018. [CrossRef]

42. JTG 5210-2018; Highway Performance Assessment Standards. Minsitry of Transport of the People’s Republic of China: Beijing,
China, 2018; pp. 42–45.

43. Tan, C.Q.; Sun, F.C.; Kong, T.; Zhang, W.C.; Yang, C.; Liu, C.F. A Survey on Deep Transfer Learning. In Artificial Neural Networks
and Machine Learning—ICANN; Springer: Berlin/Heidelberg, Germany, 2018; pp. 270–279.

44. Freund, Y.; Schapire, R.E. Experiments with a New Boosting Algorithm. In International Conference on Machine Learning—ICML;
Citeseer: State College, PA, USA, 1996; pp. 148–156.

45. Drucker, H. Improving Regressors Using Boosting Techniques. In International Conference on Machine Learning—ICML; Citeseer:
State College, PA, USA, 1997; pp. 107–115.

46. Dai, W.Y.; Yang, Q.; Xue, G.-R.; Yu, Y. Boosting for Transfer Learning. In Proceedings of the 24th International Conference on
Machine Learning, Association for Computing Machinery, Corvalis, OR, USA, 20–24 June 2007; pp. 193–200.

47. Pardoe, D.; Stone, P. Boosting for Regression Transfer. In Proceedings of the 27th International Conference on International
Conference on Machine Learning, Madison, WI, USA, 21–24 June 2010; pp. 863–870.

48. Myles, A.J.; Feudale, R.N.; Liu, Y.; Woody, N.A.; Brown, S.D. An introduction to decision tree modeling. J. Chemom. 2004, 18,
275–285. [CrossRef]

49. Song, Y.-Y.; Ying, L. Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry 2015, 27, 130.
[PubMed]

50. Quinlan, J.R. Learning decision tree classifiers. ACM Comput. Surv. 1996, 28, 71–72. [CrossRef]
51. Hssina, B.; Merbouha, A.; Ezzikouri, H.; Erritali, M. A comparative study of decision tree ID3 and C4. 5. Int. J. Adv. Comput. Sci.

Appl. 2014, 4, 13–19.
52. Jin, C.; De-Lin, L.; Fen-Xiang, M. An Improved ID3 Decision Tree Algorithm. In Proceedings of the 4th International Conference

on Computer Science & Education, Nanning, China, 25–28 July 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 127–130.
53. Quinlan, J.R. C4.5: Programs for Machine Learning; Elsevier: Amsterdam, The Netherlands, 2014.
54. Salzberg, S.L. Book Review: C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993; Kluwer

Academic Publishers: Dordrecht, The Netherlands, 1994.
55. Loh, W.Y. Classification and regression trees. Wires. Data. Min. Knowl. 2011, 1, 14–23. [CrossRef]
56. Moisen, G.G. Classification and Regression Trees. In Encyclopedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Elsevier: Oxford, UK,

2008; Volume 1, pp. 582–588.

https://doi.org/10.1016/j.aei.2021.101516
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000736
https://doi.org/10.1177/1475921718821719
https://doi.org/10.1016/j.conbuildmat.2017.09.110
https://doi.org/10.3390/s18103452
https://doi.org/10.1016/j.aap.2020.105551
https://www.ncbi.nlm.nih.gov/pubmed/32335387
https://doi.org/10.1016/j.aap.2021.106193
https://www.ncbi.nlm.nih.gov/pubmed/34172259
https://doi.org/10.1016/j.ins.2019.01.038
https://doi.org/10.1016/j.jhydrol.2021.126573
https://doi.org/10.3141/1823-08
https://doi.org/10.1177/0361198105194000101
https://doi.org/10.1016/j.conbuildmat.2016.05.115
https://doi.org/10.1016/j.conbuildmat.2018.05.007
https://doi.org/10.1061/JTEPBS.0000044
https://doi.org/10.1002/cem.873
https://www.ncbi.nlm.nih.gov/pubmed/26120265
https://doi.org/10.1145/234313.234346
https://doi.org/10.1002/widm.8


Buildings 2024, 14, 852 29 of 29

57. Speybroeck, N. Classification and regression trees. Int. J. Public Health. 2012, 57, 243–246. [CrossRef]
58. Timofeev, R. Classification and Regression Trees (CART) Theory and Applications. Master’s Thesis, Humboldt University of

Berlin, Berlin, Germany, 2004; p. 8.
59. Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33–57. [CrossRef]
60. Wang, X.F.; Dong, X.P.; Zhang, Z.S.; Zhang, J.M.; Ma, G.W.; Yang, X. Compaction quality evaluation of subgrade based on soil

characteristics assessment using machine learning. Transp. Geotech. 2022, 32, 100703. [CrossRef]
61. Ahmed, K.; Al-Khateeb, B.; Mahmood, M. A Multi-Objective Particle Swarm Optimization for Pavement Maintenance with

Chaos and Discrete. J. Southwest Jiaotong Univ. 2019, 54, 1–11. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00038-011-0315-z
https://doi.org/10.1007/s11721-007-0002-0
https://doi.org/10.1016/j.trgeo.2021.100703
https://doi.org/10.35741/issn.0258-2724.54.3.5

	Introduction 
	Literature Review 
	Data Preparation 
	Long-Term Pavement Performance (LTPP) Program 
	Target Data Source 

	Methodology 
	AdaBoost.R2 
	TrAdaBoost.R2 
	Two-Stage TrAdaBoost.R2 
	Decision Tree 
	Particle Swarm Optimization (PSO) Algorithm 
	Input and Output Variables 
	Data Preprocessing 

	Results 
	Model Evaluation Indexes 
	Prediction Result 
	Impact of Training Dataset 

	Conclusions 
	References

