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Abstract: In the field of building information modeling (BIM), converting existing buildings into
BIM by using orthophotos with digital surface models (DSMs) is a critical technical challenge.
Currently, the BIM reconstruction process is hampered by the inadequate accuracy of building
boundary extraction when carried out using existing technology, leading to insufficient correctness
in the final BIM reconstruction. To address this issue, this study proposes a novel deep-learning-
and postprocessing-based approach to automating reconstruction in BIM by using orthophotos
with DSMs. This approach aims to improve the efficiency and correctness of the reconstruction of
existing buildings in BIM. The experimental results in the publicly available Tianjin and Urban 3D
reconstruction datasets showed that this method was able to extract accurate and regularized building
boundaries, and the correctness of the reconstructed BIM was 85.61% and 82.93%, respectively. This
study improved the technique of extracting regularized building boundaries from orthophotos and
DSMs and achieved significant results in enhancing the correctness of BIM reconstruction. These
improvements are helpful for the reconstruction of existing buildings in BIM, and this study provides
a solid foundation for future improvements to the algorithm.

Keywords: BIM reconstruction; semantic segmentation; building boundary extraction; deep learning

1. Introduction

With the acceleration of urbanization and the development of BIM technology, it has
become increasingly important to efficiently and accurately acquire building information
models (BIMs) for existing buildings. As a digital building model that integrates a large
amount of information, BIM supports the entire life cycle management of buildings using
digital technology. In addition to simple geometric information, the building components
contained in BIM also include the building’s engineering information. This ensures that
BIM covers every aspect of the building, from design to construction to operation and
maintenance. However, many existing buildings do not have corresponding digital models
that were developed during design and construction due to their age and thus cannot be
integrated into modern construction management systems. Therefore, it is necessary to
collect and analyze the data for existing buildings and then reconstruct BIMs to realize the
digitization of existing buildings.

During BIM reconstruction of existing buildings, there were several problems that
were encountered when using traditional methods. Manual mapping or reconstruction
based on point clouds obtained from 3D laser scanning [1] can accurately restore building
data but are often time-consuming and costly, especially when performing large-scale BIM
reconstruction [2]. In recent years, with the continuous advancement of high-precision
drone and satellite technologies, the technique of BIM reconstruction with the help of
easy-to-acquire orthophotos and DSMs has emerged not only because it can significantly
reduce the time and cost of data acquisition [3], but also because it meets the urgent demand
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for large-scale BIM reconstruction of existing buildings [4]. Orthophotos provide distortion-
free top-view images of buildings [5], which are essential for accurately determining
building boundaries. Meanwhile, a DSM provides elevation information on a building and
its surroundings, which can be used to determine the building’s height. Combining these
two data sources enables the automated BIM reconstruction of buildings. This process
eliminates the need for costly ground surveys or direct physical contact, significantly
improving the efficiency of data collection and reducing acquisition costs [6].

The greatest challenge in automatic BIM reconstruction using orthophotos and DSMs is
the need to extract accurate and regularized building boundaries from the orthophotos and
DSMs. Although previous research [7,8] employed deep-learning and image-processing
methods to achieve regularized building boundary extraction, most of these studies rely
on either orthophotos or DSMs as a single data source. The surface texture and color
information of buildings as determined from orthophotos, as well as the surface elevation
changes provided by DSMs, are valuable data. However, to extract accurate and regular
building boundaries from two data sources, a feature extraction method that can integrate
different data types is needed.

Moreover, in past building reconstruction research, the city geography markup lan-
guage (CityGML) standard was commonly used to construct three-dimensional building
models [9–11]. The three-dimensional models reconstructed based on the CityGML stan-
dard contained geometric information about building components. However, these models
were relatively limited in their cover of the building’s intrinsic engineering properties
and performance information and could not expand upon or supplement subsequent
information, leading to limitations of CityGML in engineering applications. As a new
and constantly developing digital technology, BIMs are more widely used in the design,
construction and operation, and maintenance management stages of actual construction
projects because of their more advanced information organization and interactivity [12].
Nonetheless, because the automated interaction between BIMs and external data is more
complex, there are relatively few studies that cover automatically reconstructing BIM using
orthophotos and DSMs.

In view of these challenges, this study proposes a new method of automatically
reconstructing BIM from orthophotos and DSM data. First, a deep-learning network
that fuses orthophotos and DSM data are fused to more accurately accomplish building
footprint extraction. Then, polygon optimization with empirical optimization is used to
accurately extract polygonal building boundaries. Finally, the elevation information in
DSMs is utilized to obtain the building height, and the building boundary and height
information is used by Dynamo to reconstruct the BIM in Autodesk Revit.

2. Literature Review

Three-dimensional building reconstruction techniques based on orthophotos and
DSMs have attracted extensive academic attention. Partovi et al. [13] used methods com-
bining DSMs with multispectral satellite orthophotos to achieve the extraction, decom-
position, and connection of building boundaries, culminating in the reconstruction of
three-dimensional building models. Mao et al. [14] employed deep-learning techniques to
predict potential DSMs from orthophotos, aiming to reconstruct three-dimensional building
models using the input orthophotos. Gui et al. [8] adopted a model-driven strategy to
extract features from DSMs and ultra-high-resolution satellite orthophotos for the recon-
struction of building models. Yu et al. [15] replaced the traditional multi-view stereo vision
(MVS) methods with deep-learning strategies, transforming multi-angle drone images
into DSMs and orthophotos for the purposes of three-dimensional building reconstruc-
tion. These studies generate building models that conform to the CityGML standard and
are widely applied in the field of Geographic Information Systems (GISs), but there is
considerably less research on BIM reconstruction.

Mainstream building reconstruction studies have usually incorporated a data-driven
framework with three key steps: semantic segmentation of buildings, boundary extrac-
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tion, and 3D model reconstruction. In the semantic segmentation phase, deep-learning
methods, especially classical convolutional neural networks (CNNs) [16–18] and the latest
Transformer architecture [19] have become the preferred techniques due to their excellent
classification performance in complex contexts. These techniques are able to improve the ac-
curacy of building extraction compared to that of traditional imaging methods. At the same
time, multi-modal semantic segmentation technology that integrates deep orthophotos and
DSMs continues to emerge. SA-gate [20] introduced a unified and efficient cross-modal
guided encoder to improve the performance of RGB-D semantic segmentation. Zhou
et al. [21] developed an end-to-end feature extraction and gate fusion network, CEGFNet,
to achieve high-precision semantic segmentation from DSMs and orthophotos.

Subsequently, semantically segmented images of buildings are usually postprocessed
during a boundary extraction session. The simplest approach is to apply the March-
ing Cubes algorithm [22] and Douglas–Peucker algorithm [23] to simplify the building
boundaries or to use algorithms to regularize them. There have been studies dedicated
to combining the semantic segmentation of buildings with the regularized extraction of
contours with the aim of simplifying the process through an end-to-end deep-learning
approach. By learning to build a segmentation map that is aligned with the proposed
frame field vectors, Frame-Field [24] obtains building polygons through corner-aware
contour simplification. Zorzi et al. [25] proposed polyworld, which uses CNNs to detect
building boundary vertices and employs graph neural networks to predict the connection
strength between vertices, ultimately realizing regularized boundary extraction by solving
a differentiable optimal transport problem. Xu et al. [26] used a hierarchical supervision
mechanism to complete polygonal building extraction using deep learning. Although
these approaches show potential for automation, they rely on large-scale datasets with
long training times. This has led to studies suggesting that combining deep learning with
postprocessing may be more practical [27]. However, there are few studies on how to fully
utilize the features of orthophoto and DSM data and apply both data types to the two
phases of deep learning and postprocessing.

3. Methodology

Figure 1 shows the overall flow of the automatic BIM reconstruction method proposed
in this study. The method takes orthophotos and DSMs as inputs and outputs a BIM with a
level of detail (LOD) of 100. This study follows the classical data-driven approach, and the
whole reconstruction process is divided into the following three steps:

1. Building footprint extraction: combining orthophoto and DSM data, the latest multi-
modal semantic segmentation network technology is used to realize the high-precision
semantic segmentation of the building area.

2. Building boundary extraction: with the help of a polygon optimization algorithm
and empirical rules for postprocessing the image to be semantically segmented, the
polygonal boundaries that conform to the actual building shape are extracted.

3. BIM reconstruction: the height of each building is determined by analyzing the DSM
data and using the Dynamo 2.1 visual programming tool to automatically generate a
BIM in Autodesk Revit 2020 software in batches.

3.1. Building Footprint Extraction

This study adopted the CMX (Cross-Modal Fusion for RGB-X) semantic segmentation
network [28] for building footprint extraction; this is a cross-modal fusion framework based
on ViT (Vison-Transformer) [29] for the semantic segmentation of RGB-X data sources,
where X stands for a modality that is complementary to RGB. Through cross-modal fusion,
the CMX network can improve the accuracy of semantic segmentation. Experimental
results obtained using multiple sources of benchmark data proved that the CMX network
is able to effectively fuse multi-modal data [28]. Without consuming a large amount of
computing resources, the semantic segmentation accuracy reaches state-of-the-art levels.
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Since the postprocessing operation carried out in this article relies on semantic segmentation
accuracy, the CMX semantic segmentation network was selected.

Figure 2 demonstrates the structure of the CMX network, which takes orthophotos as
the input of RGB data and DSM data as the complementary-modality input and employs
two parallel backbone networks to separately process the two types of data. CMX uses
the classical encoder–decoder architecture. In the encoder stage, the features of the two
modalities are extracted separately by using the efficient feature extraction module in
Segformer [30], and the features of the current modality are corrected by using a cross-
modal feature correction module (CM-FRM). Finally, the features of both modalities are
globally enhanced by using a feature fusion module (FFM). In the decoder stage, the
DeeplabV3+ [31] decoder combines the low-level features generated by the FFM with high-
level ground detail information to further enhance the semantic segmentation accuracy.
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3.2. Extraction of Polygonal Building Boundaries
3.2.1. Optimization Algorithm for Building Footprint Polygons

Semantic segmentation can be used to categorize each pixel and identify pixels belong-
ing to building and non-building categories. However, although the DeeplabV3+ decoder
used by the CMX network facilitates the recovery of details, the linear interpolation method
used in its up-sampling process leads to insufficient accuracy of building edges in the
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semantic segmentation maps, especially when dealing with complex or zigzagging edges,
which are significantly biased compared to actual regular building walls.

Postprocessing semantic segmentation results is a common measure to improve se-
mantic segmentation accuracy. Superpixel optimization technology is an effective post-
processing method. Superpixel optimization technology optimizes semantic segmentation
results by fusing the high-level semantic features of semantic segmentation and object
edge information of superpixels. This postprocessing method does not greatly improve the
overall accuracy, but it has a better optimization effect on semantic segmentation object
boundaries. The goal of this article is to extract regularized building boundaries. Inspired
by traditional superpixel optimization methods, this article hopes to use regular superpixels
to optimize semantic segmentation boundaries. Therefore, this study adopted the polygo-
nal partitioning technique [32] to optimize the results of semantic segmentation. Figure 3
shows the principle of the polygonal partitioning technique. For a given orthophoto, the
technique first identifies straight line segments in the image by using an LSD (line segment
detector) [33]; next, these detected line segments are extended in the image plane until they
intersect with each other, thus segmenting the image into fine polygonal units. Finally, the
smaller polygonal units are merged into larger polygonal units.
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The polygonal partitioning technique draws on hyperpixel technology, which is based
on the similarity of pixel positions and colors in an image and clusters the original pixels
into hyperpixels. Hyperpixel methods such as simple linear iterative clustering (SLIC) [34]
can effectively simplify the complexity of images. However, as shown in Figure 4, the
hyperpixel blocks that they generate have an irregular morphology, which is unsuitable for
building extraction scenes that require regular boundaries. Compared to the traditional
hyperpixel technique, the polygonal segmentation technique focuses on generating regu-
larized polygons that are more compatible with the structural features of buildings. This
technique optimizes the regularity and smoothness of building boundaries in semantically
segmented images and lays a solid foundation for subsequent boundary extraction steps.
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The optimization of the building footprint is achieved by combining the high-level
semantic features of semantic segmentation with edge information from the polygon
optimization. Specifically, after obtaining the initial semantic segmentation results output
by CMX, the orthophoto is then polygonally segmented, the number of pixels of different
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semantic categories within each polygon is counted, and the semantic category with the
highest number of pixels is assigned to that polygon to achieve optimization. The specific
algorithm is shown in Algorithm 1.

Algorithm 1: Polygon Optimization Algorithm

Input: Orthophoto O, Initial Semantic Segmentation Results I
Output: Optimized Semantic Segmentation results L

1
Define semantic categories C = {C_1, C_2} where C_1 = ‘building’ and C_2 =
‘non-building’

2
Partition orthophoto O into n polygons S = {S_1, S_2, . . ., S_n} using polygonal
partitioning technique, where each polygon S_i contains m pixels p_j

3 Initialize L to be an empty image of the same dimensions as O
4 for each polygon S_i in S do
5 Initialize count N_1, N_2 to 0 for each category in C
6 for each pixel p_j in polygon S_i do
7 if p_j in I corresponds to ‘building’ then
8 Increment N_1 (count of ‘building’ pixels)
9 else if p_j in I corresponds to ‘non-building’ then
10 Increment N_2 (count of ‘non-building’ pixels)
11 end if
12 end for
13 if N_1 > N_2 then
14 Assign ‘building’ label to all pixels in polygon S_i in L
15 else
16 Assign ‘non-building’ label to all pixels in polygon S_i in L
17 end if
18 end for
19 return L

Figure 5 shows an example of the semantic segmentation results and a comparison
before and after applying the polygon optimization algorithm. The left side shows the
original unoptimized semantic segmentation results (green pixels denote buildings) super-
imposed on the orthophoto, where it can be observed that the semantic segmentation was
less effective at the edges of the buildings. The right side shows the result after processing
with the polygon optimization algorithm. The optimized semantic segmentation map has
more regular and accurate building regions, especially in the building edge region. In the
middle is a zoomed-in image of local details to provide a visual comparison. It is clear
from this that the optimized semantic segmentation map matches the original image more
closely at the edges of the objects, indicating that the high-level semantic information of the
semantic segmentation was successfully fused with the edge information of the hyperpixels,
thus improving the accuracy of the semantic segmentation. This comparison demonstrates
that the polygon optimization algorithm improved the accuracy of semantic segmentation,
especially when dealing with regular building edge details.
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3.2.2. Empirical Optimization of Building Boundaries

To accommodate the input image size constraints imposed by deep-learning models,
high-resolution orthophotos and DSMs need to be segmented into smaller plots. This
cropping process may result in a single building spanning multiple plots, which, in turn,
affects the continuity of the building footprint. In addition, there is an inherent edge effect
in deep-learning models when dealing with the edge regions of the plots, which may trigger
a prediction error in building boundaries when the plots are stitched together. To address
the above issues, this study employed a sliding-window cropping strategy in the building
footprint prediction stage, setting a 50% block overlap rate to ensure continuity. After
obtaining the prediction results using semantic segmentation and polygon optimization,
this study took the approach of removing 25% of each block boundary and using only the
remaining center part for seamless stitching to construct the building footprint prediction
map for the entire test area.

Next, the building footprints on the complete prediction map were initially extracted
to recognize the connected building pixel blocks as independent building entities. The ex-
traction of the initial building boundaries was accomplished using the Marching Cubes [22]
and Douglas–Peucker algorithms [23]. This study further employed an empirical optimiza-
tion approach to building contouring that applied a set of empirical rules to improve the
accuracy of the extracted polygonal building boundaries. These rules were based on typical
building characteristics, such as requirements for the minimum area and side length, and
they limited the occurrence of overly sharpened or blunted angles [27]. An example of the
application of these rules is shown in Figure 6. By repeatedly applying these rules, the
obtained building contours were further refined to generate building boundaries that were
closer to the actual situation.
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3.3. BIM Reconstruction
3.3.1. Building Height Estimation

In order to complete the BIM reconstruction, in addition to obtaining the building
boundaries, the height of the building within the boundary should also be obtained. The
building height is the distance from the foundation to the roof of the building. The nDSM
recorded the height information of the ground and all objects, and the building height was
extracted from the nDSM. Figure 7 shows the relationships between the DSM, nDSM, and
DEM, and the nDSM was obtained by subtracting the DSM from the DEM.

The formula of nDSM is as follows:

nDSM(i, j) = DSM(i, j)− DEM(i, j) (1)

where

nDSM(i, j)—the elevation value of nDSM in row i and column j;
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DSM(i, j)—the elevation value of DSM in row i and column j;
DEM(i, j)—the elevation value of DEM in row i and column j.

In this study, a cloth simulation filter (CSF) [35] method was used to estimate the DEM
from the DSM, and the obtained DSM data were used to subtract the raster data from the
DEM to obtain a digital model containing only the elevation information of the surface
objects, i.e., the nDSM. After obtaining the nDSM, it was combined with the regularized
contour maps of the buildings that were obtained, and the maximum value in the nDSM
data was extracted as the height of the building within each building boundary.
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3.3.2. Data Storage

The vertices of a building were identified by analyzing its polygonal contours and
were represented as a series of coordinate points that defined its relative position in the
orthophoto coordinate system. By multiplying these coordinates by the ground sample
distance (GSD), they were converted into the relative positions of building boundaries
in the real world. At the same time, building height information was extracted from the
nDSM and recorded in an Excel workbook for subsequent use. Table 1 provides a typical
example of the storage of the building vertex and height information. Each closed polygon
represented a separate building, and its planar coordinates and height data were recorded
in separate worksheets in an Excel workbook.

Table 1. An example of the storage of building boundaries and heights.

A B C

1 X(m) Y(m) Height(m)
2 1712.3 714.4 14.11
3 1711.8 719.4 14.11
4 1710.5 722 14.11
5 1711.1 722.5 14.11

3.3.3. LOD100 BIM Reconstruction

The entire BIM reconstruction process was implemented in the Autodesk Revit 2020
software with the help of Dynamo 2.1, and a graphical interface was employed instead
of the traditional text-based coding approach. Visual programming allows users to script
and build logical structures by dragging and dropping graphical blocks, an approach
that increases intuitiveness and simplifies the scripting process compared to text-based
programming languages [36]. Figure 8 illustrates the core blocks in the BIM reconstruction
methodology.

In this method, the vertex coordinates and height data of the building profile were
imported from different worksheets of an Excel 2020 workbook by using Dynamo’s
“Data.importExcel” module. The coordinates of the vertices (x,y) were stored in List[0]
and converted into Revit point objects using the “Points.ByCoordinates” module. The “By-
Points” and “PolyCurve.Curves” modules were used to convert a series of building bound-
ary points into closed polygonal contours. Finally, by referring to the building elevation
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data stored in List[1] and predefining the wall and roof types, “Wall.ByCurveAndHeight”
was utilized to create a wall perpendicular to the ground, whereas “Roof. ByOutlineTy-
peAndLevel” was used to create the roof, thus completing the reconstruction of the BIM.
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4. Experiments
4.1. Datasets

To evaluate the performance of the BIM reconstruction method proposed in this article
under different scales and GSD datasets, two open large-scale datasets were selected:
the Tianjin dataset and the Urban 3D dataset. Specifically, the Tianjin dataset contains
comprehensive urban characteristics and a large number of complex buildings, making
it beneficial for evaluating the accuracy of our method. The Urban 3D dataset contains
satellite images of multiple cities, providing a reference for large-scale urban reconstruction.
These two datasets were collected by drones and satellites, respectively, and have different
GSDs, which can be used to verify the robustness of the proposed method.

4.1.1. Tianjin Dataset

The Tianjin dataset [15] was collected in Tianjin, China, in an area consisting of two
typical architectural styles—residential townhouses and industrial buildings—by using a
drone-mounted camera to capture high-resolution images, and the captured photographs
were used to obtain orthophotos and a DSM with a GSD of 0.1 m by using smart3D
2019 software with the MVS technique. The building boundaries were delineated in the
orthophotos through a manual annotation method. The base and top elevations of each
individual building were initially measured based on a statistical analysis of the building’s
neighborhood elevation values which was then checked and edited manually to determine
the building’s height. In this study, based on the classification method proposed in the
original paper, images of Area 1 and Area 3 were used as the training set, which contained
a total of 539 individual buildings; Area 2 was used for testing and validation and consisted
of 243 buildings. Figure 9 shows the orthophotos and the corresponding 3D reconstruction
model for the Tianjin dataset.
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4.1.2. Urban 3D Dataset

The Urban 3D dataset [37] was generated by the WorldView-3 satellite and contains
RGB orthophotos and corresponding DSMs and DEMs. The data cover over 360 square
kilometers of terrain and contain approximately 157,000 buildings, all with a GSD of 0.5 m.
The dataset provides the true building footprint. This study uses a DSM to subtract the
DEM to obtain the nDSM. Based on the real building footprint, the maximum value in
that footprint is obtained from the nDSM as the verification value of the building height.
Figure 10 shows an image of the Urban 3D dataset. The source images include a resolution
of 2048 × 2048, of which 174 images are used for training and 62 images are used for
verification and testing.
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4.2. Evaluation Metrics
4.2.1. Building Footprint and Boundary Extraction

The semantic segmentation task is essentially a per-pixel-level classification task, and
the confusion matrix, a standard tool for evaluating classification performance, contains
four primary classification results: true positive (TP), true negative (TN), false positive (FP),
and false negative (FN). The relationships of these concepts are shown in Figure 11.
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In order to evaluate the effectiveness of building footprint and boundary extraction,
this study adopted three performance metrics that are widely recognized in the industry:
intersection over union (IoU), recall, and precision.

IoU =
TP

TP + FP + FN
(2)

Recall =
TP

TP + FN
(3)
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Precision =
TP

TP + FP
(4)

4.2.2. BIM Reconstruction

In order to evaluate the performance of the automated BIM reconstruction method
that was proposed, the same evaluation metrics were used as in previous studies [15].
The accuracy of individual building reconstruction was first evaluated by using the 3D
IoU, which was obtained by multiplying the IoU of the semantic segmentation of building
footprints with the corresponding height IoU. Specifically, the cross-intersection between
each extracted individual building footprint and its closest ground-truth building footprint
was calculated to obtain the IoU of the building footprint’s semantic segmentation. The IoU
height was the quotient of the predicted building height within a single building footprint
and its closest ground-truth building height. After assessing the reconstruction accuracy
for individual buildings, the effectiveness of the BIM reconstruction in the overall area was
assessed using object-based completion metrics.

Correctness =
∥ TP ∥

∥ TP ∥ + ∥ FP ∥ (5)

Here, TP represents the number of buildings with 3DIoU > 0.5 among all completed
reconstructed buildings and FP represents the number of buildings with 3DIoU ≤ 0.5
among the reconstructed buildings.

4.3. Experimental Setup

In the building footprint extraction phase, the performance of the model was highly
dependent on the selection of hyperparameters. Through comparative analysis, we deter-
mined the optimal configuration. We adopted the Segformer model as the backbone of the
semantic segmentation network and pre-trained it on the PASCAL VOC dataset, and we
used mit-b2 for the pre-training weights. The other specific hyperparameter settings are
shown in Table 2.

Table 2. Configuration of hyperparameters.

Parameter Operation Execution

Input size 512 × 512
Learning rate 6 × 10−5

Optimizer AdamW
Loss CrossEntropyLoss

Backbone mit-b2
Epochs 100

In the boundary extraction stage, the parameters of the rules of thumb needed to be
set manually; the GSD of the Tianjin and Urban 3D datasets corresponded to 0.1 m and 0.5,
respectively, area thresholds of Td = 2000 and Td = 80 were defined to exclude buildings
with an area of less than 20 square meters, length thresholds of Ts = 10 and Ts = 2 were set
to exclude walls with a boundary length of less than 1 m, and α = π/6 was set to remove
overly sharp nodes, whereas β = 17 π/18 was used to remove overly smooth nodes. During
the height extraction stage, the maximum value of the nDSM within the boundary is used
as the building height.

5. Results
5.1. Performance Analysis of Building Footprint Extraction

Tables 3 and 4 compare the performances of different semantic segmentation models
on the Tianjin dataset and Urban 3D dataset, respectively. In addition to the methods
proposed in this study, the comparison also includes several models based on RGB data,
such as DeeplabV3+, Segformer, and Unetformer, as well as the SA-Gate model, which



Buildings 2024, 14, 808 12 of 20

uses RGB-D data. In the evaluation of the Tianjin dataset, the DeeplabV3+ model based
on RGB data achieved 84.62% IoU, 91.34% recall, and 91.99% precision. Segformer, which
uses Mit-b2 as the backbone network, improved the IoU to 92.85% while maintaining high
recall and precision. Unetformer equipped with a Swin-Base backbone further improved
the IoU to 94.13% and also showed simultaneous improvements in recall and precision.
What cannot be ignored is that the inclusion of depth information has resulted in significant
improvements in the performance indicators. The SA-Gate model with ResNet-50 as the
backbone achieved an IoU of 94.78%. The CMX model used in this article, combined
with a mit-b2 backbone and RGB-D data, achieved the highest IoU of 96.71%, as well as
a very high recall rate (98.57%) and high precision (98.08%), demonstrating its excellent
capabilities in semantic segmentation.

Table 3. Results of the Tianjin dataset.

Model Backbone Input Data IOU (%) Recall (%) Precision (%)

DeeplabV3+ Xception RGB 84.62 91.34 91.99
Segformer Mit-b2 RGB 92.85 96.61 95.97

Unetformer Swin-Base RGB 94.13 97.11 96.85
SA-Gate ResNet-50 RGB-D 94.78 97.06 97.59

CMX mit-b2 RGB-D 96.71 98.57 98.08

Table 4. Results of the Urban 3D dataset.

Model Backbone Input Data IOU (%) Recall (%) Precision (%)

DeeplabV3+ Xception RGB 85.14 90.59 92.62
Segformer Mit-b2 RGB 87.49 93.42 93.39

Unetformer Swin-Base RGB 89.92 93.98 95.07
SA-Gate ResNet-50 RGB-D 90.08 94.23 95.68

CMX mit-b2 RGB-D 92.78 94.57 96.06

The evaluation of the Urban 3D dataset shows a similar trend, with the IoU of the
DeeplabV3+ model based on RGB data being 84.64%. IoU and other performance met-
rics improve when using the Segformer and Unetformer networks. Consistent with the
results of the Tianjin dataset, the fusion of the depth data significantly enhanced model
performance, with the IoU of the SA-Gate model reaching 90.08%. What is particularly
outstanding is that the CMX model used here reached 92.78% for the IoU, and the recall
rate and precision were found to be 94.57% and 96.06%, respectively, which further con-
firms its effectiveness and reliability in extracting building outlines from satellite remote
sensing data. DeepLabV3+, as the current benchmark segmentation method using a CNN,
introduced the ASPP module into its encoder to enhance its capabilities at different scales
and in structural feature extraction. SegFormer incorporates the strengths of the Trans-
former model, which performs well in dealing with global relations and long-distance
dependencies in images, thus improving segmentation accuracy. Unetformer combines the
advantages of CNNs and the Transformer model to achieve the best results when using
RGB data. The multimodal fusion method using RGB-D data outperformed the methods
using only RGB data in terms of the semantic segmentation results. This was because cross-
modal fusion reduced redundant noise in a single modality and extracted complementary
features. The DSM added in this study provided data about object elevation, which helped
to distinguish among different buildings and improved the accuracy of building contours.
The RGB-D data contained not only traditional RGB image data but also depth information,
which enhanced the model’s spatial perception of objects in the scene.

Figure 12 illustrates examples of the building footprint segmentation results obtained
by using different methods on an image with a resolution of 512 × 512, and the white pixels
represent the building areas. It can be observed that the segmentation map obtained using
CMX had the highest similarity with the real labeled map. In contrast, the segmentation
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map output by the DeeplabV3+ method was more complicated, and the result was different
from the real labeling, whereas the segmentation map output by the Unetformer method
only used RGB images, and the resulting map had holes inside the buildings. The segmen-
tation figure obtained by the SA-gate method using RGB-D data had more precise edges,
and the hole problem was solved. However, this method produced more segmentation
errors due to the noise effect of DSM data. The CMX method used in this study achieved
the optimal semantic segmentation results by effectively calibrating and extracting features
from RGB images and DSM data.
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5.2. Performance Analysis of Regularized Building Boundary Extraction

Table 5 presents the results of a quantitative evaluation that compares different regular
building boundary extraction methods. The data in the table show that after using different
methods to extract building boundaries from the semantic segmentation results, the IoU
decreased. This phenomenon can be attributed to the fact that when simplifying the building
outline, detailed information is omitted, affecting the IoU value. Nonetheless, appropriately
reducing the IoU to obtain more regular building boundaries is a desirable trade-off strategy
in terms of providing a more accurate structural basis for reconstruction. After the applica-
tion of the Douglas–Peucker algorithm, although the IoU only dropped by 0.61%, further
visual analysis shows that this algorithm is more limited during edge optimization tasks.
As a common postprocessing method, the polygon regularization algorithm [27] can extract
relatively regular building outlines, but it results in a significant decrease in IoU of 4.58%,
indicating that this postprocessing method can be optimized. In the two-stage method
proposed in this article, the polygon optimization stage caused the IoU to decrease by 1.64%,
and combined with the experience optimization postprocessing stage, the IoU decrease was
controlled at 0.79%. This confirms that this method retains high accuracy while simplifying
building boundaries and also obtaining more regular building boundaries.
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Table 5. Building boundary extraction results.

Method IoU (%)

Semantic segmentation 96.71
Douglas–Peucker [23] 96.10

Polygon regularization algorithm [27] 92.13
Our method (polygon optimization) 95.07
Our method (polygon and empirical

optimization) 95.92

Figure 13 demonstrates the visual comparison results of building boundary extraction
using different methods. The building boundaries extracted by the Douglas–Peucker al-
gorithm [23] are relatively tortuous and have smaller edge differences than the semantic
segmentation results, but there is a significant deviation from the regularized boundaries of
the actual building. The building boundaries extracted by the polygon optimization method
are more regular. However, due to the accuracy limitations of semantic segmentation itself,
polygon optimization only plays a limited role in correcting semantic segmentation errors. As
a result, errors still appear in the extraction results obtained using polygon optimization alone.
For example, some areas that are too small are mistakenly extracted as buildings. In order to
further optimize building boundaries and adapt them to the needs of BIM reconstruction, our
method introduces the application of empirical optimization based on polygon optimization
for adjustment, thereby obtaining more accurate regular building boundaries.
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5.3. Performance Analysis of BIM Reconstruction

Tables 6 and 7 compare the performance of different BIM reconstruction technologies
on the Tianjin and Urban 3D datasets. Table 6 demonstrates the performance comparison
of various BIM reconstruction technologies on the Tianjin dataset. The results show that
the method proposed in this study achieved reconstruction correctness of 85.61% when
the 3D IoU is greater than 0.5, and even under more stringent conditions; that is, when
the 3D IoU was greater than 0.9, the correctness still remained at 56.44%. This method
shows significant performance improvements compared to existing techniques reported in
the literature.

Table 6. Comparison of the different BIM reconstruction methods on the Tianjin dataset.

Method Correctness (%) Correctness (%)

3DIoU > 0.5 3DIoU > 0.9

(Li et al., 2016) [38] 69.14 39.51
(Gui et al., 2021) [8] 74.14 43.21
(Yu et al., 2021) [15] 83.54 51.44

Our Method 85.61 56.44

Table 7. Comparison of the different BIM reconstruction methods on the Urban 3D dataset.

Method Correctness (%) Correctness

3DIoU > 0.5 3DIoU > 0.9

(Li et al., 2016) [38] 68.12 37.15
(Gui et al., 2021) [8] 72.27 39.32
(Yu et al., 2021) [15] 81.45 47.22

Our Method 82.93 53.57

The data in Table 7 reflect similar trends in the Urban 3D dataset. The method in this
paper shows a correctness of 82.93% under a lower 3D IoU threshold (0.5) and a correctness
of 53.57% under a higher 3D IoU threshold (0.9). This series of results continues to verify
the consistent and excellent performance of this method in multiple datasets and further
proves the feasibility of this technology in different urban environments.

The lower accuracy of architectural extraction when using traditional image-processing
techniques [38] resulted in the lowest final reconstruction completion rate. The BIM
reconstruction accuracy of this study’s method was also improved compared to the other
deep-learning-based methods [8,15]. This improvement was mainly due to semantic
segmentation using the multimodal fusion of orthophotos and DSMs in the building
footprint extraction phase, which improved the accuracy of the building footprint extraction,
and the postprocessing strategy designed for building boundaries obtained regularized
building boundaries without drastically reducing the boundary accuracy.

6. Discussion

Figures 14 and 15 demonstrate the results of this research method when applied to the
reconstruction of a large-scale BIM. As can be seen in the figure, the BIMs reconstructed
by applying this study’s method demonstrated neat building boundaries. Although there
were errors in the reconstruction of some buildings, these could be corrected by a small
amount of manual postprocessing. Compared with completely manual modeling methods,
this method significantly reduces the need and time required for manual corrections and
improves overall work efficiency.
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The proposed method can be effectively used to accomplish BIM reconstruction for
most buildings, but it still has limitations in some cases as shown in Figures 16 and 17.
Due to the limitations of semantic segmentation, two closely adjacent buildings cannot be
correctly separated in the initial stage, and two adjacent buildings may be recognized as
one connected building, which will cause errors in the final BIM reconstruction; this can be
solved by using instance segmentation in the future. In addition, the proposed regularized
boundary extraction method is only applicable to regular and conventional buildings and
will be simplified when dealing with buildings with circular boundaries.
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In summary, the method proposed in this paper provides a feasible and highly accurate
solution for large-scale BIM reconstruction, but it does have limitations in terms of the
reconstruction of complex and irregular structures. The theoretical significance of this
research lies in its regularized building contour extraction of orthophotos and DSMs
through the CMX network and postprocessing-based approach, which helps to expand the
idea of automated BIM reconstruction. Meanwhile, this research has important implications
for the urban planning, facility management, and construction industries, where this
automated, accurate BIM reconstruction approach can significantly increase efficiency and
reduce costs.

7. Conclusions

In this study, an innovative approach to automated BIM reconstruction that utilized
orthophotos with DSMs to achieve large-scale BIM reconstruction was proposed. The main
conclusions are as follows.

1. The method proposed in this study is capable of obtaining regularized contour and
elevation information of buildings from orthophotos and DSMs and of realizing
automated batch reconstruction work by using Dynamo 2.1. The application to the
Tianjin and Urban 3D datasets proved the effectiveness of the method, and the rate of
correct reconstruction reached 85.61% and 82.93%, respectively. These results show
that the method proposed in this paper represents a powerful tool for achieving high
efficiency and high correctness during large-scale BIM reconstruction.

2. In this study, it was verified that the CMX network can fully integrate the multimodal
features of orthophotos and DOM for the semantic segmentation of building foot-
prints, and the segmentation results were better than those of methods that used
RGB. The IoU in building semantic segmentation with the CMX network reached
96.71% and 92.78% on the Tianjin and Urban 3D datasets, respectively. The significant
improvement in this indicator sets a new benchmark for subsequent research.

3. The two-stage regular building boundary extraction method proposed in this study
using polygon optimization and empirical rules for postprocessing semantically
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segmented images was able to accurately extract regularized building boundaries. It
provides a new direction for subsequent regularized building boundary extraction.

The significance of this study is that it proposes a novel approach to large-scale BIM
reconstruction. The method proposed in this paper can greatly reduce the time and labor
required for traditional BIM reconstruction, thereby enabling more frequent updates of the
BIM database and supporting the rapid development of smart city initiatives. Furthermore,
the high accuracy of our reconstruction method can greatly improve the reliability of BIM
data, which are crucial for urban planning, disaster management, and renovation projects.

The method proposed in this paper can complete building extraction and boundary
optimization tasks. In addition, various advanced optimization algorithms [39,40] have
previously been used as solutions in many fields such as scheduling [41,42] and optimiza-
tion [43]. For the decision problem involved in this study, the method proposed in this
paper can be compared with other advanced optimization algorithms in future research.
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