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Abstract: Based on a real engineering case, this study employs the MIDAS finite element software
to model the reinforced high embankment slope using anti-sliding piles. The accuracy of the finite
element method is verified by comparing calculated outcomes with field monitoring data. Expanding
on this foundation, an analysis of factors influencing the reinforced high embankment slope is
undertaken to scrutinize the impact of diverse elements on the slope and ascertain the optimal
reinforcement strategy. The results reveal the following: The principal displacement observed in the
high embankment slope is a vertical settlement, which escalates with the backfill height. Notably, the
highest settlement does not manifest at the summit of the initial slope; instead, it emerges close to
the summits of the subsequent two slopes. However, the maximum horizontal displacement at the
slope’s zenith diminishes as the fill height increases—a trend that aligns with both field observations
and finite element computations. The examination of the influence of anti-sliding pile reinforcement
on the high embankment slope unveils that factors like the length, diameter, spacing, and positioning
of the anti-sliding piles exert minor impacts on vertical settlement, while variations in the parameters
of the anti-sliding piles significantly affect the slope’s horizontal displacement. When using anti-
sliding piles to reinforce multi-level high embankment slopes, factoring in the extent of horizontal
displacement variation and potential cost savings, the optimal parameters for the anti-sliding piles
are a length of 15 m, a diameter of 1.5 m, and a spacing of 2.5 m, presenting the most effective
combination to ensure superior slope stability and support.

Keywords: anti-sliding piles; backfill slope; finite element simulation; slope support; stability

1. Introduction

China has historically been significantly affected by various geological hazards. Cur-
rently, the frequency of geological disasters is increasing, and the instability of slopes
during such disasters, mainly, cannot be ignored. These sudden geological events not
only impact the stable development of the economy but also bring about numerous safety
hazards, threatening people’s lives. In this context, assessing the stability of slopes and
adopting appropriate reinforcement methods have become focal points of research for re-
lated professionals [1–3]. Once potential instability hazards are identified on slopes, timely
reinforcement is necessary. Numerous reinforcement design schemes have been proposed,
with slope reinforcement using anti-sliding piles being one extensively studied approach.
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Anti-slide piles serve as pivotal support structures within slope stabilization endeavors.
Their indispensability stems from their robust capability to counteract sliding forces, their
versatility in their placement, minimal disruption to the slope’s integrity, broad suitability
across contexts, and the overarching enhancement of stability. In order to embark on a
comprehensive investigation into the domain of slope reinforcement via anti-slide piles,
it becomes imperative to factor in a spectrum of influencing variables [4,5] duly. This
strategic inclusion is a requisite step toward devising anti-slide pile solutions that are
methodologically sound and optimally attuned to scientific principles and resource-efficient
practices [6,7].

In the study conducted by Weilide et al. [8], the finite element method with elastoplastic
behavior was employed to calculate the reinforced slope model with anti-slide piles. The
calculation process involved the progressive reduction in shear strength to determine the
slope safety factor. The results demonstrated that optimizing the anti-slide pile scheme
improves slope stability. Notably, placing anti-slide piles within the slope significantly
enhances stability, while the spacing between anti-slide piles also exerts a notable impact on
slope stability. Yang et al. [9] investigated three types of landslides (translational, compound,
and rotational) by varying the positions of anti-slide piles for reinforcement. They calculated
the slope safety factor for different pile positions and analyzed the relationship between
stress and displacement fields. The results indicated that the optimal positions for anti-slide
piles vary for different landslides, corresponding to the upper slope, locations with high
stress and displacement in the middle slope, and the lower slope. Zhang [10] developed a
novel slope testing system and used various monitoring methods to study double-row piles’
bearing capacity and deformation characteristics, revealing the effectiveness of anti-slide
piles. The results showed that anti-slide piles significantly enhance the bearing capacity
of slope soil, with the front-row anti-slide piles bearing greater loads than the rear-row
piles. Adopting double-row piles effectively improves slope stability. Qu [11] conducted
vertical cyclic compression load tests [12] on single-pile models under three types of slope
terrain (inclined slope foundation, flat foundation, and inclined rock foundation). They
investigated anti-slide piles’ cyclic effect and dynamic response under different dynamic
amplitudes, loads, frequencies, and cycle counts.

With the maturation of slope stability analysis theory [13] and the development
and popularization of computer technology, numerical analysis methods have also made
rapid progress. While two-dimensional analysis methods are still primarily used in slope
engineering, they have significant limitations. Two-dimensional finite element models
can only analyze profiles representing local features, and the safety factor results obtained
from these models often cannot represent the overall slope safety factor. Additionally,
two-dimensional models cannot consider the lateral constraints of the computational
profile, leading to safety factors that are usually smaller than actual values. Conservative
reinforcement methods are often adopted to ensure slope engineering safety, resulting
in high safety margins and substantial resource wastage. Furthermore, when designing
slope engineering projects, past engineering experiences are often referred to for design,
resulting in a lack of novelty and scientific basis in design solutions and hindering accurate
risk assessment. Therefore, advancing this field requires a change in the current situation.
Researchers are gradually expanding safety analysis and assessment methods from two-
dimensional to three-dimensional [14] analysis to address complex slope engineering
challenges better. This approach provides more comprehensive and accurate numerical
simulation results, contributing to scientifically sound design solutions, enhanced structural
safety, and stability.

Based on a specific engineering case, Iefebvre et al. [15] established a three-dimensional
dam model by considering the actual physical–mechanical parameters of the slope under
valley terrain. They conducted the stress–strain analysis using a three-dimensional ap-
proach, marking the first instance of combining slope engineering with a three-dimensional
model and employing the finite element method for landslide analysis. Subsequently, the fi-
nite element method gradually matured, becoming capable of simulating slope engineering
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under different geological conditions, hydrological conditions, and load scenarios, thereby
guiding practical engineering projects. Xiao et al. [16], employing a three-dimensional
rotational failure mechanism, introduced a method combining gravity increment and upper-
bound theorem to evaluate the safety factor (FS) of a 3D stepped slope in non-uniform,
unsaturated soil. They proposed a new formula for calculating the FS of a two-level 3D
slope for practical geological engineering applications. Deendayal et al. [17] conducted
numerical simulation analysis using PLAXIS 3D software, investigating the behavior of a
pile group located on sloping terrain (1V:5H and 1V:3H slopes) under lateral loads. They
studied the influence of slope angle on pile-bearing capacity, lateral deflection, and bending
moment distribution of the front, middle, and rear pile groups. GRIFFITHS et al. [18], em-
ploying an elastoplastic finite element method, compared three-dimensional slope stability
analysis with two-dimensional results. Three-dimensional finite elements can incorporate
complex geometric shapes, boundary conditions, and material property changes in out-of-
plane directions, yielding more realistic results. Not only can accuracy be improved, but
the fundamental nature of slope failure mechanisms can also be better understood. Bushira
et al. [19], focusing on a particular layered slope, used UDEC discrete element software to
simulate the deformation and failure process of the slope after excavation. They analyzed
the failure mechanism, revealing that the failure process of the layered slope could be
divided into four stages, with tensile failure being the primary mode, primarily originating
at the foot of the slope and involving traction sliding, along with localized shear failure.
Zheng et al. [20], based on the strength reduction and step-loading finite element meth-
ods, constructed a three-dimensional finite element model of a slope, which considered
the interaction between anti-sliding piles and soil. This allowed them to obtain accurate
calculation results and understand the bearing capacity of the foundation, load–settlement
curve, and failure mechanism.

Zhao et al. [21,22] employed discrete element simulation to model the initial stress
field based on the engineering angle and joint spacing. They obtained computation results
with a high agreement to analytical and numerical solutions. The asymmetric displacement
phenomenon of rock masses highlighted the anisotropy of rock masses, naturally explaining
the impact of joints on rock masses. Hong et al. [23] introduced a three-dimensional upper
limit theory for the three-dimensional spiral rotational failure mechanism. They proposed a
slope power balance equation that considers the influence of the slope crest angle. Utilizing
an exhaustive search method with constraints, they optimized and solved for the minimum
slope safety factor, quantitatively analyzing the patterns of safety factor computation using
the SRM and GIM methods under different parameters. Ma Hao [24] established a three-
dimensional slope discrete element model via field investigations and drone imagery. Based
on the statistical pattern of joint spacing–layer thickness, they explored the effect of reservoir
water softening on the “S”-shaped deformation mechanism of the slope, identifying the
leading cause of “S”-shaped deformation in rock layers. Song Jian et al. [25] used FLAC 3D
finite difference software to conduct seismic stability simulation and analysis on three types
of slopes (homogeneous soil [26], layered soil, and soil with weak interlayers [27]). They
investigated the evolution of sliding surfaces and deformation distribution in the slopes.

The above research systematically expounds the methods of numerical simulation
analysis applied in slope engineering. It predicts and analyzes the failure mechanism of
slopes under various geological conditions, hydrological conditions, and load situations by
establishing three-dimensional slope finite element models. The study explores the disease
conditions of slopes and the interaction mechanism between pile and soil. The results
significantly promote the application of the finite element method and numerical simulation
analysis in slope engineering. Among them, two-dimensional analysis methods are the
primary methods in slope engineering, but they can only analyze sections representing
local characteristics. The safety factor results derived from these models often cannot
represent the overall slope’s safety factor. At the same time, there are fewer studies on
the reinforcement of high backfill slopes with anti-slide piles. Although scholars have
developed methods for reinforcing high backfill slopes with anti-slide piles compared to
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other reinforcement methods, there are still many shortcomings in the existing experimental
studies, not to mention the quantitative research on the impact of various factors on anti-
slide piles. The main influencing factors and development trends of the displacement
of high backfill slopes are not sufficiently studied, and further analysis is needed on the
impact of the parameters of the anti-slide pile on reinforcing high backfill slopes.

In current engineering cases, we often encounter the reinforcement of high backfill
slopes, and reinforcing them with piles is a worthwhile scheme to study. Therefore, it is
significant to conduct research on reinforcing high backfill slopes with piles, combining
numerical simulation and field test data. This paper explores the influencing factors of anti-
slide piles on high backfill slopes via numerical analysis and finite element simulation. It
compares the calculation results with field monitoring data, analyzes the main displacement
development trends of high backfill slopes, and further studies the parameters affecting
the displacement of high backfill slopes by varying the main parameters of the anti-slide
piles. Based on a comprehensive consideration of the high backfill slope and construction
costs, the most suitable size parameters for anti-slide piles are determined, providing
practical guidance for the design of on-site anti-slide pile reinforcement of high slopes and
landslide prevention.

2. Engineering Overview and Test Point Selection
2.1. Project Overview

The project is located in Youxi County, Sanming City, Fujian Province, approximately
100 km from the sea. The site is in a hilly area with underdeveloped surface water systems
in the surrounding area. The groundwater in the vicinity is mainly confined to pore water
in the soil layers. Within the scope of this site, the groundwater primarily consists of two
major types: the pore phreatic water in the soil layers, and the pore-fracture water in the
residual layers, bedrock, and weathered layers [28,29]. Pore water is mainly distributed in
the fill soil and fine-grained clay layers, while pore-fissure water is mainly distributed at
the bottom of the weathered layer of the bedrock [30].

Based on borehole information and geotechnical reports, the basic physical and me-
chanical parameters of various rock and soil layers can be determined, as shown in Table 1.

Table 1. Basic physical properties of soil layers.

Layer Depth
(m)

Elastic Modulus E
(Mpa)

Poisson’s
Ratio ν

Unit
Weight γ
(kN/m3)

Initial
Porosity n

Cohesion
c (kPa)

Internal Friction
Angle φ

(◦)

Fill Soil 1.2 50 0.3 18 0.5 26 37

Residual Sandy
Clay 8.9 30 0.33 19.4 0.6 21 26

Fully Weathered
Sandstone 2.4 300 0.3 21 0.5 44 28

Sandy Soil-Like
Highly Weathered

Granite
2.5 800 0.26 22.5 0.6 500 31

Fragmented,
Highly Weathered

Granite
3.1 1000 0.24 23 0.5 800 35

Moderately
Weathered Granite 1 2000 0.23 24 0.5 1200 38

2.2. Selection of Test Points

This study’s reference section selected for numerical simulation is the segment from
K3 + 227.85 to K8 + 226.12. The simulation covers the entire construction process, from
incremental backfilling of the slope to the application of highway operational loads. The
slope reinforcement approach used in this project is the ‘reinforced backfill soil + anti-slide
pile’ method. Square anti-slide piles with section dimensions of 1.5 × 1.5 m2, a length
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of 15 m, and a spacing of 2.5 m are installed at the bottom of the slope. The bottom of
these anti-slide piles is embedded in the moderately weathered sandstone layer. The slope
construction involves four levels of backfilling, with each level having a height of 8 m and
1 m thick backfill soil applied at each stage. A layer of geogrid is required to be embedded
for each level of the slope. The lengths of the geogrids for each level are not the same and
decrease gradually with an increase in slope levels [31].

3. Model Establishment

In this study, the MIDAS.GTS.NX 2019 geotechnical finite element software will be
employed to model typical slope cross-sections from the construction site, simulating the
entire process from incremental backfilling of the slope to the final application of the new
line load. According to the research by Bingxiang Yuan [32,33], the slope height is assumed
to be H. The best calculation results are achieved when the distance from the slope top to
the boundary is not less than 2.5H, the distance from the slope bottom to the boundary
is not less than 1.5H, and the distance from the slope base to the lower boundary is not
less than 1H. This approach ensures both accuracy in slope calculations and cost savings
in computational effort. The model’s dimensions are chosen according to the conditions
shown in Figure 1c. Both the soil and bedrock adopt the Mohr–Coulomb constitutive
model. The grid division is shown in Figure 1b. Prior to grid generation, grid control
must be performed. The backfill layer and the outline of the anti-slide piles are set to 1 m,
and the outer boundary lines of the soil body are set to 2 m. X-direction constraints are
added to the boundaries on the left and right sides of the model, Y-direction constraints are
added to the boundaries on the front and back sides, and both X and Y-direction constraints
are applied to the bottom of the slope. Operational loads, including highway loads and
vehicle loads, are added to the model. After applying operational loads with an intensity
of approximately 50 kPa, Figure 1c depicts the finite element model.
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4. Finite Element Results Analysis
4.1. Slope Vertical Displacement Analysis

Figure 2 presents the contour map of vertical settlement, showing that the maximum
settlement point of the slope is not at the top but within the interior of the 4–5 m backfilled
soil above the slope bottom. The maximum settlement value is 141.28 mm. This phe-
nomenon occurs due to the additional strain induced by the extra load from the upper soil
layers on the lower soil layers, resulting in settlement deformation. With the progression of
backfilling on the slope, the soil at the bottom is gradually compacted and pushed forward
under the influence of gravity. This leads to lateral compression of the soil on the outer side
of the slope toe, causing the soil at the forefront of the slope toe to rise. The maximum uplift
value is 1.3 mm. Figure 3 illustrates the vertical settlement distribution curves of different
points at the slope bottom. The maximum settlements at the slope bottom for each level
of backfill slope, from the lowest to the highest, are 48.34 mm, 80.30 mm, 109.18 mm, and
132.64 mm, with growth rates of 66.11%, 35.97%, and 20.90%, respectively. This indicates
that as the filling height increases, the compactness of the lower-fill soil improves due to
lower porosity and more substantial bearing capacity. This is because the load of each
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layer of fill continuously decreases, leading to a continuous decline in the rate of settlement
growth of the backfilled slope.
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The vertical settlement values at the summits of each slope level were ascertained by
extracting results from corresponding nodes within the finite element model, as exemplified
in Figure 4. The sequence of vertical settlement values at the summits, progressing from
the lowest level to the highest, is 8.93 mm, 16.81 mm, 21.26 mm, and 8.61 mm. These values
were juxtaposed with the monitoring data, visually represented in Figure 5. The monitoring
diagram delineates distinct locations: JC1 and JC2 at the apex of the first-level backfill slope,
JC3, JC4, and JC5 atop the second-level backfill slope, JC6, JC7, and JC8 situated at the
zenith of the third-level backfill slope, and JC9, JC10, and JC11 positioned on the crest of
the fourth-level backfill slope. Scrutinizing the data encapsulated in Monitoring Table 2, it
becomes apparent that as the elevation of the fill accumulates, the associated settlement
values at each level’s summit progressively increase, albeit with diminishing rates of
growth. Intriguingly, the summit with the most pronounced settlement is not aligned with
the apex of the initial-level slope; rather, it emerges in proximity to the summits of the
second and third levels. This intriguing trend mirrors the observations gleaned from finite
element computations.

4.2. Slope Horizontal Displacement Analysis

Figure 6 displays the contour map of horizontal displacement for different construction
stages of the backfilled slope. As the backfill height increases, the maximum horizontal
displacement of the slope gradually grows. The horizontal displacements corresponding to
each level of the slope are 8.6 mm, 19.14 mm, 31.61 mm, and 43.55 mm, respectively. With
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increasing backfill height, the location of the maximum horizontal displacement on the
backfilled slope progressively shifts towards the rear. By the time the fourth-level backfill
slope is reached, the point of maximum horizontal displacement has moved to the position
corresponding to the slope bottom of the second-level slope platform.
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Figure 7 presents a depth-wise profile of horizontal soil displacement at the slope toe.
The horizontal displacement of the soil at the slope toe increases with the backfill height,
although the growth rates vary. Taking the horizontal displacement at the slope toe during
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the first-level backfill as the reference, the horizontal displacements of the soil at the slope
toe for each level of backfill are 5.95 mm, 10.98 mm, 15.32 mm, and 18.73 mm, respectively.
The increments in horizontal displacement for each subsequent level of backfill are 84.65%,
39.53%, and 22.23%, respectively. This is due to the initially high porosity of the original soil.
When subjected to backfill pressure, the porosity of the original soil decreases rapidly, the
relative density of the soil gradually increases, and the bearing capacity of the soil gradually
improves. As a result, more backfill pressure is required to produce unit displacement,
leading to a gradual decrease in the rate of increase in horizontal displacement.
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Figure 7. Horizontal displacement profile of soil along depth.

As depicted in Figure 8, the horizontal displacement values at the top of each slope
level, from lowest to highest, are 26.73 mm, 15.25 mm, 4.86 mm, and 1.66 mm. A comparison
between the finite element calculation results and the horizontal displacement monitoring
values in Table 3 reveals that the maximum horizontal displacement occurs at the top of
the first-level slope. With increasing backfill height, the horizontal displacement gradually
decreases. The most minor horizontal displacement is observed at the top of the fourth-level
slope. The pattern of horizontal displacement at the slope top is consistent with this trend.
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Table 2. Vertical settlement monitoring table.

Observation Date

Observation
Point

2021.10.06~2021.10.25 2021.10.25~2021.11.12 2021.11.12~2021.12.16 2021.12.16~2021.12.26 2021.10.06~2021.12.26

Displacement
(mm)

Change Rate
(mm/d)

Displacement
(mm)

Change Rate
(mm/d)

Displacement
(mm)

Change Rate
(mm/d)

Displacement
(mm)

Change Rate
(mm/d)

Cumulative
Displacement

(mm)

JC1 +7.68 +0.38 +2.45 +0.14 +1.07 +0.03 +0.98 +0.10 +12.18
JC2 +6.48 +0.32 +2.04 +0.11 +1.64 +0.05 +1.23 +0.12 +11.39
JC3 / / +9.08 +0.50 +5.67 +0.17 +2.43 +0.24 +17.68
JC4 / / +8.48 +0.47 +6.49 +0.19 +2.06 +0.21 +17.03
JC5 / / +8.75 +0.49 +5.17 +0.15 +2.71 +0.27 +17.13
JC6 / / / / +14.48 +0.43 +4.21 +0.42 +18.69
JC7 / / / / +15.18 +0.45 +4.28 +0.43 +19.46
JC8 / / / / +11.45 +0.34 +4.32 +0.43 +15.77
JC9 / / / / / / +4.53 +0.45 +4.53

JC10 / / / / / / +3.33 +0.33 +3.33
JC11 / / / / / / +4.42 +0.44 +4.42

Explanation: “+” indicates subsidence.

Table 3. Horizontal displacement monitoring table.

Observation Date

Observation
Point

2021.10.06~2021.10.25 2021.10.25~2021.11.12 2021.11.12~2021.12.16 2021.12.16~2021.12.26 2021.10.06~2021.12.26

Displacement
(mm)

Change Rate
(mm/d)

Displacement
(mm)

Change Rate
(mm/d)

Displacement
(mm)

Change Rate
(mm/d)

Displacement
(mm)

Change Rate
(mm/d)

Cumulative
Displacement

(mm)

JC1 +9.32 +0.47 +7.25 +0.40 +4.42 +0.13 +1.44 +0.14 +22.43
JC2 +8.46 +0.42 +6.04 +0.34 +3.66 +0.11 +1.01 +0.10 +19.17
JC3 / / +8.21 +0.46 +5.52 +0.16 +1.64 +0.16 +15.37
JC4 / / +8.45 +0.47 +6.76 +0.20 +1.12 +0.11 +16.33
JC5 / / +7.73 +0.43 +6.34 +0.19 +1.77 +0.18 +15.84
JC6 / / / / +7.48 +0.22 +1.53 +0.15 +9.01
JC7 / / / / +6.18 +0.18 +2.43 +0.24 +8.61
JC8 / / / / +6.45 +0.19 +2.22 +0.22 +8.67
JC9 / / / / / / +2.56 +0.26 +2.56

JC10 / / / / / / +1.58 +0.16 +1.58
JC11 / / / / / / +2.03 +0.20 +2.03

Explanation: “+” indicates subsidence.
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4.3. Analysis of Lateral Displacement and Bending Moment of Anti-Sliding Piles

Figure 9a illustrates the lateral displacement cloud map of the anti-sliding pile. It is
evident from the diagram that the maximum lateral displacement of the anti-sliding pile
occurs at the slope’s crest. The displacement gradually decreases along the pile from top
to bottom, and negative values appear at the pile’s base. This phenomenon is attributed
to the anti-sliding pile embedded in moderately weathered granite strata, relying on the
stratum’s lateral resistance to restrain the slope’s displacement. The direction of the lateral
resistance results in a horizontally rightward reverse displacement near the pile’s base. As
depicted in Figure 9b, during the backfilling of the first-level slope, the lateral displacement
of the pile’s body from bottom to top increases approximately linearly. However, with
the increase in fill height, the pile’s displacement shifts from linear to non-linear. The
horizontal displacements of the anti-sliding pile’s top and base are presented in Table 4. As
the backfilling construction stages progress, the increment of lateral displacement at the
pile’s top diminishes successively with each incremental fill height. The growth values of
lateral displacement at the anti-sliding pile’s top, influenced by various slope levels, are
4.96 mm, 4.33 mm, and 3.48 mm, respectively.
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Table 4. Horizontal displacement of anti-sliding pile top and base.

Construction Stage First-Level
Backfill

Second-Level
Backfill

Third-Level
Backfill

Fourth-Level
Backfill

Highway Vehicle
Load

Pile Top Displacement
(mm) 6.12 11.08 15.41 18.89 19.16

Pile Base Displacement
(mm) −0.15 −0.20 −0.25 −0.29 −0.30

In Figure 10a, the contour map illustrates the distribution of bending moments along
the depth of the anti-slide pile. Notably, a discernible trend emerges wherein the bending
moment of the pile escalates in tandem with its depth of embedment within the soil.
This escalating trend culminates in the attainment of the maximum bending moment
at a depth of approximately 12 m, coinciding with the segment anchored within the
moderately weathered granite. Progressing beyond this depth, the bending moment
experiences a rapid descent, ultimately converging towards zero at the base of the pile.
Figure 10b further illuminates that as the height of backfilling advances, a corresponding
increase unfolds in the maximum bending moment sustained by the anti-slide pile. This
positive correlation between backfilling height and maximum bending moment is evident.
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However, the magnitude of the increase diminishes as the backfilling height continues to
rise. For instance, upon the initial application of the first-level backfilling, the anti-slide pile
registers a maximum bending moment of 345.09 kN·m. As successive backfilling stages
and highway loads come into play, the hierarchy of maximum bending moments linked
to each backfilling level and highway load configuration unfolds as follows: 581.12 kN·m,
767.02 kN·m, 914.79 kN·m, and 927.68 kN·m. A keen observation unveils that the escalation
rates of maximum bending moments manifest as 40.81%, 13.92%, 6.87%, and 2.07% in a
successive manner. This is because the anti-slide piles are arranged at the bottom of the
slope. When backfilling the first stage of the slope, the surface of the slope is closest to
the anti-slide piles at this time and thus has the greatest impact on them. Subsequently,
due to the presence of the slope platform, the backfilled slopes and the road load become
increasingly distant from the position of the anti-slide piles, resulting in a diminished
impact on the anti-slide piles.
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5. Analysis of Factors Affecting High Backfilled Slope Reinforced by Anti-Sliding Piles
5.1. Influence of Anti-Sliding Pile Length on High Backfilled Slope

Various pile lengths, precisely 13 m, 15 m, and 17 m, were selected for the anti-slide
piles, all possessing a consistent diameter of 1.5 m and an equidistant spacing of 2.5 m.
While keeping all other parameters uniform, three distinct finite element models were de-
vised to represent the backfill slope. The contour map in Figure 11 provides a visualization
of the horizontal displacement across these models, highlighting the discrepancies resulting
from the differing pile lengths. For the scenario where the pile length is 13 m, equating to
a depth of rock embedding at 0.5 m (within the mid-level weathered granite), the utmost
horizontal displacement of the backfill slope measures 51.11 mm. Upon extending the pile
length to 15 m, a noteworthy reduction in maximum horizontal displacement emerges,
dwindling to 44.48 mm—a decrement of 6.63 mm when juxtaposed with the 13 m pile
length. In the case of a 17 m pile length, the trifling horizontal displacement is noted
at 41.39 mm, signifying a diminution of 3.09 mm relative to the 15 m pile length. Upon
meticulous evaluation of both the spectrum of horizontal displacement variance and the
economic considerations, the 15 m pile length emerges as the paramount selection for the
anti-slide pile configuration, prominently fostering the stabilization of the backfill slope.

5.2. Impact of Pile Diameter on High Backfill Slope Reinforced with Anti-slide Piles

A constant pile length of 15 m and a uniform spacing of 2.5 m were maintained, while
three distinct pile diameters—1.3 m, 1.5 m, and 1.7 m—were chosen for the anti-slide piles.
The remaining parameters were kept constant. Figure 12 shows a contour map outlining
the resultant horizontal displacement patterns across the high backfill slope fortified with
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anti-slide piles of varying diameters. Inspection of Figure 12 reveals that the maximum
horizontal displacements corresponding to the three distinct pile diameters—ranging from
most minor to most significant—are 49.93 mm, 44.48 mm, and 41.39 mm. As the diameter
of the anti-slide piles expands, their efficacy in countering bending deformation improves,
thereby enhancing their capacity to curtail soil deformation and gradually tempering
the magnitude of horizontal slope displacement. However, the extent of reduction in
horizontal displacement fluctuates with each increase in pile diameter. Upon increasing
the pile diameter from 1.3 m to 1.5 m, the ultimate horizontal displacement diminishes by
5.45 mm. In contrast, when elevating the pile diameter from 1.5 m to 1.7 m, the reduction
in final horizontal displacement narrows to 3.09 mm. This observation underscores that
the decline in horizontal soil displacement becomes less pronounced with each successive
augmentation in pile diameter. Considering both the gamut of horizontal displacement
variation and economic feasibility considerations, the most judicious selection for the
anti-slide pile diameter, in terms of optimizing backfill slope stability, is 1.5 m.
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5.3. Impact of Pile Spacing on High Backfill Slope Reinforced with Anti-Slide Piles

With an optimal pile length of 15 m and a pile diameter of 1.5 m, the study explores
the impact of varying pile spacings on the reinforced high backfill slope. Analyzing pile
spacings of 2 m, 2.5 m, and 3 m while keeping other parameters consistent, Figure 13
presents a contour map illustrating the eventual horizontal displacement pattern for the
high backfill slope strengthened with anti-slide piles of different spacings. Figure 13
unmistakably showcases the maximum horizontal displacements corresponding to the
three distinct pile spacings, sequentially ranging from smallest to largest, at 49.87 mm,
44.48 mm, and 40.41 mm. The horizontal displacement of the slope decreases as the spacing
between anti-slide piles is reduced, and the rate of decrease gradually slows down. When
the distance between the piles is larger, the supporting effect of the piles is significantly
reduced, allowing the soil to move laterally between the piles, which greatly weakens the
anti-sliding capacity and reduces the stability of the slope. This is because when the spacing
between the piles is reduced, the soil arching effect is significantly enhanced. However,
as the spacing continues to decrease, the rate of reduction becomes smaller due to the
marginal effect. The equilibrium between support enhancement and construction cost
must be carefully considered. Deliberating both the spectrum of horizontal displacement
fluctuation and the balance of cost-effectiveness, the most judicious decision for anti-slide
pile spacing, in terms of optimizing backfill slope stability, is 2.5 m. Due to the fact that
the results from two-dimensional finite element software cannot intuitively demonstrate
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the nonlinear relationship between pile spacing and the safety factor of slope stability, the
investigation into the relationship between pile spacing and horizontal displacement of
the slope using MIDAS.GTS.NX shows that as the pile spacing decreases, the reduction
in horizontal displacement of the slope diminishes. This outcome more intuitively aids in
determining the choice of pile spacing in engineering projects, making it more valuable for
setting pile spacing from an economic perspective in actual engineering projects.
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5.4. Influence of Anti-Slide Pile Position on High Backfill Slope

Taking into account the previously defined parameters for the anti-slide piles—specifically,
a pile length of 15 m, a pile diameter of 1.5 m, and a pile spacing of 2.5 m—three distinct pile
positions were selected: at the foot of the slope, on the first-level slope platform, and on the
second-level slope platform. This examination seeks to elucidate the influence of varying
anti-slide pile positions on the high backfill slope. Figure 14 depicts the contour map
showcasing the ultimate horizontal displacement pattern for the reinforced high backfill
slope, employing anti-slide piles in different positions.
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Figure 14 shows that the utmost horizontal displacement occurs when the anti-slide
pile is situated on the second-level slope platform, yielding a displacement of 50.42 mm.
This outcome is due to the anti-slide pile’s base being embedded within the backfill soil
stratum rather than the rock stratum. Consequently, the anchoring efficacy of the anti-slide
pile is significantly undermined, rendering it unable to provide substantial support. The
second highest horizontal displacement manifests when the anti-slide pile is placed at the
slope’s base. Although the pile’s base is embedded in moderately weathered granite, its
placement is distant from the zone of maximum displacement. As a result, its ability to
offer comprehensive support is curtailed. The resultant horizontal displacement value is
44.48 mm, signifying a reduction of 5.94 mm compared to the configuration with the pile
on the second-level slope platform. The optimal support configuration is realized when
the anti-slide pile is positioned on the first-level slope platform. In this configuration, the
pile’s base is embedded in highly weathered granite, and the pile’s proximity to the region
of maximal horizontal displacement precludes lateral soil movement. Consequently, this
arrangement yields the most modest final horizontal displacement of 39.50 mm, achieving
the most effective stabilization outcome for the high backfill slope.
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Under the final selected conditions, a comparative analysis of pile bending moments
was conducted for three different distributions of anti-slide piles, aiming to explore the
influence of various pile positions on the pile bending moments, as shown in Figure 15
below. The graph shows that the patterns of pile bending moments for the three different
anti-slide pile positions are consistent. The pile bending moments all initially increase with
the depth of soil penetration. Once reaching their maximum values, the bending moments
gradually decrease with increasing depth, ultimately approaching 0 at the pile base.
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Furthermore, the locations of the maximum pile bending moments differ noticeably
among the various anti-slide pile positions. As the position of the anti-slide piles moves
upward, the location of the maximum bending moment also shifts correspondingly. When
the anti-slide piles are located at the foot of the slope, this position is near the upper
interface of moderately weathered granite. The embedding action of the rock and soil on
the anti-slide piles significantly increases the shear force borne by the piles at this position,
resulting in the maximum bending moment occurring at this point in the anti-slide piles.
As the anti-slide pile position moves upward, the restraining effect of the soil on the
anti-slide pile weakens, causing the location of the maximum pile bending moment to
shift accordingly.

6. Conclusions

This article is based on the theoretical research of reinforcing high backfill slopes with
anti-slide piles, and it conducts a study on reinforcing high backfill slopes with anti-slide
piles against the backdrop of actual engineering projects. By using MIDAS.GTS.NX finite
element software for modeling the reinforced high backfill slopes with anti-slide piles, the
numerical simulation results are compared with the actual construction monitoring values.
It is found that the two are in good agreement, effectively proving the accuracy of this
numerical simulation.

Subsequently, an investigation into the influencing factors of anti-slide pile reinforce-
ment within high backfilled slopes ensued. The inquiry aimed to comprehend the magni-
tude of influence various factors exert on these slopes. Diverse factors impacting anti-slide
piles, such as pile length, diameter, and spacing, were meticulously probed to achieve this.
This endeavor facilitated the construction of corresponding finite element models, enabling
a comprehensive comparison of outcomes. This iterative process culminated in quantifying
the impact of each factor, ultimately revealing the optimal reinforcement strategy. Key
insights are summarized as follows:
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(1) Vertical settlement prevails as the predominant form of displacement in high backfilled
slopes, with the zenith of settlement not aligning with the slope crest but instead
adjacent to the summits of the second and third tiers. As backfill height escalates,
vertical settlement mounts, albeit at a decelerating pace.

(2) The horizontal slope displacement is subject to both backfill height and the char-
acteristics of anti-slide piles. Augmenting the backfill height induces horizontal
displacement escalation, albeit with diminishing rates. The apex horizontal displace-
ment is situated at the first tier’s crest. Furthermore, as the backfill height amplifies,
the horizontal displacement at the crest diminishes progressively. This observed
pattern from finite element calculations aligns with the displacement trend observed
at the crest via field monitoring.

(3) Alterations in anti-slide pile parameters wield a more substantial influence on the
horizontal displacement of the backfilled slope. As pile length and diameter ex-
pand, horizontal displacement systematically recedes. However, after penetrating the
weathered rock layer, the effect of pile length on horizontal displacement dwindles.
Furthermore, reducing pile spacing yields reduced horizontal displacement, although
the pace of reduction decelerates progressively.

(4) The arrangement of anti-slide piles profoundly impacts both horizontal displacement
and bending moments within the slope. Placing piles on the second-tier platform
diminishes reinforcement efficacy due to inadequate embedding in the rock layer,
resulting in the most substantial horizontal displacement. Pile placement at the slope
toe embeds them in the weathered rock layer, yet their proximity to the region of
maximum displacement hinders full effectiveness. Conversely, situating piles on the
first-tier platform effectively curbs lateral soil movement, yielding minor horizontal
displacement and optimum reinforcement.
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