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Abstract: Stiffened deep cement mixing (SDCM) piles are composite piles that combine the advantages
of single large-diameter deep cement mixing (DCM) and precast concrete piles. They comprise precast
concrete piles as the core and cast-in-place DCM piles as the outer layer. This study evaluates the
bearing characteristics of SDCM piles under vertical loading. The composite modulus of elasticity
of SDCM piles is first introduced and determined using the area-weighted average method. Then,
the reliability of the proposed method is described by comparing the calculated results with the
findings of the existing literature. Furthermore, a nonlinear simplified analysis method based on
the load transfer method is proposed for vertical bearing characteristics of equal- and short-core
SDCM piles under vertical loading. This method is developed by the finite difference method. The
accuracy of the simplified method is validated by comparing its results with those from existing
tests, theoretical analysis, and finite element simulations. The results of their study indicated that
the area-weighted average method calculates the composite modulus of elasticity of the composite
pile section of the SDCM piles with an error below 0.5% compared to the analytical method. This
finding represents sufficient accuracy. The simplified calculation method established in this study
is computationally stable. When the iteration factor is set to 10−6, as the number of discrete nodes
n on the pile increases, the calculation results are stable with a good convergence when n > 30.
The vertical bearing capacity and pile top stiffness of SDCM piles increased with the length of
the core piles. There was a reasonable core-to-length ratio for SDCM piles in specific scenarios.
An excessively long DCM pile section made its lower part force-free for a given length of core piles.
The appropriate length of core piles should be determined in actual projects to avoid unnecessary
material waste. An optimum ratio of core piles for SDCM piles was determined. Beyond this optimal
value, an increase in the ratio of core piles controlled the pile settlement in a limited manner.

Keywords: stiffened deep cement mixing (SDCM) pile; bearing characteristics; load transfer method;
nonlinear; pile top stiffness

1. Introduction

Stiffened deep cement mixing (SDCM) piles consist of a cast-in-place deep cement
mixing (DCM) pile and a high-strength precast concrete pile core [1–3]. They represent
a new type of composite pile with “green” initiatives formed when the precast pile is
implanted immediately before the initial setting of the DCM pile [4–6], as shown in Figure 1.
SDCM piles skillfully have the advantages of both single large-diameter DCM and precast
concrete piles. This type helps solve the problems of the insufficient strength of a single pile
or the low utilization rate of pile side resistance in the case of pile damage; it is economical
and environmentally friendly.

Several research studies have been carried out on the bearing characteristics of SDCM
piles under vertical loading. Li et al. [7] reviewed the bearing capacity calculation meth-
ods of SDCM piles in existing composite elements. They proposed a modified formula
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based on the field characteristics. Through laboratory tests, Zhang et al. [8,9] investi-
gated the destabilization damage mode of short-core SDCM pile-reinforced embankment.
Voot-tipruex et al. [10] employed field tests to confirm that the SDCM pile was superior
to the DCM pile in controlling settlement and deformation under embankment loading.
Faro et al. [11] studied the influence of cross-sectional size and length on SDCM piles. The
authors demonstrated that the vertical ultimate bearing capacity of SDCM piles increases
with the increasing cross-sectional area and length of core piles. It was also found that
the influence of the length of core piles is higher than that of the cross-sectional area. By
laboratory model tests, Zhou et al. [12] investigated the distribution of vertical stresses
in the DCM pile and concrete core along the pile body. They developed a relationship
between the lateral and end resistances and the relative displacement. A “sudden increase
effect” was identified in vertical stresses at the bottom of the DCM pile with a concrete core.
Dong et al. [13] employed an elastic-plastic finite element method (FEM) to investigate the
mechanical properties of SDCM piles under vertical loading. This investigation included
analyzing the pile–soil stress ratio, vertical stresses in the concrete core, and distribution
of lateral friction resistance at the interface between the inner and outer cores along the
pile length.
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Figure 1. SDCM piles.

Researchers have also studied the calculation and analysis methods of bearing charac-
teristics of SDCM piles. For instance, Wang et al. [14] developed a simplified calculation
method for the change in the load-bearing capacity of statically drilled rooted nodular piles.
This method is based on the shear displacement method by introducing the composite
modulus of elasticity of the concrete core pile and surrounding cement soil. Zhang et al. [15]
studied the interaction between the expanded precast piles and the surrounding soil in
the case of vertical bearing based on the shear displacement method and the load transfer
principle. Then, they combined them to develop a simplified calculation method for vertical
bearing deformation of expanded precast piles. Chen et al. [16] introduced a double expo-
nential function and an ideal elastic-plastic load transfer model to propose a load transfer
analysis and calculation method for equal-core SDCM piles in flexible foundations. Yu
et al. [17] developed equilibrium differential equations for the concrete core, DCM pile, and
surrounding soil based on the load transfer method and obtained the corresponding stress
and displacement expressions of these three components. The influence of factors such
as the upper load, the ratio of core piles, and the area replacement ratio on the settlement
of composite foundations was also evaluated. Whereas many related research studies
have been conducted earlier, most of these are based on equal-core piles, and simplified
analysis of short-core composite piles is still rare. Today, deep learning [18–20] and artificial
intelligence [21,22] provide a unique opportunity for predicting the axial force field of piles.
Consequently, structural engineering is predictable due to deep learning’s specific ability
to handle complex nonlinear structural systems under various conditions. Wu et al. [23]
established an in-hole MPTWD (the multipoint traveling wave decomposition) method
to detect and characterize the damage of cast-in-place reinforced concrete (RC) piles. This
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method can be applied to extremely long piles and piles with defects on their top. The
feasibility of the proposed method was verified against a substantial amount of data.

Zhang et al. [15] considered the deformation of internal prefabricated piles and the
external expansion material of the composite pile under vertical load. The expansion pile
was subsequently regarded as a complete pile with a composite elastic modulus of Ecm. The
radial interaction between prefabricated piles, expansion materials, and surrounding soil
under vertical bearing was analyzed considering the squeezing effect on the surrounding
expansion material and soil after the implantation of prefabricated piles, based on the
theory of thick-walled cylinders. The composite modulus of elasticity Ecm of the SDCM
pile body of expansion piles was derived, but its calculation formula is relatively complex.
Wang et al. [14] used the area-weighted average method to calculate the elastic modulus of
static drilled bamboo joint piles. The applicability of the area-weighted average method to
estimate the composite modulus of elasticity of SDCM piles has not been verified before.

Therefore, this study takes short-core piles as the research object and divides them
into composite pile and DCM pile sections. The concept of comprehensive modulus is
introduced for the composite pile section. Additionally, the comprehensive modulus is
calculated using the area-weighted average method. The applicability of the area-weighted
average method to estimate the comprehensive elastic modulus of reinforced composite
piles is verified. Besides utilizing the load transfer method theory, the short-core SDCM
pile is taken as the research object in this study. Moreover, the finite difference method
is adopted to establish a nonlinear simplified calculation method for vertical bearing
characteristics of SDCM piles under vertical loading. The study provides insights into such
composite piles’ engineering design and applications.

2. Calculation of Composite Modulus of Elasticity of SDCM Pile

The SDCM pile has two interaction interfaces:

(i) The interface of the outer DCM pile and the surrounding soil;
(ii) The interface of the core pile and outer DCM pile.

Previous findings on SDCM piles indicate that the ultimate lateral friction resistance
between the DCM pile and surrounding soil is much smaller than the shear strength
between the core pile and the DCM pile [24,25]. Zhang et al. [15] regarded an expanded
pile as an elastic modulus of Ecm, as shown in Equation (1), with the following basic
assumptions: 1. The stress behavior of a composite pile body during axial compression
is simplified as the superposition of uniaxial compression and plane strain. 2. In vertical
loading, the core pile and its peripheral expansion pile are subjected to separate forces,
and their longitudinal and transverse deformations are coordinated. 3. The radial strain
of the pile body comprises two parts: radial deformation caused by axial load without
lateral confinement and radial deformation caused by confining pressure under lateral
confinement.

Ecm(z) = a + bz, (1)

where

a = Ecm + Em(1 − m) + 2m(vm − vc)
2/

[
(1 + vm)

Em(r2
2 − r2

1)
(r2

1 + r2
2 − 2vmr2

1) +
(1 + vc)(1 − 2vc)

Ec

]

b =
2vmηγ

εz
+ 4Ecηγr2

1(1 − vm
2)(vc − vm)/

[
Em(r2

2 − r2
1)(1 − vc − 2vc

2)εz + Ec(r2
1 + r2

2 − 2vmr2
1)(1 + vm)εz

]
where Ec and Em are the elastic moduli of the inner precast pile and outer DCM pile,
respectively; m is the ratio of the cross-sectional area of the inner precast pile to the total area
of pile body, m = Ac/Ap; Ap is the total cross-sectional area of pile body, Ap = Ac + Am;
Ac and Am are the cross-sectional areas of the inner precast pile and outer pile material,
respectively; vc and vm are the Poisson’s ratios of the inner precast pile and outer pile
material, respectively; r1 and r2 are the radii of the inner precast pile and total cross-section
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radius of the whole pile; η is the earth pressure coefficient; γ is the unit weight of soil; εz is
the vertical strain generated by the pile body; and z is the pile length.

The composite section of the short-core SDCM pile was considered in this paper as
a monolithic pile with a composite modulus of elasticity of Ecm [15]. This study assumes
that the core pile, DCM pile, and the soil around the pile will only undergo vertical
deformation to simplify the calculation. In contrast, the radial deformation can be ignored.
During vertical loading, there is no displacement between the DCM pile and the core pile.
Additionally, the DCM and core piles exhibit elastic deformation. Based on the above
assumptions, this study sets the composite modulus of elasticity of the composite pile
section as Ecm. Moreover, it calculates it by weighting the average cross-sectional area of
the inner and outer piles of the composite pile section [14], as shown in Equation (2):

Ecm =
Ep1 A1 + Ep0 A0

Ap
, (2)

where Ep1 and Ep0 are the elastic moduli of the outer DCM pile and core pile in the
composite pile section, respectively; Ap is the pile area, Ap = A0 + A1, in which A1 and
A0 are the areas of the outer and inner piles, respectively.

The composite modulus of elasticity in the composite pile section of the SDCM pile
was calculated using Equations (1) and (2), respectively, while the elastic moduli of the core
and outer piles were taken from previous studies in the literature [26–28]. The calculated
values are presented in Table 1.

Table 1. Comparison of composite modulus of elasticity obtained by different methods.

No.
Modulus of

Elasticity of the
Outer Pile Em (MPa)

Modulus of
Elasticity of the

Core Pile Ec (MPa)

Ratio of the
Core Pile (%)

Composite Modulus of Elasticity
Ecm (MPa) Error (%) Note

Equation (2) Equation (1) [15]

1 500 38,000 39% 6500 6528.76 0.44% [26]

2 300 25,500 13.4% 3688 3696.37 0.23% [27]

3 300 20,000 25% 5225 5246.06 0.40% [28]

The error between the calculation results obtained from the Equation (2) and the
method in the literature [15] (Equation (1)) was below 0.5%. Therefore, to simplify the
calculation, Equation (2) was utilized to calculate the composite modulus of elasticity of
the composite pile section of the SDCM pile.

3. Simplified Analysis Method for Bearing Characteristics of SDCM under Vertical Load

Short-core SDCM piles are more widely applied in actual projects. As shown in
Figure 2, a short-core SDCM pile can be divided into a composite pile section and a DCM
pile section. In this study, the composite pile section was regarded as monolithic with
a composite modulus of elasticity of Ecm [15] calculated by Equation (2).

3.1. Governing Equation for the Pile

The governing equation for the pile under vertical loading [16] is expressed as
Equation (3).

d2w(z)
dz2 −

Up

Ep Ap
τ(z) = 0, (3)

where

Ep =

{
Ecm (Composite pile section)
Ep1 (Cement pile section)
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where w(z) is the pile displacement at the depth z; Up is the cross-sectional perimeter of
the pile; Ep is the elastic modulus of the pile body; and τ(z) is the lateral friction resistance
between the outer DCM pile and the surrounding soil at depth z.

An ideal elastoplastic model was adopted for the transfer function of the pile side load
at the pile–soil interaction interface, as presented in Figure 3 and Equation (4).{

τ(z) = k′zw(z) (w(z) < suz)
τ(z) = τuz(z) (w(z) ≥ suz)

, (4)

where w(z) is the relative displacement between the pile and the soil; k′z is the initial slope
of the bifurcation line; τuz is the pile side ultimate friction resistance; and suz is the ultimate
displacement corresponding to the pile side ultimate load.
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The initial tangent stiffness of the soil on the pile side is given by Equation (5).

k′z = Up
∂τ(z)
∂w(z)

∣∣∣∣
w(z)=0

=
2πGs

ln
(

rm
r0

) , (5)

where Gs is the shear modulus of the soil on the pile side, Gs =
Es

2(1+vs)
; r0 is the pile radius;

and rm is the maximum influence radius of the pile on the surrounding soil, which can be
calculated by rm = 2.5Lρ(1 − vs) [29].

The secant stiffness of the soil on the pile side is given by Equation (6).{
kz = k′z (w(z) < suz)

kz =
2πrτuz
w(z) (w(z) ≥ suz)

. (6)
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If λ =
√

kz
Ep0Ap

, then the governing equation for the pile is transformed into Equation (7).

d2w(z)
dz2 − λ2w(z) = 0. (7)

The ultimate friction resistance can be determined using the method proposed by
Chandler (1968) [30] as follows:

τuz = σ′
vK0 tan δ, (8)

where σ′
v is the average vertical effective stress in the calculated soil layer on the pile side

and K0 ≈ 1 − sin φ′, δ ≈ φ′, in which φ′ is the effective internal friction angle of the soil.
The initial slope of the hyperbola in the transfer function at the pile end can be

determined using Equation (9), as suggested by Randolph and Wroth [29].

k′bz−1 =
4Gs

πr(1 − vs)
, (9)

where Gs is the initial shear modulus or ultimate shear modulus of soil at the pile end and
vs is the Poisson’s ratio of soil at the pile end.

The pile end ultimate resistance can be determined using Equation (10), as proposed
by Janbu [31]:

pub = cNc + σ′
hNq, (10)

where
σ′

h =
1 + 2K0

3
σ′

v, (11)

where pub is the pile end ultimate resistance; c is the soil cohesion at the pile end; Nc and
Nq are the bearing capacity parameters related to the internal friction angle, which can be
determined by Equations (12) and (13), respectively; and σ′

h is the lateral effective stresses
at the planar position of the pile end:

Nc = cot φ′(Nq − 1), (12)

Nq = (tan φ′ +
√

1 + tan2 φ′)
2
e2ψ tan φ′

, (13)

where ψ is the angle between the compaction zone at the pile end and the horizontal plane
in the Janbu damage model of pile end soil, which varies between 0.33π and 0.58π.

The boundary conditions are as follows:

(i) For the DCM pile section:

For the pile top
P(m) = P1, (14)

where P1 is the vertical loading applied to the top of the DCM pile section.
For the pile end
The pile end load transfer function adopts the hyperbola form, as expressed in

Equation (15).

P(n) =
wc(n)

( 1
k′bz−1

+ wc(n)
pub

)
, (15)

where Pn is the pile end load of the DCM pile section and wc(n) is the soil displacement
below the pile end caused by the load.

The secant stiffness of the soil at the pile end is expressed as Equation (16).

kbz−1 =
1

1
k′bz−1

+ wc(n)
pub

. (16)
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(ii) For the composite pile section:

For the pile top
P(0) = P0 (17)

where P0 is the vertical loading applied to the pile top.
For the pile end
The secant stiffness of the soil at the pile end is given in Equation (18)

kbz−0 =
p1

wc(m)
, (18)

where wc(m) is the displacement at the top of the DCM pile section caused by the load
of P1.

3.2. Solution by the Finite Difference Method

The control equation of the SDCM pile body is a partial differential equation, and
its solution is generally challenging. The numerical solution methods for many partial
differential equations mainly include traditional numerical methods such as the finite
volume method, finite difference method, FEM based on elements or grids, as well as
the meshless method [32–37]. This study uses the finite difference method (traditional
solution) to solve the short-core SDCM. The basic idea of the finite difference method is to
discretize the solution domain using a difference grid. This method involves converting
the control equation into a different one using a specific formula. Finally, the initial and
boundary conditions are combined to solve a system of linear algebraic equations. The
finite difference method was used to solve the short-core SDCM pile. The differential
discretization schematic diagram along the pile body is illustrated in Figure 4. The pile
was discretized into nodes of equal spacing, with each pile segment having the length of
h. A virtual node n + 1 was added at the bottom of the pillar. A composite pile section is
represented by 0 < i < m. Moreover, a cement soil pile section is represented by m < i < n.
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(i) For the DCM pile section:

Equation (19) can be obtained by differential discretizing the pile’s governing equation.

wi+1 − (2 + λi
2h2)wi + wi−1 = 0. (19)

Equations (20)–(23) can be obtained by performing differential discretization of the
boundary conditions as follows:

For the pile top:

−Ep1 Ap
wm+1 − wm−1

2h
= P1, (20)

wm+1 − wm−1 =
2hP1

Ep1 Ap
. (21)

The pile end:

Pn = −Ep1 Ap
wn+1 − wn−1

2h
= kbz−1wn, (22)

wn+1 = wn−1 −
2hkbz−1
Ep1 Ap

− wn. (23)

Substituting Equations (21) and (23) into Equation (19) yields the following:

−
(

2 + λmh2
)

wm + 2wm+1 = − 2hP1

Ep1 Ap
, (24)

2wn−1 −
(

2hP0

Ep1 Ap
+ λn

2h2 + 2

)
wn = 0. (25)

Combining Equations (19), (24), and (25) yields the following:[
Kp1
]
{wc} = {FZ1}, (26)

where {wc} is the column vector of vertical displacement of the node of the lower DCM pile
section, {wc} =

[
wm wm+1 · · · wi · · · wn−1 wn

]T; {Fz1} is the column vector

of vertical loading of the DCM pile section, {Fz1} =
[
− 2hP1

Ep1Ap
0 · · · 0 · · · 0 0

]
;

and
[
Kp1
]

is the vertical stiffness matrix of the pile, and is expressed in Equation (27).

[
Kp1
]
=



Am 2
1 Am+1 1

. . . . . . . . .
1 An−1 1

2 An − 2hkbz−1
Ep1 Ap


(n+1−m)(n+1−m)

, (27)

where Ai = −
(

λi
2h2 + 2

)
(m ≤ i < n).

The vertical displacement along the pile body can be obtained by Equation (26) and is
given in Equation (28).

{wc} =
[
Kp1
]−1{FZ1}. (28)

(ii) The composite pile section:

Equation (29) can be obtained by conducting differential discretization of the governing
equation of the pile.

wi+1 − (2 + λi
2h2)wi + wi−1 = 0 (29)

The following can be obtained by performing differential discretization of the
boundary conditions:
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For the pile top:

−Ecm Ap
w1 − w−1

2h
= P0, (30)

w1 − w−1 =
2hP0

Ecm Ap
. (31)

For the pile end:

Pm = −Ecm Ap
wm+1 − wm−1

2h
= kbz−0wm, (32)

wm+1 = wm−1 −
2hkbz−0
Ecm Ap

− wm. (33)

Substituting Equations (31) and (33) into Equation (29) yields Equations (34) and (35).

−
(

2 + λ0h2
)

w0 + 2w1 = − 2hP0

Ecm Ap
, (34)

2wm−1 −
(

2hP0

Ecm Ap
+ λm

2h2 + 2
)

wm = 0. (35)

Combining Equations (29), (34), and (35) yields the following:[
Kp0
]
{wcm} = {FZ0}, (36)

where {wcm} is the column vector of vertical displacement of the node of the upper composite
pile section, {wcm} =

[
w0 w1 · · · wi · · · wm−1 wm

]T; {FZ0} is the column vector

of vertical loading of composite pile section, {FZ0} =
[
− 2hP0

Ecm Ap
0 · · · 0 · · · 0 0

]
;

and
[
Kp0
]

is the vertical stiffness matrix of the pile body of the upper composite pile and is
given in Equation (37).

[
Kp0
]
=


A0 2
1 A1 1

. . . . . . . . .
1 Am−1 1

2 Am − 2hkbz−0
Ecm Ap


(m+1)×(m+1)

, (37)

where Ai = −
(

λi
2h2 + 2

)
(0 < i < m).

The vertical displacement along the load-bearing pile body can be obtained from
Equation (37) and is expressed as follows:

{wcm} =
[
Kp0
]−1{FZ0}. (38)

The procedure for the nonlinear analysis for a single SDCM pile is as follows:
A vertical loading P1 of 1 kN was applied to the top of the DCM pile section. The soil

stiffness at the pile side was taken as the initial tangent stiffness kz = k′z, while that at the pile
end was taken as the initial tangent stiffness kbz = k′bz−1. The node vertical displacement
wk

c along the pile body of the DCM pile section was determined by Equation (28).
The secant stiffness of the soil at the pile side and that at the pile end were obtained

from the newly derived pile node displacements.

(a) Based on the newly determined secant stiffness of the soil at the pile side and that at
the pile end, the node vertical displacement wk+1

c along the pile body and the pile top
displacement wc(m) in the DCM pile section were determined by Equation (28).
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(b) Parameter
∣∣∣wk+1

c − wk
c

∣∣∣ was taken as the iterative control error. When the error ex-
ceeded the threshold, the procedural steps presented above, i.e., (c) –(e), were repeated
until the iterative error was smaller than the threshold value.

(c) The pile top vertical displacement wc(m) of the DCM pile section was derived from
the above procedures.

(d) The soil stiffness at the pile end kbz−0 of the composite pile section was set to the
secant’s stiffness at the top of the DCM pile section (Equation (18)). On the other hand,
soil stiffness at the pile side in the composite pile section was set to the initial tangent
stiffness of the soil at the pile side.

(e) A vertical loading P0 was applied to the top of the composite pile section.
(f) The node displacement wk

cm of the pile body in the composite pile section was obtained
by Equation (38).

(g) The secant stiffness of the soil at the pile side and that at the pile end were obtained
from the newly derived pile node displacements in the composite pile section.

(h) Based on the newly determined secant stiffness of the soil at the pile side and that at
the pile end, the vertical node displacement wk+1

cm along the pile body and the pile end
resistance Pm

k of the composite pile section were derived from Equation (38) and are
given in Equation (39).{

Pk
i = −Ecm Ap

wi+1−wi−1
2h (1 < i < m − 1)

Pm
k = kbz−0wm

. (39)

(i) Parameter
∣∣∣wk+1

cm − wk
cm

∣∣∣ was taken as the iterative control error, and when the error
exceeded the threshold value, procedures (c) –(e) were repeated until the iterative
error was smaller than the threshold.

(j) When P1 = Pm
k, (b) —(l) were repeated to derive Pm

k+1, i.e., the new pile end
resistance in the composite pile section.

(k) Parameter
∣∣∣Pk+1

m − Pk
m

∣∣∣ was taken as the iterative control error, and when the error
was larger than the threshold, procedures (c) —(e) were repeated until the iterative
error was smaller than the threshold value.

4. Model Validation and Analysis

Li [38] conducted a full-scale field static load test on an equal-core SDCM pile. The
diameter and length of the composite pile were 600 mm and 14 m, respectively. The core
pile was a concrete-cored equal-section square pile with a section size of 270 × 270 mm. The
moduli of elasticity of the core pile and outer DCM pile were Ep = 4.2 × 104 MPa and Ec =
150 MPa, respectively. As for the above field static load test [38], Chen et al. [16] utilized the
results of multiple sets of tests on the DCM pile–soil friction characteristics using Wang [39]
as the reference to determine the load transfer parameters at the DCM pile–soil interface.
The initial tangent stiffness of the pile side and the pile end were k′z = 20 kPa/mm and
k′bz = 111.11 kPa/mm, respectively. The ultimate friction resistance values of the pile
side and pile end were 65 kPa and 285.71 kPa, respectively. The composite modulus of
elasticity of this SDCM pile was determined to be Ecm = 10945.7 MPa using Equation (2).
The proposed simplified method was tested on the above data from the literature. The
corresponding results were compared to Li’s test results [38] and Chen et al.’s calculation
results [16]. The findings are summarized in Figure 5. The results obtained through the
simplified method proposed herein are consistent with the test results.

Furthermore, the vertical bearing characteristics of the SDCM pile with different core-
to-length ratios (the ratio of the length of the core pile to the length of the DCM pile) under
vertical loading were calculated to explore the effect of the core pile length on the vertical
bearing characteristics of the SDCM pile under vertical loading. The material parameters
and dimensions of the pile are presented in Tables 2 and 3, respectively.
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Table 2. Material parameters.

Material Models Modulus of
Elasticity E (MPa)

Volumetric Weight
γ (kPa) Poisson’s Ratio ν

Internal Friction
Angle φ (◦) Cohesion c (kPa)

Soil 24 18.1 0.3 28 8

Outer pile 500 19.6 0.3 - -

Core pile 38000 25 0.2 - -

Table 3. Dimensions of the pile.

No. Length of Core
Pile (m)

Diameter of
Pile (m)

Diameter of
Core Pile (m)

Length of
Outer Pile (m) Core-to-Length Ratio

1 30

1 0.4 30

1

2 21 0.7

3 15 0.5

In order to eliminate the influence of boundary conditions, both the length and width
of the FEM model were taken as 40 m. The distance of the soil in the analyzed area from
the pile side to all sides of the model was greater than 15 times the diameter of the DCM
pile. The height of the model was 50 m. The distance from the pile end to the bottom of the
model was 20 m, i.e., more than 15 times the diameter of the DCM pile. The interaction
type between the pile and soil interface is face-to-face contact. In contrast, the contact type
between the pile and soil contact surface is binding contact. Constrain the horizontal and
vertical directions of soil elements and fully constrain the bottom of the model. The finite
elements are designated as C3D8R, and the mesh density is arranged according to the
distance from the pile, as shown in Figure 6.

According to regulation 4.4.1 in the “Technical Code for Testing of Building Foundation
Piles” (JGJ106-2014) [40], the loading at the pile top with a settlement equal to 0.05 times
the diameter can be taken as the ultimate vertical bearing capacity Fb of the pile for a pile
with a diameter exceeding 800 mm. The results of FEM simulations confirmed that the
ultimate bearing capacities of the SDCM pile were 7600 kN, 6000 kN, and 4400 kN when
the core-to-length ratios were 1.0, 0.7, and 0.5, respectively. The regulation also suggests
that the characteristic value of the vertical bearing capacity Fa of a single pile should be
taken as 50% of the ultimate bearing capacity of a single pile, indicating that one-half of the
ultimate bearing capacity is taken as the working load in this paper [41]. In this scenario,
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the working loads were 3800 kN, 3000 kN, and 2200 kN for the core-to-length ratios of 1.0,
0.7, and 0.5, respectively.
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Figure 7a,b depict the variation in the pile top displacement and pile end resistance,
respectively, with the number of discrete nodes on the pile body (the iterative control
error is 10−6) under a working load (3000 kN) with a core-to-length ratio of 0.7 and a core
content of 0.16. When the number of discrete nodes on the pile body is n > 30, the pile top
displacement and end resistance remain almost unchanged. Figure 7c,d show the varia-
tion curves of axial force and lateral friction resistance, respectively, along the pile body
with the number of discrete nodes on the pile body under a working load (3000 kN) with
a core-to-length ratio of 0.7 and a core content of 0.16. It can be seen from the figure that
when n > 30, the axial force and lateral friction curves of the pile body remain almost un-
changed for different numbers of discrete nodes on the pile body. Therefore, the calculation
method in this study has good convergence. The following calculations in this research
were all taken as n = 100.

Figure 8 shows the load–displacement curves for the top of the SDCM pile at different
core-to-length ratios and a ratio of the core pile of 0.16. The vertical bearing capacity and
pile top stiffness of the SDCM pile increase with the length of the core pile.

The distributions of axial force and lateral friction resistance along the SDCM pile with
different core-to-length ratios under different working loads are presented in Figures 9 and 10,
respectively. For SDCM piles, the axial force and frictional resistance at the lower part
of the pile become increasingly smaller with the decrease in the core-to-length ratio. As
indicated in Figures 9c and 10c, the part near the pile end (2–3 m) was almost force-free
when the core-to-length ratio was 0.5.

The difference between the simplified method and the finite element (especially the
axial force at the pile end) can be observed in the axial force at the pile end, as shown
in Figure 11. This error may be attributed to the established finite element model being
three-dimensional. In contrast, the theoretical model in this study was obtained through
a simplified one-dimensional nonlinear model.

Figure 11a shows the variation of the relative error of the axial force at the pile end
with the core-to-length ratio calculated by the simplified method and the proposed three-
dimensional finite element simulation (the core content is 0.16 under working load, while
other working conditions can be found in Figures 9 and 10). According to Figure 11a, the
error relative to the finite element model will decrease with an increase in the core-to-length
ratio. However, when the core-to-length ratio is 1 (i.e., an equal-core pile), the error is still
higher than 50%. It can be concluded that the change in the core-to-length ratio cannot
reduce the error.
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Figure 8. Load–displacement curves for the pile top at different core-to-length ratios.
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Figure 9. Axial forces of the pile body at different core-to-length ratios. (a) The core to length ratio is
1, (b) The core to length ratio is 0.7 and (c) The core to length ratio is 0.5.

Figure 11b shows the relative error of the pile end axial force obtained by the simplified
method and the proposed three-dimensional finite element simulation as a function of
the elastic modulus of the DCM pile (under a working load, with a core content of 0.16).
The change in the elastic modulus of the DCM pile does not significantly affect the error
between the pile end axial force calculated by the simplified method and the finite element
simulation. In summary, the ratio of core length to pile soil’s elastic modulus is not an
important parameter affecting this error. Further in-depth research will be conducted on
this issue in subsequent studies.

Figure 12 shows the variation in pile top displacement with the length of the DCM
pile section when a working load of 2200 kN (core-to-length ratio of 0.5) was applied to
the pile top. When the DCM pile length was <10 m, the vertical displacement at the pile
top increased with decreased DCM pile length. When the pile length exceeded 10 m, the
vertical displacement at the top remained almost unchanged with the increase in the length
of the DCM pile. Figure 9c, Figure 10c, and Figure 11 confirmed a reasonable core-to-
length ratio for the SDCM pile in a specific scenario. When the core pile length was given,
an excessively long DCM pile section made its lower part force-free. The appropriate core
pile length should be determined in the actual engineering project to avoid unnecessary
material wastage.
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Figure 10. Pile lateral friction resistance at different core-to-length ratios. (a) The core to length 
ratio is 1, (b) The core to length ratio is 0.7 and (c) The core to length ratio is 0.5. 
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Figure 13 shows the variations in the vertical displacement of the pile top with the
ratio of the core pile when the corresponding vertical working loads (3800, 3000, and
2200 kN) in the case of the ratio of the core pile being 0.16. On the other hand, core-to-
length ratios of 1, 0.7, and 0.5 were applied to the pile. With the increase in the ratio of
the core pile, the pile-top settlement was increasingly smaller. Moreover, the reduction in
pile-top settlement gradually slowed. An optimum ratio of the core pile for the SDCM pile
was also determined. The increase in the ratio of the core pile beyond the optimal ratio
provided limited control over the pile foundation settlement, which is consistent with [15].
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5. Conclusions

This study introduced the concept of composite modulus of elasticity for the SDCM
pile, which was calculated using the area-weighted average method. Based on the load
transfer method, a nonlinear simplified analysis method for the equal-core and short-core
SDCM piles under vertical loading was established using the finite difference method.
Moreover, the bearing characteristics of the SDCM pile under vertical loading were ana-
lyzed. The following conclusions are drawn from the obtained results:
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(1) The area-weighted average method was used to calculate the composite elastic modu-
lus of the composite pile section of the reinforced core composite pile. Compared to
the analytical method, the error is below 0.5%, with sufficient accuracy.

(2) The simplified calculation method established in this study is computationally stable.
When the iterative control error was set to 10−6, as the number of discrete nodes n
on the pile increased, the calculation results tended to be stable and converged well
when n > 30.

(3) The vertical bearing capacity and pile top stiffness of the SDCM pile increased with
the core pile length.

(4) There was a reasonable core-to-length ratio for SDCM piles in specific scenarios. When
the length of the core pile was fixed, an excessively long DCM pile section resulted in
its lower part being force-free. The appropriate core pile length should be determined
in the actual project to avoid unnecessary material waste.

(5) There was an optimum ratio of the core pile for the SDCM pile. Additionally, the
increase in the ratio of the core pile beyond the optimal ratio provided limited control
of pile foundation settlement.

In summary, the simplified method proposed in this paper can provide some thoughts
and directions for future reinforced composite pile group foundations. However, the
relative error in the axial force at the pile end still exists. Artificial intelligence and deep
learning can be combined to address this issue. Finally, additional in-depth research on
reinforced SDCM piles will be conducted, a more reasonable model will be established,
and the actual engineering situation will be more accurately reflected.
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