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Abstract: The existence of structural strength in undisturbed soil results in its distinct characteristics
compared to remolded soil. Under the influence of freeze–thaw cycles, this difference may easily cause
geotechnical disasters in cold regions. This study aimed to analyze and discuss the expression degree
and influencing factors of the structural strength of expansive soil. The unconfined compressive
strength (UCS) test, high-pressure consolidation test, and microscopic test were performed on
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Abstract: The existence of structural strength in undisturbed soil results in its distinct characteristics 

compared to remolded soil. Under the influence of freeze–thaw cycles, this difference may easily 

cause geotechnical disasters in cold regions. This study aimed to analyze and discuss the expression 

degree and influencing factors of the structural strength of expansive soil. The unconfined compres-

sive strength (UCS) test, high-pressure consolidation test, and microscopic test were performed on 

expansive soil retrieved from a seasonally frozen region. Moreover, sensitivity parameters, includ-

ing stress sensitivity (𝑆𝑡.𝑞𝑢, 𝑆𝑡.𝜎𝑘
) and strain sensitivity (𝑆𝑡.𝜀𝑢, 𝑆𝑡.𝐶𝑐), were applied to explore the ex-

pression degree and influencing factors of structural strength in a seasonally frozen region. The 

results reveal that the undisturbed samples have better structural connection and particle arrange-

ment than the remolded samples. However, the primary fractures have a certain degrading effect 

on the strength of the undisturbed soil as influenced by a seasonally frozen region. With the increase 

in water content and the decrease in density, the expression degree of the structural strength in 

terms of compressive strength and the ability to resist deformation enhances under the unconfined 

condition. By contrast, the expression degree increases in strength and decreases in ability under 

the confined condition. Furthermore, the effect mechanisms of the basic property, particle composi-

tion, structural linkage, lateral confinement, and historical role on the structural expression were 

analyzed. 
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encing factors 

 

1. Introduction 

During the formation of soil, various physical and chemical interactions form associ-

ations between particles that provide structural strength, and soil with structural strength 

is called structural soil [1,2]. The structural strength of soil causes differences in the engi-

neering properties of undisturbed and remolded soils [3,4]. In the meantime, soils with 

special material composition, structure, and engineering geological properties are called 

special soils and are widely distributed and applied in building materials worldwide. This 

uniqueness is prone to cause construction damage and geotechnical problems [5]. There-

fore, a deeper understanding of the structural strength of special soil has positive signifi-

cance for exploring soil characteristics and thus alleviating geotechnical problems. 

Special soils mainly include loess, laterite, expansive soil, and saline soil [5]. Re-

searchers have discussed the structural strength of loess by combining damage and soil 

mechanics and considering consolidation pressure, structural disturbance, and wet–dry 
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u, St.Cc ), were applied to explore the expression
degree and influencing factors of structural strength in a seasonally frozen region. The results reveal
that the undisturbed samples have better structural connection and particle arrangement than the
remolded samples. However, the primary fractures have a certain degrading effect on the strength of
the undisturbed soil as influenced by a seasonally frozen region. With the increase in water content
and the decrease in density, the expression degree of the structural strength in terms of compressive
strength and the ability to resist deformation enhances under the unconfined condition. By contrast,
the expression degree increases in strength and decreases in ability under the confined condition.
Furthermore, the effect mechanisms of the basic property, particle composition, structural linkage,
lateral confinement, and historical role on the structural expression were analyzed.

Keywords: compression property; structural strength; microstructure; structural expression;
influencing factors

1. Introduction

During the formation of soil, various physical and chemical interactions form associa-
tions between particles that provide structural strength, and soil with structural strength is
called structural soil [1,2]. The structural strength of soil causes differences in the engineer-
ing properties of undisturbed and remolded soils [3,4]. In the meantime, soils with special
material composition, structure, and engineering geological properties are called special
soils and are widely distributed and applied in building materials worldwide. This unique-
ness is prone to cause construction damage and geotechnical problems [5]. Therefore, a
deeper understanding of the structural strength of special soil has positive significance for
exploring soil characteristics and thus alleviating geotechnical problems.

Special soils mainly include loess, laterite, expansive soil, and saline soil [5]. Re-
searchers have discussed the structural strength of loess by combining damage and soil
mechanics and considering consolidation pressure, structural disturbance, and wet–dry
cycles [6–8]. As for laterite, the cementation of free iron oxide provides structural strength,
which leads to better compressive and mechanical properties of the undisturbed soil [3,9].
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However, for saline soil, the fractures and sand columns have significant negative effects
on its structural strength due to the presence of soluble salt [2,10]. Expansive soil, as a
typical special soil, swells with water and shrinks without water. Thus, the soil is prone to
loosening and cracking [11–13]. This case is especially true in seasonally frozen regions,
where soils undergo periodic freeze–thaw cycles. The transformation between water and
ice is highly susceptible to fracture development, which introduces geotechnical problems
such as subgrade cracking and slope instability [14,15]. Therefore, analyzing the properties
of undisturbed and remolded expansive soils and exploring the structural expression laws
in seasonally frozen regions are meant to reduce engineering disasters.

Wet–dry cycles are a primary factor for disasters of expansive soil due to water
sensitivity. Fractures in remolded samples are wider than those in undisturbed samples
under wet–dry cycles, and the shear strength of the undisturbed sample is closer to the
initial strength of the remolded sample after five wet–dry cycles [16,17]. However, freeze–
thaw cycles largely impact the microstructure of undisturbed expansive soil. Scanning
electron microscopy (SEM) and mercury intrusion porosimetry (MIP) experiments were
conducted by researchers on weakly expansive soil in a seasonally frozen region, and
the results showed that undisturbed soil is densely packed with “face-to-face” and “face-
to-edge” contacts with a higher content of round-like particles. Correspondingly, the
pores of remolded soil are uniformly distributed and mainly have “point–surface” and
“point–point” contacts with a higher content of long-trip particles [18,19]. Differences
in microstructure result in distinct particle arrangements and linkages in undisturbed
and remolded samples, which are the source of the structure. With regard to expansive
and compressive properties, the expansiveness of undisturbed soil is greater, and the
compressibility is lower than that of remolded soil. As the structural strength is destroyed,
the compressibility of undisturbed soil gradually approaches that of remolded soil [20,21].
In addition, the super-subloading surface model with improved state variable has been
established, and it reflects the influence of structural strength and super consolidation on the
mechanical behavior of soil [22]. In the meantime, fractures in undisturbed samples would
close with an increase in consolidation pressure. After the freeze–thaw cycle test in the
laboratory, the stress–strain curves of an undisturbed sample change from strain-softening
to strain-stable, and the failure modes change from brittle failure to plastic failure [23].

In summary, scholars have experimentally studied macroscopic and microscopic dif-
ferences between undisturbed and remolded soils to investigate the influence of structural
strength on the engineering behaviors of expansive soil. However, most previous works
have focused on the difference in the properties between undisturbed and remolded soils
under a specific initial condition, such as a certain water content [24], whereas studies
on the influencing factors of structural strength are lacking. Therefore, the unconfined
compressive strength (UCS) test and high-pressure consolidation test were used to measure
the compressive properties of the expansive soil retrieved from seasonally frozen regions,
and the microstructure of the soil was observed by SEM test in this study. The advan-
tages and structure of undisturbed samples were characterized differently under various
conditions through experiments. Therefore, four sensitivity parameters (St.qu, St.σk , St.εu,
St.Cc) were applied in this study to discuss the expression degree and influencing factors
of soil structure. This study aims to deepen the understanding of the structural strength
of expansive soil in a seasonally frozen region through the abovementioned research to
alleviate geotechnical engineering problems.

2. Materials and Methods
2.1. Study Area

Expansive soil was retrieved in July 2022 from the northern part of the Songnen Plain,
Suihua City, China. The climate in this area is characterized by a temperate monsoon
climate with a soil-freezing period of more than 6 months. The sampling point is located
along the Suibei Highway (46.77◦ N, 126.84◦ E). The undisturbed samples were drilled, and
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surface soil was collected for the preparation of remolded samples. The soil is dark brown
at high water content and light yellow after air-drying, pulverizing, and sieving (Figure 1).
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Figure 1. Location and environment of the study area.

2.2. Soil Properties

Several experiments were conducted on the expansive soil at the sampling point. The
basic properties of the expansive soil are summarized in Table 1 according to GB/T50123-
2019 [5]. Furthermore, mineral composition was tested by X-ray diffraction. The results
show that primary minerals, which are dominated by quartz, potassium feldspar, and
plagioclase, account for 68.2%; and clay minerals, which mainly include mixed-layer
illite/smectite and illite, account for 31.8% (Figure 2). In addition, the particle size distribu-
tion curves with and without dispersant were determined by laser particle sizer analysis.
The curves indicate that the dispersant has a slight effect on the particle size distribution,
and the expansive soil is less agglomerated. After adding the dispersant, the silt (5–75 µm)
content is the highest (54.10%), followed by the clay (<5 µm) content (27.05%), and the
sand (>75 µm) content is the lowest (Figure 3). The free expansion rate of the soil is 76%.
Thus, the expansive soil at the sampling point is clay with medium expansion potential
according to GB 50112-2013 [25]. The 15 undisturbed samples were drilled within 15 m
below the surface every 1 m, and they were named from top to bottom by depth as 1-1 to
1-15. The water content and density of the samples were tested, as shown in Table 2. The
water content of undisturbed soil varies widely, and the density fluctuates in the range of
1.90–2.10 g/cm3.

Table 1. Some basic properties of the expansive soil.

Property Values

Liquid limit ωL/% 41
Plasticity limit ωp/% 24
Plasticity index IP 17.42
Liquidity index IL −0.13
Free expansion rate δe f /% 76
Optimum water content ωop/% 21.60
Maximum dry density ρmax/(g/cm3) 1.65
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Figure 3. Grain size distribution of expansive soil.

Table 2. Water content and density of undisturbed samples.

Items Depth/m ω/% ρ/(g/cm3) ρd/(g/cm3)

1-1 1 16.61 2.10 1.80
1-2 2 18.05 2.05 1.74
1-3 3 18.26 1.99 1.68
1-4 4 21.63 1.97 1.62
1-5 5 19.05 2.03 1.71
1-6 6 20.79 1.88 1.56
1-7 7 20.85 1.92 1.59
1-8 8 21.20 2.03 1.67
1-9 9 30.44 1.91 1.46

1-10 10 22.70 1.98 1.61
1-11 11 22.44 1.85 1.51
1-12 12 24.30 1.97 1.58
1-12 12 24.30 1.98 1.59
1-13 13 20.19 1.95 1.62
1-14 14 23.66 1.91 1.54

2.3. Sample Preparation

The expansive soil samples from different depths have different water contents (ω) and
dry densities (ρd) according to Table 2. According to their relationship with the optimum
water content (ωop) and maximum dry density (ρmax), the samples can be divided into three
types, as follows: Type I: ω ≪ ωop, ρd ≫ ρmax; Type II: ω ≈ ωop, ρd ≈ ρmax; and Type III:
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ω ≫ ωop, ρd ≪ ρmax. Representative samples of each type for the UCS and high-pressure
consolidation tests were determined, as shown in Table 3.

Table 3. Samples information for UCS test and high-pressure consolidation test.

Items ω/% ρ/(g/cm3) ρd/(g/cm3) Comparison Type

UCS
tests

1-1 16.61 2.10 1.80 ω ≪ ωop, ρd ≫ ρmax I
1-4 21.63 1.97 1.62 ω ≈ ωop, ρd ≈ ρmax II
1-5 19.05 2.03 1.71 ω ≈ ωop, ρd ≈ ρmax II
1-8 21.20 2.03 1.67 ω ≈ ωop, ρd ≈ ρmax II
1-9 30.44 1.91 1.46 ω ≫ ωop, ρd ≪ ρmax III

1-14 23.66 1.91 1.54 ω ≈ ωop, ρd ≈ ρmax II

High-pressure
consolidation tests

1-1 16.61 2.10 1.80 ω ≪ ωop, ρd ≫ ρmax I
1-8 21.20 2.03 1.67 ω ≈ ωop, ρd ≈ ρmax II
1-9 30.44 1.91 1.46 ω ≫ ωop, ρd ≪ ρmax III

1-10 22.0 1.98 1.62 ω ≈ ωop, ρd ≈ ρmax II
1-12 24.30 1.97 1.58 ω ≈ ωop, ρd ≈ ρmax II
1-14 23.66 1.91 1.54 ω ≈ ωop, ρd ≈ ρmax II

Undisturbed and remolded samples were prepared for the tests. The expansive
samples drilled from different depths are cylinders with a height of 200 mm and a diameter
of 100 mm (Figure 4a). The undisturbed samples were cut (Figure 4b) to samples with
sizes of 80 mm × Φ39.1 mm and 20 mm × Φ61.6 mm (Figure 4c) for the UCS and high-
pressure consolidation tests, respectively. The irregular soil samples collected from the
sampling point were air-dried, pulverized, and sieved (2 mm) to obtain scattered soil for
the preparation of remolded samples (Figure 4d). Distilled water was uniformly sprayed
on the sieved soil, and the amount of water added was determined according to the water
content and density of the undisturbed samples. The mixed soil was placed for 24 h for
uniform moisture distribution. The remolded samples (Figure 4e) were produced using
the compaction method with the same water content, density, and size as the undisturbed
samples for subsequent experiments.
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2.4. USC Test

The UCS test can be used to determine the compressive properties of expansive
soil under the unconfined condition. It was conducted by the strain-controlled UCS
instrument (Figure 5) according to GB/T50123-2019 [5]. The strain rate was kept at 2.4 mm
per minute during the experiment. The axial force reading was recorded once for each
0.2 mm increase in sample deformation. When the axial force reading reached the peak or
stabilization, the test could be stopped after applying a 3–5% axial strain. The stress–strain
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curves were plotted according to the test results, and the peak stress of the curve qu and
failure strain εu (the strain corresponds to the peak point) were recorded to evaluate the
compressive property.
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2.5. High-Pressure Consolidation Test

The high-pressure consolidation test was carried out to determine the compressive
properties of expansive soil under the confined condition. It was conducted with the
triple-lever-type consolidation apparatus (Figure 6) according to GB/T50123-2019 [5]. The
rapid compression method was used in this test. The values of the load (Pc) were used
in the order of 25, 50, 100, 200, 400, 200, 100, 50, 100, 200, 400, 800, 1600, and 3200 kPa
during the loading–unloading–reloading process. Consolidation was conducted for 1 h
under each load level, and the deformation under each load level was recorded. The void
ratio (e) of the sample under various levels of load can be calculated by monitoring the
deformation, and the e − lgPc curve can be graphed. In addition, the compression index
(Cc) and resilience index (Cs) can be obtained from the curves to evaluate the compressive
property of the samples, where Cc takes the average slope of the linear compression section,
and Cs takes the average slope of the unloading section.
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2.6. SEM

SEM was conducted to observe the microstructure of the undisturbed and remolded
samples using a Phenom ProX Desktop SEM (Thermo Fisher Scientific, Waltham, MA,
USA) (Figure 7). SEM can scan the surface of samples by emitting an electron beam from
an electron gun and receive the reflected secondary electrons to obtain the microstructural
characteristics of the soil. The size of the sample used for SEM is 1 mm × 1 mm × 1 mm.
Prior to capturing the SEM photos, the sample should be frozen in liquid nitrogen and
freeze-dried to avoid changes in the soil’s structure. Then, the sample was sprayed
with a gold layer in a high-vacuum sputter coater and connected to the test bench by a
conductive adhesive.
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3. Results
3.1. Results of UCS Tests
3.1.1. Failure State

The soil samples used in the test can be classified as Types I, II, and III, as shown in
Table 3. Different types of undisturbed and remolded samples exhibit distinct failure states
in the UCS test. As shown in Figure 8, numerous primary microfractures are found inside
the Type I undisturbed sample, and the microfractures develop and expand until they
penetrate during the compression process [26,27]. Thus, the soil sample will be damaged
along multiple penetrating vertical fractures. The number of primary fractures in the Type
II undisturbed samples is lower than that in Type I. Thus, a complete and clear shear failure
surface will be formed after the destruction along the vertical fractures. Simultaneously,
the remolded samples of Types I and II have fewer internal cracks, and shear cracks are not
developed during the compression process. The samples mainly show bulging deformation
when damaged; the cracks open laterally, and the location of bulging is mainly related to the
uniformity of the sample making [2]. The failure state of the Type III undisturbed sample is
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similar to that of the remolded sample, which is manifested as vertical compression, and
the diameter of the sample becomes larger without shear damage surface formation.
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3.1.2. Stress–Strain Curve

The stress–strain curve can reflect the structural connection and particle arrangement.
The structural connection is the sum of the interaction forces between particles, and it
includes occlusion and friction between particles, the association of water, and chemical
bonding. The particles’ arrangement mainly reflects the shape, orientation, grain size
distribution, and spatial arrangement of the particles [28]. A higher slope before the peak
point of the curve indicates a better structural connection, and a greater slope after the
peak point represents a more unstable particle arrangement. As shown in Figure 9a, the
undisturbed and remolded samples of Types I and II are all strain softening, which shows
brittle failure. Furthermore, the variation rules of the slope reveal that with the increase in
water content and the decrease in density, the structural connection is gradually weakened,
and the particle arrangement is gradually stabilized. By contrast, the undisturbed and
remolded samples of Type III are strain hardening, and the stress continues to grow with
the increase in strain.

The curves of the remolded samples of Types I and II are higher than those of the
undisturbed samples based on the comparison of the stress–strain curves of each type of
sample (Figure 9b). In the early stage of compression, before an axial strain of approximately
1–2.5%, the slope of the rising section of the undisturbed sample curve is larger than that
of the remolded sample. Thus, the undisturbed samples have a stronger association in
this range. When the axial strain continues to increase, the primary fractures continue
to develop to deteriorate strength, which results in the slope of the rising section of the
undisturbed sample curve being gradually smaller than that of the remolded sample. The
peak compressive strength of the undisturbed samples of Types I and II is smaller than
that of the remodeled sample, whereas the peak compressive strength of the Type III
undisturbed sample is higher than that of the remolded sample. As the water content
increases and the density decreases, the difference between the peak strengths of the
undisturbed and remolded samples gradually decreases. It even surpasses that when the
water content is much greater than the optimum one.
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3.1.3. Parameters of Strength

The peak strength of the stress–strain curve can be noted as the UCS qu, and the strain
that corresponds to the peak point can be noted as the failure strain εu. The ratios of qu
and εu between the undisturbed and remodeled samples are calculated as stress sensitivity
St.qu and strain sensitivity St.εu, respectively, to explore the structural strength of expansive
soil under the unconfined condition. The two parameters enable the evaluation of the
expression of the structural strength in terms of strength and resistance to deformation
under the unconfined condition. The sensitivity parameters are calculated, as shown in
Equations (1) and (2), where qu.u is the qu of the undisturbed sample, qu.r is the qu of
the remolded sample, εu.u is the εu of the undisturbed sample, and εu.r is the εu. of the
remolded sample. As shown in Figure 10, St.qu is lower than 1 for the samples of Types I
and II. Conversely, St.qu is greater than 1 for the samples of Type III. Meanwhile, the St.εu of
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Type II samples is above 1 and higher than that of Type I. The stress of Type III samples
keeps increasing with strain, such that St.εu does not exist. Overall, St.qu and St.εu rise with
the increase in water content and the decrease in density.

St.qu = qu.u /qu.r , (1)

St.εu = εu.u /εu.r , (2)
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The sample is susceptible to lateral displacement when compressed under the uncon-
fined condition, and the soil can undergo shear deformation along the weak surface because
of the large number of primary fractures contained in the undisturbed sample. Therefore,
fully reflecting the superiority of the undisturbed samples in structural connection and
particle arrangement is difficult. Thus, the advantage produced by structural strength is less
than the disadvantage caused by primary fractures, which causes the St.qu of the samples
of Types I and II to be less than 1. Expansive soil swells with water and shrinks with water
loss, which makes the microfractures more developed with a lower water content in the
undisturbed samples; as a result, the St.qu and St.εu of the Type I sample are smaller than
those of the Type II sample [29]. Similarly, the expansion of the soil particles at a higher
water content fills the fractures, the deterioration of fractures on qu.u is weakened, and
the advantage produced by the structural strength of the undisturbed sample is greater
than the disadvantage caused by the primary fractures. Ultimately, the St.qu of the Type
III sample is greater than 1. Consequently, the expression degree of structural strength
in terms of compressive strength and resistance to deformation rises with the increase in
water content and the decrease in density under the unconfined condition.

3.2. Results of High-Pressure Consolidation Test
3.2.1. e − lgPc Curve

Similarly, according to the difference in water content and density, the samples can
be divided into three types, as follows: Type I: ω ≪ ωop, ρ ≫ ρmax; Type II: ω ≈ ωop,
ρ ≈ ρmax; and Type III: ω ≫ ωop, ρ ≪ ρmax. For the confined condition, the deterioration
of primary fractures is effectively suppressed, and the interaction between particles is
the key factor to determine the ability of the samples to resist loading. The shape of the
e − lgPc curve of each sample in Figure 11a is relatively consistent. At the beginning of
the experiment, the samples were subjected to low loads, and the connection between the
particles was not damaged. As a result, the curve of the 0–100 kPa section is relatively
flat. With the gradual increase in the load, the structural linkage and particle arrangement
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of the samples are disrupted and reorganized, and the water is continuously discharged.
Thus, the void ratio decreases rapidly, and the slope of the curve changes in the range of
the 100–400 kPa section and steepens in the range of the 400–3200 kPa section. The position
of the e − lgPc curve is strongly influenced by the basic properties of the soil sample; that
is, the curve is positioned higher as the soil sample becomes denser and the water content
increases. All undisturbed curves are higher than the remolded curves (Figure 11b), which
indicates that the better structural connection and particle arrangement of the undisturbed
samples make them more resistant to deformation when subjected to the same vertical load
under the confined condition.
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The compression index (Cc) and resilience index (Cs) of the soil can be obtained from
the e − lgPc curve (Figure 11), where Cc takes the average slope of the linear compression
section, and Cs takes the average slope of the unloading section (Table 4). The Cc of the
undistributed samples of Types I and Type II is lower than that of the remolded samples.
By contrast, the Cc of the Type III undisturbed sample is higher than that of the remolded
sample. The reason is that the Type III sample has a larger water content, more clay
particles, and more weakly bound water, which makes it difficult for the water to escape.
Therefore, the advantages in the occlusion and arrangement of the particles in undisturbed
samples are not fully presented. For a certain type of sample, the unloading curves of the
undisturbed and remolded samples are nearly parallel, and the values of Cs of the two are
closer to each other without a uniform magnitude relationship.

Table 4. The compression index (Cc) and resilience index (Cs) of samples.

Items Cc Cs Items Cc Cs

Undisturbed 1-1 0.216 0.0049 Remolded 1-1 0.258 0.0052
Undisturbed 1-4 0.197 0.0130 Remolded 1-4 0.228 0.0090
Undisturbed 1-5 0.212 0.0076 Remolded 1-5 0.215 0.0061
Undisturbed 1-8 0.140 0.0091 Remolded 1-8 0.182 0.0110
Undisturbed 1-9 0.132 0.0114 Remolded 1-9 0.164 0.0203
Undisturbed 1-14 0.257 0.0284 Remolded 1-14 0.211 0.0252

3.2.2. Elastic and Residual Deformation

The essence of the consolidation process is the reduction in void ratio and the escape
of water and gas. The soil is not an ideal elastomer during the loading–unloading process,
and the compression and rebound curves do not coincide (Figure 12a). The deformation
that can be and cannot be recovered after unloading is called elastic deformation e1 and
residual deformation e2, respectively. The initial void ratio of the sample is e0.
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e1 mainly comes from the deformation of the bound water film, the compression of
the occluded gas, and the elastic deformation of the soil particles (Figure 12b) [30]. The
difference in e1 between the undisturbed and remolded soils during unloading is minimal,
with a maximum difference of 1.65%. The reason is that they have the same water content
and density. Along with the increase in water content and the decrease in density, the
bound water film is more easily deformed, and the occluded gas is more vulnerable to
compression. These conditions lead to an increasing trend of e1/e0 of the undisturbed and
remolded samples.

In addition, e2 mainly originates from the escape of water and gas and the movement
or fragmentation of soil particles (Figure 12c) [30]. As the water content increases and the
density decreases, the water and gas become more prone to discharge, and the particles
are more likely to move or break. These factors cause a growing trend of e2/e0 in the
undisturbed and remolded samples. The e2 values of the undisturbed and remolded
samples of Types I, II, and III are larger than those of e1. Moreover, the e2 of the undisturbed
samples is smaller than that of the remolded samples, with a maximum difference of 13.04%.
The reason is that the undisturbed soil has undergone various loading and unloading
behaviors over a long geological time, and the soil particles gradually move to a more stable
position after several deformations. This migration enhances the structural connection
and particle arrangement ability. In other words, the undisturbed sample has structural
force. The existence of structural force significantly reduces the e2 of the undisturbed
sample compared with that of the remolded sample and exhibits a stronger ability to resist
compressional deformation under vertical loading (Figure 12d).

3.2.3. Structural Yield Stress

The e − lgPc curve shows that the void ratio of the soil does not change seriously
before the vertical load exceeds a certain pressure value, and drops steeply after the value.
In other words, the soil property differs considerably before and after yielding, and this
critical pressure value is called the structural yield stress (σk). Its value can be calculated
using the ln(1 + e)− lgPc double logarithm method proposed by Buyyerfield. The results
suggest that the σk values of all undisturbed samples are larger than those of the remolded
samples (Figure 13a). The advantage of structural yield stress is reflected macroscopically
in the fact that the gentle section of the e − lgPc curve of the undisturbed sample sustains
longer than that of the remolded sample. It is also reflected microscopically in the fact that
the better structural connection and particle arrangement of the undisturbed soil make it
more resistant to vertical load.
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The ratios of σk and Cc between undisturbed and remolded samples are calculated
as stress sensitivity St.σk and strain sensitivity St.Cc, respectively, to explore the structural
strength of expansive soil under the confined condition. The two parameters enable the
evaluation of the expression of the structural strength in terms of strength and resistance to
deformation under the confined condition. The sensitivity parameters are calculated, as
shown in Equations (3) and (4), where σk.u is the σk of the undisturbed sample, σk.r is the σk
of the remolded sample, Cc.u is the Cc of the undisturbed sample, and Cc.r is the Cc of the
remolded sample.

St.σk = σk.u/σk.r, (3)

St.Cc = Cc.u/Cc.r, (4)

Under the confined condition, the sidewalls restrict the development of fractures and
the shear deformation of soil. Moreover, the undisturbed samples express a higher degree
of benefit in terms of structural connection and particle arrangement, which means that the
advantage generated by the structural strength of the undisturbed samples is greater than
the disadvantage arising from the fractures. With the increase in water content and the
decrease in density, the void ratio of the samples gradually enlarges, the degree of particle
association and occlusion reduces, and the samples are more prone to fragmentation. Thus,
the σk values of the undisturbed and remolded samples decline. However, the advantage
of the undisturbed sample on particle linkage and arrangement allows it to maintain a
higher σk than that of the remolded sample even after the load has caused great damage,
and the St.σk gradually increases. As for St.Cc, draining the water from the undisturbed
sample of Type III is difficult in the late stage of compression, which makes its St.Cc above
1. In general, the differences in the St.Cc of the samples of Types I and II are small, and
all of them are lower than those of Type III samples (Figure 13b). Overall, as the water
content increases and the density decreases, the structural strength of expansive soil is
expressed to a greater extent in terms of strength and to a lesser extent in terms of resistance
to compressive deformation.

4. Discussion
4.1. Microstructure of Undisturbed and Remolded Expansive Soil

Based on the previous experimental results, the engineering properties of undisturbed
and remolded expansive soils in a seasonally frozen region exhibit large differences. SEM
tests were conducted in this study to further analyze the structural strength of expansive
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soil from a microscopic perspective. Figure 14 shows that the long-term wet–dry and
freeze–thaw cycles have caused many microfractures inside the undisturbed sample, which
provide the initial requirement for the damage of the sample. However, fewer microfrac-
tures are within the remolded sample, which lack the initial condition for the formation of
penetrating fractures. The clay minerals within the undisturbed sample are poorly crys-
tallized, well defined, and hydrophilic [31,32], mostly in face-to-face contact. By contrast,
more flocculent particles are present within the remolded samples, the boundary of the clay
minerals is blurred, and edge-to-face and point-to-face contacts are observed in addition to
face-to-face contact.
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The microstructure of each sample under unconfined compression is shown in
Figure 15a–f. The clay particles of the remolded sample are filled into the pores and
fractures, and the surface is dense and flat, with tiny but not penetrating fractures. This
finding corresponds to the bulging deformation of the remolded samples in the UCS test
without a complete shear failure surface, and the microstructures of the different remolded
samples at the time of damage are more similar. On the contrary, the fractures in the undis-
turbed samples are not gradually closed due to the compression but are more developed
because of the lack of lateral deformation limitation, and the failure states of different
types of samples are completely diverse. The Type I undisturbed sample has a low water
content and more primary fractures. Therefore, the number and direction of fractures after
compression are complicated, the particle agglomeration phenomenon is serious, and it
will eventually be destroyed by multiple vertical fractures. The fractures of the Type II
undisturbed sample are mainly developed in the vertical direction after compression with
an obvious vertical fracture through the fracture, and the sample forms a shear damage
surface in the end. The experiment was not stopped until the strain reached approximately
21% because no damage to the Type III sample was observed, whereas the other samples
were stopped at about 10% strain. Although the Type III samples have a higher water
content and fewer primary fractures, they are compressed for a longer period. Thus, their
surface is flat, and the fractures are well developed. As the water content increases and
density decreases, the degree of fracture development drops such that the deterioration
effect on strength is gradually weakened. This condition gradually improves the expression
of structural strength in terms of strength under the unconfined condition.

In the high-pressure consolidation experiments, the compaction degree of the samples
is improved substantially. As shown in Figure 15g–l, the microfractures of the undisturbed
and remolded samples in all types are reduced. The clay particles of the remolded samples
of Types I and III fill the pores and fractures with serious particle agglomeration, whereas
the particle boundary of the undisturbed samples remains explicit without large aggregates.
However, the microstructure of the Type II remolded sample is very flat, and the soil
sample is more highly monolithic than the other types of remolded samples. The Type II
undisturbed sample is less compact than the remolded sample, but its flatness is still better
than that of the other types of undisturbed samples. This finding not only demonstrates
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that the undisturbed samples have stronger resistance to vertical compression deformation
than the remolded sample, but also verifies that the samples are more easily compacted
and reach the maximum density under the optimum water content condition.
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4.2. Influencing Factors of Structural Expression

According to previous experimental results, the structural strength of expansive soil is
mainly expressed in the stronger structural connection of the undisturbed sample in the
initial stage of unconfined compression, the better resistance to deformation in the later
stage of unconfined compression, and the superior ability to withstand vertical load under
confined compression. Moreover, the expression degree of structural strength varies among
different types of samples. As the water content increases and the density decreases, the
expression degree of structural strength in terms of strength and resistance to deformation
grows when under the unconfined condition. Correspondingly, the expression degree of
structural strength in terms of strength rises but declines for resistance to deformation
under the confined condition.

As a result, the structural expression characteristics of expansive soil in a seasonally
frozen region are influenced by several factors. This study summarizes them into two parts,
internal and external factors, of which the internal factors include basic properties (water
content and density), particle composition, and structural linkage, and the external factors
include lateral confinement and historical role.

For the basic property, exploring the influence degree using the control variable
method is difficult because the undisturbed samples from different depths have high
randomness of water content and density. In this study, the gray correlation method
was used to calculate the influence degree of water content and density on structural
strength, and the results are shown in Figure 16. The gray correlation degree refers to a
quantitative evaluation method based on gray system theory, which measures the degree
of association between factors of comparative tests according to the degree of similarity
between indicators, and the calculation equation is expressed as follows:

ri =
1
m ∑m

k=1

min
i

min
k |xo(k)− xi(k)|+ ρ

max
i

max
k |xo(k)− xi(k)|

|xo(k)− xi(k)|+ ρ
max

i
max

k |xo(k)− xi(k)|
, (5)

where xo(k) is the reference series, which is the property parameter of the expansive soil in
this study, and xi(k) is the comparison series, which refers to the water content or density of
the samples in this paper. xi(k). ri > 0.6 with ρ = 0.5 represents a better correlation [33,34].
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Water content can reveal the fractured status of the samples. The particles swell with
water, and the fractures will be closed. Rather, the particles shrink without water, and
the fractures will be developed. Therefore, the water content determines the degree of
strength depression by the fractures. The density controls the compactness of the samples.
The dense samples have a high degree of particle association. The loose samples have a
weaker one. Figure 16 shows that water content and density have a substantial effect on
the strength parameters (qu, σk), with water content being slightly more relevant. For the
deformation parameters (εu, Cc), density has a stronger influence than water content. In
summary, the strength of the samples is mainly determined by the water content, and the
density predominantly controls the resistance to deformation.

Considering that water content affects strength by influencing the closure degree
of primary fractures, the correlation of water content with strength parameters (qu, σk)
in remolded samples is weaker than that in undisturbed samples, particularly for q_u.
Similarly, the structural strength of the undisturbed samples can provide partial resistance
to vertical deformation, but that of the remolded samples cannot. Thus, the density of the
remolded samples is more correlated with the deformation parameters (εu, Cc) than the
undisturbed samples. εu is especially consistent with this rule, which is due to the fact that
the pressure applied to the high-pressure consolidation test is high. Furthermore, structural
strength has been destroyed and cannot resist deformation. Therefore, the correlation
between density and Cc of undisturbed and remolded soils is approximated. Moreover, the
correlation of water content with strength sensitivity (St.qu, St.σk ) is lower than that of the
parameters themselves (qu, σk), and the correlations of density with deformation sensitivity
(St.εu, St.Cc) are slightly higher than those of the parameters themselves (εu, Cc). Overall,
the influence degree of density on all four sensitivity parameters is stronger than that of
water content. Thus, density is more impactful on the structural strength of expansive soil
in the study area.

For particle composition and structural linkage (Figure 17), the frequency curve of
particle distribution shows a significant rightward shift after remodeling. This trend
means that the undisturbed sample has a higher proportion of clay. This observation
corresponds to the fact that the clay particles in the undisturbed sample are present in the
large particles to play a better role in structural linkage, which results in clear boundaries
of the particles and a higher degree of occlusion. Conversely, fewer small particles are
found in the remolded samples, which corresponds to the fuzzy particle boundaries, higher
agglomeration, and poor particle occlusion in the SEM images. For the internal factors,
the basic properties (water content and density) greatly influence the development of
fractures in the samples. Moreover, the particle composition and structural linkage affect
the microstructure of the soil, which ultimately leads to the existence of structural strength
and the differences in the expression characteristics.

As for the external factors (Figure 17), the presence or absence of lateral confinement
impacts the deformation mode of the samples, which, in turn, affects the relationship
between the primary fractures and the structural strength in expression. Specifically, under
the unconfined condition, apart from Type III samples with higher water content, the
deterioration of the primary fractures is stronger than the structural strength, and the
fractures are continuously developed until penetration. These factors result in the qu of
the undisturbed samples being lower than that of the remolded samples. As the water
content increases and the density decreases, the degradation of primary fractures reduces,
and the expression of structural strength in terms of strength enhances. Meanwhile, the
increase in water content contributes to a better integrity of the samples, a rise in εu, and
an enhancement in the structural expression degree to resist deformation. Conversely,
under the confined condition, the deterioration of the primary fractures is weaker than the
structural strength, which means that the e2 and Cc of the undisturbed samples are smaller
than those of the remodeled samples, and the undisturbed samples are more resistant to
vertical deformation. With the increase in water content and the decrease in density, the
deterioration of the fractures is diminished, and the structural expression in strength is
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elevated. With regard to the deformation aspect, the vertical load in the high-pressure
consolidation experiment is heavy, and the compression process is accompanied by the
escape of water. The increase in water content thickens the weakly bound water film and
makes it more difficult for water to drain out, which gradually deteriorates the structural
expression in resistance to vertical deformation.
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For the historical role, given that the study area is located in a seasonally frozen region
where the winter is cold and dry and the summer is warm and rainy, the fracture formation
and the wet–dry or freeze–thaw cycles are correlated. The fractures in the expansive soil
gradually evolve from the edge to the center, which ultimately forms a network under
the wet–dry cycles. Then, the fractures break up and transform from long fractures to
small fractures after the freeze–thaw cycles [35,36]. Consequently, the large number of tiny
fractures formed inside the undisturbed samples offer the initial requirement for property
deterioration. Among them, the effect on strength, which causes the UCS of the undisturbed
samples of Types I and II to be lower than that of the remolded samples, is the most obvious.
With the increase in water content and the decrease in density, the degradation of strength
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by primary fractures gradually diminishes, which leads to the growth of St.qu and St.σk . This
condition means that the expression of structural strength in terms of strength is enhanced.

Combined with the research related to the structural strength of saline soil in Jilin
Province, China, by our research group, the findings show that the structural strength
of soil in a seasonally frozen region shows some special characteristics compared with
other regions [2]. In particular, saline and expansive soils in a seasonally frozen region
can exhibit strong structural strength in contact mode and association, but the primary
fracture network has a noticeable negative effect on strength. This finding indicates that
the wet–dry and freeze–thaw cycles undergone by the soil in a seasonally frozen region
produce a certain weakening effect on the structural expression, which makes it different
from the soil in a non-frozen region.

5. Conclusions

In this study, the UCS test, high-pressure consolidation test, and SEM were performed
on expansive soil to explore the structure in a seasonally frozen region. The conclusions are
drawn as follows:

(1) The undisturbed samples have structural strength due to a better structural connection
and particle arrangement than those of the remolded samples. The structural strength
of undisturbed expansive soil is mainly expressed in the stronger structural connection
in the initial stage of unconfined compression, the better resistance to deformation
in the later stage of unconfined compression, and the superior ability to withstand
vertical load under confined compression.

(2) Under unconfined compression, the samples display various failure states due to
differences in water content and density. Type I undisturbed samples are broken along
multiple vertical penetration fractures, Type II undisturbed samples are destroyed
along a shear surface, Type III undisturbed samples do not show shear damage, and
remolded samples all show bulging damage.

(3) Under unconfined compression, the deterioration of primary fractures is stronger
than the structural strength. Thus, the qu values of the undisturbed samples of Types
I and II are lower than those of the remolded samples. With the increase in water
content and the decrease in density, the expression degree of structural strength in
terms of compressive strength and resistance to deformation rises.

(4) Under confined compression, the structure strength is more highly expressed due to
the suppression of the development of primary fractures. Therefore, the Cc and e2
values of the undisturbed samples are smaller, and the structural yield stress is greater.
With the increase in water content and the decrease in density, the expression degree
of structural strength in terms of strength ascends, but the resistance to compressive
deformation declines.

(5) Internal factors (basic property, particle composition, and structural linkage) and
external factors (lateral confinement and historical role) all affect the expression of
structural strength. For the basic property, water content mainly determines strength
(qu, σk), and density predominantly affects resistance to deformation (
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Abstract: The existence of structural strength in undisturbed soil results in its distinct characteristics 

compared to remolded soil. Under the influence of freeze–thaw cycles, this difference may easily 

cause geotechnical disasters in cold regions. This study aimed to analyze and discuss the expression 

degree and influencing factors of the structural strength of expansive soil. The unconfined compres-

sive strength (UCS) test, high-pressure consolidation test, and microscopic test were performed on 

expansive soil retrieved from a seasonally frozen region. Moreover, sensitivity parameters, includ-

ing stress sensitivity (𝑆𝑡.𝑞𝑢, 𝑆𝑡.𝜎𝑘
) and strain sensitivity (𝑆𝑡.𝜀𝑢, 𝑆𝑡.𝐶𝑐), were applied to explore the ex-

pression degree and influencing factors of structural strength in a seasonally frozen region. The 

results reveal that the undisturbed samples have better structural connection and particle arrange-

ment than the remolded samples. However, the primary fractures have a certain degrading effect 

on the strength of the undisturbed soil as influenced by a seasonally frozen region. With the increase 

in water content and the decrease in density, the expression degree of the structural strength in 

terms of compressive strength and the ability to resist deformation enhances under the unconfined 

condition. By contrast, the expression degree increases in strength and decreases in ability under 

the confined condition. Furthermore, the effect mechanisms of the basic property, particle composi-

tion, structural linkage, lateral confinement, and historical role on the structural expression were 

analyzed. 

Keywords: compression property; structural strength; microstructure; structural expression; influ-
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1. Introduction 

During the formation of soil, various physical and chemical interactions form associ-

ations between particles that provide structural strength, and soil with structural strength 

is called structural soil [1,2]. The structural strength of soil causes differences in the engi-

neering properties of undisturbed and remolded soils [3,4]. In the meantime, soils with 

special material composition, structure, and engineering geological properties are called 

special soils and are widely distributed and applied in building materials worldwide. This 

uniqueness is prone to cause construction damage and geotechnical problems [5]. There-

fore, a deeper understanding of the structural strength of special soil has positive signifi-

cance for exploring soil characteristics and thus alleviating geotechnical problems. 

Special soils mainly include loess, laterite, expansive soil, and saline soil [5]. Re-

searchers have discussed the structural strength of loess by combining damage and soil 

mechanics and considering consolidation pressure, structural disturbance, and wet–dry 
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u, Cc). Particle
composition and structural linkage affect the microstructure of the soil. Lateral
confinement and historical role primarily affect the formation and development of
fractures and, consequently, the expression of structural strength.

(6) The soils in a seasonally frozen region undergo periodic freeze–thaw cycles, which
can also impact the expression of structure. In future work, freeze–thaw cycle tests can
be conducted on undisturbed and remolded samples to provide a better discussion
on the structure of expansive soils.
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