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Abstract: Aiming to address the problem of construction and environmental risks in tunnel construc-
tion through the soil–rock mixture backfill area, this paper carried out a seismic dynamic response
model test of a pile-supported tunnel based on practical projects. Firstly, the stress–strain curves
and failure characteristics of the soil–rock mixture in the study area were obtained through triaxial
tests, and based on this, similar materials for the model test were developed. Then, a vibration table
model test was devised to investigate the seismic dynamic response of the pile–tunnel structure. The
findings revealed the following: when subjected to seismic waves, the soil–rock mixture stratum
displayed a “skin effect” in its acceleration response, indicating that closer proximity to the surface
led to heightened horizontal acceleration responses; the horizontal peak acceleration of the grouting
mixture stratum in the vertical direction exhibited a “Zigzag” pattern; the peak values of strain
response and bending moment in the tunnel lining cross-section exhibited an “X” shape and inverted
“V” shape, respectively. The bending moment at the pile crown increased alongside the peak value of
the input seismic wave acceleration. The maximum surface settlement in the model ranged from 0.5
to 1 cm, with the tunnel–pile structure effectively mitigating surface settlement.

Keywords: soil–rock mixture backfill area; pile-supported tunnel system; seismic dynamic response;
physical model test

1. Introduction

Earthquakes, as the world’s largest natural disaster, frequently result in varying de-
grees of damage to tunnels, such as cracking, collapsing, and displacement of the lining [1].
The shaking-table model test is the most direct method to study the seismic response of
structure and the mechanism of earthquake damage [2,3]. The selected seismic wave is
output to the shaker table to generate excitation to the shaker model structure through the
control room, so that the seismic process can be reproduced relatively realistically. The
seismic dynamic response of orthogonal tunnels has been a prominent focus of research
in the past. Pai Lifang et al. [4] carried out shaking-table tests based on typical cases of
cross-tunnel underpass landslides to reveal the regional spatial dynamic response charac-
teristics of lining structures. Based on the interchange tunnel project, Lai Tianwen et al. [5]
designed a large-scale shaking-table model test to study the seismic dynamic response
characteristics of the orthogonal tunnel. At present, researchers are beginning to focus on
the seismic dynamic response of parallel tunnels. Sun, TC et al. [6] carried out a model
test of the portals of two parallel tunnels to learn about the dynamic response of tunnel
liner and the interaction between surrounding rock and liner in earthquakes. Tao Yang
et al. [7] investigated the dynamic response and the failure characteristics of a parallel
overlapped tunnel under seismic forces by employing shaking-table tests. However, a
pile-supported tunnel structure is a common form of tunnel construction, on which there is
little shaking-table model test research.
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The research of similar materials in tunnel shaking-table tests is also a focus, including
those in tunnel lining and surrounding rock. Wu Honggang et al. [8] adopted hard PVC
as the main material and applied a mixture of gypsum, quartz sand, and water as a
5 mm thick shell to complete the production of the lining model; D. K. Singh et al. [9]
used different materials to simulate damaged and undamaged tunnels and studied the
seismic performance of damaged tunnels in aftershocks. Hao Zhou [10] studied the seismic
dynamic response of a large-section tunnel in compacted clay by filling a container with
clay soil; Cho Mya Darli [11] carried out a series of shaking-table tests on the integrated
corridor tunnel in the mixed stratum of sand and clay, and the results showed that the
dynamic response of the tunnel was significantly different in the clay and sandy stratum.
To study the dynamic response of special soil under tunnel shaking-table tests, most of the
current studies applied site soil without considering the similarity relationship [12].

In the process of infrastructure construction in mountainous cities, a large number of
soil–rock mixed backfills were formed due to site leveling; therefore, some lines inevitably
pass through these soil–rock mixed backfill areas. Some other scholars have carried out
research on the characteristics of soil–rock mixture (SRM). Simoni et al. [13] conducted
triaxial tests on soil–rock mixtures to analyze the stress–strain relationship, and the results
showed that such materials had obvious shear expansibility; Huang Wenjian et al. [14] and
Cao Wengui et al. [15] used the orthogonal experimental design method to analyze the
influence of various factors such as rock content on the physical and mechanical properties
of SRM, among which rock content has the greatest influence on the shear strength; Xia
Jiaguo et al. [16,17] studied the effects of rock content and confining pressure on the
mechanical properties of SRM using a large triaxial shear instrument, the results showed
that the stress–shear displacement curve had a “jump” phenomenon, and the shear index
parameters first increased and then decreased with the increase in rock content, and always
increased with the increase in confining pressure. The preceding research on soil–rock
mixture characteristics enables the development of a SRM similar material that meets the
similarity relationships and certain failure characteristics in the model test.

In this paper, based on the subway tunnel project in Chongqing, a small clear distance
pile-supported tunnel model was made according to the similarity theory. Furthermore,
SRM similar materials reflecting certain failure characteristics were developed based on
triaxial tests. The study focuses on the seismic dynamic response of tunnel lining structure,
and to determine the unfavorable parts of the tunnel–pile structure, which can provide
reference for the design, construction, and maintenance of similar projects.

2. Project Overview
2.1. Research Site

The research site is located in the deep soil–rock mixed backfill area of Chongqing
Rail Transit Line 10, with an overlying thickness ranging from 11.5 to 56.0 m. The most
dangerous section is a three-line tunnel, and the minimum spacing is only 3 m. Given the
poor tunnel conditions, a series of precautionary measures were implemented to ensure
project safety, including: 1⃝ preliminary curtain grouting; 2⃝ installation of tunnel piles
to bolster the tunnel infrastructure. The profile view is illustrated in Figure 1, while a
representative cross-section is delineated in Figure 2.
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2.2. Properties of Soil–Rock Mixture 
First, the grading of the soil–rock mixture in the research site was measured, and its 

original gradation curve is depicted in Figure 3. Then, triaxial tests were conducted on the 
soil–rock mixture sample, and the stress–displacement curve was obtained as shown in 
Figure 4. It is worth noting that when there was no obvious mutation during the stress–
displacement curve, the stress at 15% strain could be deemed as the failure value of the 
sample. The morphology of the post-failure samples is shown in Figure 5, showing a 
“drum shape”. Utilizing nonlinear programming, the cohesion (c) was determined as 
46.81 kPa, and the internal friction angle (φ) as 36.1° for the soil–rock mixture. The Mohr–
Coulomb envelope is portrayed in Figure 6. According to geological investigation data 
and triaxial tests, the main mechanical properties of the prototype materials involved in 
this model test (soil–rock mixture, grouting mixture, sandstone, lining, and pile) are 
shown in Table 1. 
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Figure 2. Cross-section of tunnel (unit: m).

2.2. Properties of Soil–Rock Mixture

First, the grading of the soil–rock mixture in the research site was measured, and its
original gradation curve is depicted in Figure 3. Then, triaxial tests were conducted on the
soil–rock mixture sample, and the stress–displacement curve was obtained as shown in
Figure 4. It is worth noting that when there was no obvious mutation during the stress–
displacement curve, the stress at 15% strain could be deemed as the failure value of the
sample. The morphology of the post-failure samples is shown in Figure 5, showing a “drum
shape”. Utilizing nonlinear programming, the cohesion (c) was determined as 46.81 kPa,
and the internal friction angle (φ) as 36.1◦ for the soil–rock mixture. The Mohr–Coulomb
envelope is portrayed in Figure 6. According to geological investigation data and triaxial
tests, the main mechanical properties of the prototype materials involved in this model test
(soil–rock mixture, grouting mixture, sandstone, lining, and pile) are shown in Table 1.



Buildings 2024, 14, 791 4 of 17

Buildings 2024, 14, x FOR PEER REVIEW 4 of 18 
 

 
Figure 3. Gradation curve of SRM sample. 

 
Figure 4. Stress–displacement curve of SRM sample. 

    
(a) 200 kPa (b) 400 kPa (c) 600 kPa (d) 800 kPa 

Figure 5. Failure mode of soil–rock mixture sample under different confining stress. 

 
Figure 6. Molar envelope of soil–rock mixture sample. 

  

Figure 3. Gradation curve of SRM sample.

Buildings 2024, 14, x FOR PEER REVIEW 4 of 18 
 

 
Figure 3. Gradation curve of SRM sample. 

 
Figure 4. Stress–displacement curve of SRM sample. 

    
(a) 200 kPa (b) 400 kPa (c) 600 kPa (d) 800 kPa 

Figure 5. Failure mode of soil–rock mixture sample under different confining stress. 

 
Figure 6. Molar envelope of soil–rock mixture sample. 

  

Figure 4. Stress–displacement curve of SRM sample.

Buildings 2024, 14, x FOR PEER REVIEW 4 of 18 
 

 
Figure 3. Gradation curve of SRM sample. 

 
Figure 4. Stress–displacement curve of SRM sample. 

    
(a) 200 kPa (b) 400 kPa (c) 600 kPa (d) 800 kPa 

Figure 5. Failure mode of soil–rock mixture sample under different confining stress. 

 
Figure 6. Molar envelope of soil–rock mixture sample. 

  

Figure 5. Failure mode of soil–rock mixture sample under different confining stress.

Buildings 2024, 14, x FOR PEER REVIEW 4 of 18 
 

 
Figure 3. Gradation curve of SRM sample. 

 
Figure 4. Stress–displacement curve of SRM sample. 

    
(a) 200 kPa (b) 400 kPa (c) 600 kPa (d) 800 kPa 

Figure 5. Failure mode of soil–rock mixture sample under different confining stress. 

 
Figure 6. Molar envelope of soil–rock mixture sample. 

  

Figure 6. Molar envelope of soil–rock mixture sample.



Buildings 2024, 14, 791 5 of 17

Table 1. Mechanical properties of prototype materials.

Materials c
(kPa)

φ

(◦)
E

(MPa)
Density
(g/cm3)

Poisson
Ratio

Rock
Content (%)

Uniaxial
Compressive

Strength (MPa)

SRM 46.8 36.1 64 1.8 0.3 40–60
Grouting 400–800 35.8 140–280 2.0 0.28

Sandstone 4000 41 5000 2.4 0.25 36.8
Lining 32,500 2.5 0.3 26.8

Pile 32,500 2.5 0.3 26.8

3. Design of the Model Test
3.1. Similar Materials

In the model test, the similarity between the model and the prototype should be
ensured not only in the geometric scale, but also in the mechanical parameters. How-
ever, it is difficult to fully satisfy the similarity relationship between the model struc-
ture and the prototype structure, so priority was assigned to selecting key mechanical
parameters impacting test outcomes and upholding their similarity in this experiment.
Beyond the fundamental physical dimensions of length (l) and force (F), the design of the
shaking-table model test must also incorporate the temporal factor (t) to maintain similarity
ratios effectively.

In the dynamic model test, the inertia force of the structure is usually the primary load,
and the relationship between the inertia force, damping force, and restoring force should
be considered first in the study of dynamic problems. The dynamic equation is expressed
as follows:

m(
..
x(t) +

..
xg(t)) + c

.
x(t) + kx(t) = 0 (1)

According to the requirements of equation analysis, the similar relationship of each
physical quantity of the dynamic equation satisfies the equation:

Sm(S ..
x + S ..

xg
) + ScS .

x + SkSx = 0 (2)

Based on the similarity π theorem, applying dimensional analysis to the dynamic
Equation (1), we obtain an expression with the fundamental similarity constants of elastic
modulus E, density ρ, length l, and acceleration a:

SρS3
l (Sα + Sα) + SE

√
S3

l
Sα

√
SlSα + SES2

l = 0 (3)

SE
SρSαSl

= 1 (4)

Based on the actual engineering and the dimensions of the model test table, the
geometric similarity ratio was determined to be 1/80, considering geometric dimensions
length l, density ρ, and acceleration a as the fundamental physical quantities. Subsequent
parameters were analyzed using dimensional analysis to form similarity relationships, as
shown in Table 2.
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Table 2. Target parameters of similar materials.

Materials c
(kPa)

φ

(◦)
E

(MPa)
Density
(g/cm3)

Poisson
Ratio

Rock
Content (%)

Uniaxial
Compressive

Strength (MPa)

Similarity
relationship Sc = SE Sφ = 1 SE = SlSρSa Sγ = SρSg Sφ = 1 Sucs = SE

Similarity
ratio 1/80 1 1/80 1 1 1/80

SRM 0.58 36.1 0.8 1.8 0.3 40–60
Grouting 5–10 35.8 1.75–3.5 2.0 0.28

Sandstone 50 41 62.5 2.4 0.25 0.46
Lining 406 2.5 0.3 0.33

Pile 406 2.5 0.3 0.33

(1) Soil–rock mixture and grouting mixture

In this paper, coarse quartz sand within 1~2 mm particle size and fine quartz sand
within 0.5~1 mm particle size were used to simulate the coarse-grain phase in the prototype
of soil–rock mixture, and fine sand within 0.1~0.2 mm particle size was used to simulate
the fine-grain phase, and clay was selected as the cementing material. To maintain a rock
content of 40% to 60% in similarity material, the mass ratio of coarse quartz sand and fine
quartz sand needed to be controlled within the 40% to 60% range. Furthermore, the method
of increasing the proportion of cementing material (clay) was used to simulate the grouting
mixture. Through the above methods, three distinct samples were set, as shown in Table 3,
and the configuration process is shown in Figure 7.

Table 3. Mix proportion design of similar materials.

Group
Main Ratio Others

Coarse Quartz Sand (1~2 mm)–Fine Quartz Sand
(1~2 mm)–Fine Sand–Clay Water Content Rock Content

Sample 1 2:2:5:1 7% 40%
Sample 2 2:2:4:2 10% 40%
Sample 3 2:3:3.5:1.5 10% 50%
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Figure 7. Material preparation process.

Since the influence of groundwater was not considered in the actual project, unconsoli-
dated and undrained triaxial tests were conducted to measure the mechanical parameters of
similar materials. The stress–strain curves of the three samples subjected to confining stress
of 50, 100, and 150 kPa are shown in Figure 8. By employing a nonlinear programming
approach, the cohesion values (c) were determined as 0.8 kPa, 28 kPa, and 8 kPa for samples
1, 2, and 3, correspondingly, while the internal friction angles (ϕ) were calculated as 33.5◦,
31◦, and 38.5◦ for samples 1, 2, and 3. The corresponding Mohr–Coulomb envelopes are
shown in Figure 9.
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Sample 1 was finally selected as the similar material of the soil–rock mixture, and sample
3 was selected as the similar material of grouting mixture. The failure mode of the sample
is shown in Figure 10. It can be seen that the deformation of sample 1 under the triaxial
compression test resembled a “drum shape”, showing the same failure mode as that of the
soil–rock mixture prototype. When subjected to a confining pressure of 50 kPa, sample 3
displayed an obvious 45-degree shear plane, and the failure mode was similar to the brittle
failure of rock. When subjected to a confining pressure of 150 kPa, sample 3 did not exhibit
obvious failure point, which was similar to the failure mode of soil. On the whole, sample 3
presented a failure mode similar to that of grouting mixture obtained by Hu [18].
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(2) Lining and pile foundation

In this experiment, plexiglass was used to make the tunnel–pile structure. Flexural
stiffness was adopted as the governing criterion for determining the thickness of the tunnel
lining and the diameter of the tunnel pile. According to the principle of similarity ratio, the
ratio between the flexural stiffness K of the actual tunnel lining and the flexural stiffness K0
of the model test is (1/80)5. Calculations revealed a tunnel lining thickness h0 of 4 mm and
a pile diameter D0 of 6.2 mm. The completed model is shown in Figure 11.
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3.2. Test Scheme

(1) Model box design

A layered shear model box with a width of 0.85 m, a length of 0.95 m, and a height of
0.6 m was selected for the test. The model box was composed of multi-layer rectangular
frames, each of which can move relative to the others in a certain amplitude, thus minimiz-
ing seismic wave reflection and offering a more accurate simulation of soil shear properties.
Limited by the size of the shaking table, the original cross-section was simplified for the
model test, as shown in Figure 12. The left and middle tunnels were selected as the research
objects in the simplified section, and the tunnel spacing was adjusted to 52 mm in model
box, retaining the characteristics of a tunnel with a small distance.
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(2) Sensor arrangement

In order to study the acceleration response characteristic of surrounding rock and
tunnel–pile structure system, accelerometers and strain gauges were used in this experiment.
The sensor layout of the model test is shown in Figure 12.

(3) Seismic wave selection

In this shaking-table model test, seismic waves were applied in the horizontal direction.
Kobe wave, Wolong wave, and sine wave were selected as input signals. The original
seismic wave exhibited significant displacements, sometimes exceeding 1 m, whereas the
maximum displacement capacity of the shaking table was limited to 0.1 m. Hence, baseline
adjustments were performed on the original seismic wave to ensure its displacement
remained within the 0.1 m threshold. The time similarity constant was 1/10; consequently,
the peak vibration time of Kobe and Wolong waves were compressed to 4 s, and that of the
sine wave was compressed to 14 s.

The model filling process Is shown in Figure 13.
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4. Analysis of Test Results
4.1. Acceleration Response Characteristics of Surrounding Rock

After the model filling was completed, the boundary effect of the model was verified
first. Kobe wave and Wolong wave with 1.2 g peak acceleration were the input. A com-
parison of acceleration–time history curves of measuring points A14 and A15 under the
action of Kobe wave and Wolong wave is shown in Figure 14. The height of the curves was
almost consistent, indicating that the boundary effect produced by the layered shear box in
this test was small.
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the action of Kobe wave and Wolong wave.

(1) Stratum acceleration response

As illustrated in Figure 12, five measuring points were arranged along the stratum
height, sequentially identified from bottom to top as bedrock, A11, A12, A13, and A14.
Figure 15 shows the curves of peak acceleration variation along the height of the stratum
under different seismic waves. It can be seen that the peak acceleration within the stratum
exhibited a consistent rise with increasing height from the base, distinctly displaying an
amplification effect.
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Under the action of Kobe wave, input seismic wave acceleration peak values ranging
between 0.1 g and 1.0 g triggered a gradual increase in acceleration peak values along the
stratum height, displaying a progressively intensifying trend suggestive of a pronounced
“skin effect”. However, as the input seismic wave acceleration peak value exceeded
1.0 g, the acceleration peak value decreased at the top of the SRM stratum (measuring
points A14).

Conversely, under the action of Wolong wave and sine wave, the peak value of stratum
acceleration at measuring points A11 and A12 showed a decreasing trend that strengthened
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with higher input acceleration peak values. This attenuation is credited to the mitigation of
stratum acceleration by the tunnel–pile structure when subjected to the Wolong wave and
sine wave. However, when the peak acceleration of the input seismic wave exceeds 1.0 g,
its peak value showed a “Z” shape along the stratum height, indicating a dual discernible
shift in acceleration peak values with increasing distance from the base height.

To comprehensively study the acceleration amplification effect and variation law of the
stratum, the peak acceleration ratio of individual points in relation to the peak acceleration
at the surface of the platform was defined as the acceleration amplification coefficient for
each point. Variation curves of acceleration amplification coefficient along vertical direction
(bedrock, A11~A14) under different seismic waves are shown in Figure 16. It can be seen
that within the soil–rock mixture layer (350~650 mm), when the input acceleration value
remained below 0.2 g, the stratum’s acceleration amplification coefficients increased mono-
tonically along the vertical axis, indicating that the stratum response was in a linear stage
at this time. As the peak input acceleration reached 0.4 g, a slight reduction in acceleration
amplification coefficients occurred, yet the overall trend maintained a monotonic increase,
indicating minimal soil damage. When the input acceleration peak value exceeded 1.0 g,
the stratum acceleration amplification coefficients decreased significantly to less than one,
indicating that the soil–rock mixture had entered a nonlinear reaction stage at this time.
Potential plastic deformation within the stratum likely contributed to elevated damping
and enhanced dissipation of seismic energy.
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(2) Influence of pile-supported tunnel structure on stratum acceleration

It can also be seen from Figure 16 that in the grouting stratum (100~350 mm), under the
action of Wolong wave and sine wave, the acceleration amplification coefficient exhibited a
transition from an increasing trend to a decreasing trend with rising input peak acceleration
levels. This phenomenon is likely attributed to the emergence of the energy dissipation
mechanism within the tunnel–pile system as the input peak acceleration intensified. This
mechanism notably mitigated the stratum’s acceleration response in this range. In addition,
the cumulative damage caused by step-by-step seismic wave loading was also a part of
the reason.

Under the action of different seismic waves, a comparison of peak acceleration values
between points situated within the free field stratum (A12–A14) and points positioned
above the tunnel axis (A15–A17) at equivalent elevations is presented in Figure 17. Across
all three seismic wave scenarios, the peak acceleration of the measurement points above
the tunnel axis was smaller than that of the free field stratum at the same height. When
the input peak acceleration remained below 0.4 g, the difference between the two points
was small; however, as the input peak acceleration exceeded 0.4 g, this difference showed a
progressively increasing trend.
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The relative difference percentage was defined as the ratio of the difference between
the peak accelerations of two points at the same height to the peak acceleration of the
free field stratum, as shown in Table 4. As can be seen from the table, the influence of
the tunnel–pile system on stratum acceleration could reach up to 14.5%, and the greatest
impact was located above the tunnel (at the height of 450 mm). There are two reasons
why the tunnel–pile system had a weakening effect on stratum acceleration: first, the
tunnel–pile system exerts a discernible energy dissipation effect on seismic waves; second,
the settlement of the stratum above the tunnel was much smaller than that of the free field
stratum, indicating the soil in the latter was comparatively looser and consequently led to
higher acceleration values.

Table 4. Relative difference percentage of peak acceleration at different points at the same height.

Measuring
Points

Height
(mm)

Relative Difference Percentage of Peak Acceleration

Kobe Wave Wolong Wave Sine Wave

A14 A15 550 5.18% 4.07% 13.74%
A13 A16 450 12.61% 14.43% 13.08%
A12 A17 300 8.57% 5.81% 3.43%
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4.2. Acceleration Response Characteristics of Pile-Supported Tunnel Structure

(1) Strain acceleration response of tunnel lining

The strain radar diagram of the tunnel lining under the action of Kobe wave, Wolong
wave, and sine wave at different peak accelerations is shown in Figure 18. Analysis of the
strain radar diagram reveals distinct patterns: On the outer edge of the lining, the highest
strain peak occurs at the arch foot, followed by the arch shoulder, with comparatively lower
values observed at the arch crown, arch waist, and inverted arch. The distribution of strain
response peak value of the tunnel lining cross-section exhibited an “X” shape. On the inner
edge of the lining, the peak value of strain at the left arch foot of the left tunnel lining
was significantly greater than that at the right arch foot, indicating that the strain dynamic
response of the inner edge of the lining was less pronounced than that of the outer edge
due to the interaction of the two tunnels.
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(2) Bending moment acceleration response of tunnel lining

In order to study the bending moment value at each measuring point of the tunnel
lining, the strain at the inner and outer edges of the lining was converted to the bending
moment value according to Formula (5):

M =
1
2
(σ1 − σ2)W =

1
2

EW(ε1 − ε2) =
1
12

Ebh2(ε1 − ε2) (5)

where σ1 and σ2 are the stress on the inner and outer edges of the measuring point,
ε1 and ε2 are the strain at the inner and outer edges of the measuring point, E is the elastic
modulus of lining material, W is the resistance in cross-section, and b is the section width
(1 m).

Under the action of three kinds of seismic waves, the maximum bending moment of
each measuring point of the lining cross-section along the axis direction of the tunnel is
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shown in Figure 19. The bending moment at the arch foot was the largest, followed by
the left and right arch shoulder, and the bending moment at the inverted arch and arch
waist was relatively small. The distribution of bending moment of the lining cross-section
exhibited an inverted “V” shape on the whole. The bending moment increase effect at the
right arch foot was smaller than that at the left arch foot, so its maximum bending moment
value was 1/2–1/4 of the left arch foot.
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It can be seen from Figure 20 that with the increase in the input peak acceleration, the
bending moment value at each position of the lining generally keeps increasing. When the
input peak acceleration remained below 0.6 g, the bending moments of the lining retained
a consistent increase trend except at the arch foot. As the input peak acceleration exceeds
0.6 g, the increase rate of bending moment slowed down at almost each position. As the
input peak acceleration exceeds 0.8 g, the bending moment value of all lining positions did
not increase except in the left arch foot.
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From Formula (5), the bending moment value at each position of the lining is positively
correlated with the difference between the inner and outer strains. Moreover, the strain of
the outer edge is positive, and the strain of the inner edge is negative, accentuating that
bending moment distribution corresponds closely to higher absolute strain values. In this
model test, the strain value at the left arch foot of inner edge is the largest, and the strain
value at the right arch foot of outer edge is the second largest but much larger than that
at other positions. Therefore, the bending moment of the lining cross-section is mainly
affected by the left and right arch foot and exhibit an inverted “V” shape.
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(3) Bending moment acceleration response of pile crown

Based on the strain data on the left and right sides of the pile crown, the bending
moment changes of the pile crown under different seismic waves were plotted, as shown
in Figure 21. Under the action of the three seismic waves, the bending moment of the left
pile crown was greater than that of the right pile crown. Under the action of Kobe wave
and sine wave, when the peak acceleration of input seismic wave was between 0.1–0.8 g,
the bending moment of the pile crown increased gradually. As the peak acceleration of
the input seismic wave exceeded 0.8 g, the bending moment of the pile crown approached
stability or began to decline. The reason is that when the input peak acceleration exceeded
0.8 g, the grouting stratum besides pile entered large plastic deformation state; the peak
dynamic earth pressure tended to be stable, so the dynamic bending moment also tended
to be stable. When subjected to Kobe and sine waves, the decrease in the bending moment
at the pile crown can be attributed to the energy dissipation after the grouting stratum
reached the critical threshold of plastic deformation, causing a sudden decrease in dynamic
earth pressure from the maximum value.
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4.3. Surface Settlement

After the shaking-table test was completed, the surface settlement was observed and
measured. As shown in Figures 22 and 23, there was no significant settlement of the stratum
above the tunnel. However, the free field stratum on both sides had obvious settlement.
By measurement, the settlement amount on the left side reached 1 cm, and the right side
reached 1.5 cm, indicating that the surface settlement of the soil–rock mixture was obvious
under the action of the earthquake. However, the existence of a tunnel–pile structure
mitigated the surface settlement obviously, and the uneven surface settlement would cause
the cracking and destruction of above-ground roads and structures in practical engineering.
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5. Conclusions

In this paper, based on a subway tunnel project in Chongqing, the mechanical pa-
rameters of the soil–rock mixture at the original site of the project were measured based
on a large-scale indoor triaxial test, and then the development methods and mechanical
parameters of similar materials such as soil–rock mixture, grouting mixture, lining, and
pile satisfying the similarity ratio were studied. Finally, the analysis was conducted from
the stratum acceleration and its amplification factor, the distribution of strain and bending
moment of the tunnel–pile structure, and the surface settlement. The main conclusions are
as follows:

(1) Under the action of seismic waves, the acceleration response of soil–rock mixture
stratum exhibited obvious “skin effect”, indicating that closer proximity to the surface
led to heightened horizontal acceleration responses; however, with the increase in
the peak value of input seismic waves, the plastic deformation occurred in the upper
stratum of the soil–rock mixture; the grouting stratum was obviously affected by
the tunnel–pile structure, and the horizontal peak acceleration of the stratum in the
vertical direction changes in a “Z” shape.

(2) The tunnel–pile structure had a weakening effect on the horizontal acceleration of
both the stratum in its height range and the stratum above the tunnel.

(3) Under the action of seismic waves, the peak strain values at the arch shoulder and
arch foot of the tunnel were larger, and the peak strain response of the tunnel lining
cross-section generally exhibited an “X” shape. In the direction of the tunnel axis, the
bending moment at the arch foot was the largest, followed by the left and right arch
shoulder, and the bending moment at the inverted arch and arch waist were smaller.
The bending moment of the lining cross-section exhibited an inverted “V” shape.

(4) The bending moment of the pile crown generally increased with the increase in the
peak acceleration of the input seismic wave. When the peak acceleration of the
input seismic wave exceeded 0.8 g, the increasing trend of the pile crown bending
moment decreased.

(5) The maximum surface settlement in the model test was 0.5~1 cm, and the tunnel–pile
structure effectively reduced the surface settlement but lead to uneven surface settlement.
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