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Abstract: Due to factors such as the availability of assembly equipment, technology, and site manage-
ment level, prefabricated building construction safety accidents often occur. To ensure the safety of
prefabricated buildings and effectively reduce the accident rate, the concept of resilience is introduced
into the safety management of prefabricated buildings. Based on the resilience absorption capacity,
adaptation capacity, recovery capacity, and optimization capacity, a comprehensive evaluation index
system for the safety resilience of prefabricated buildings is established. By combining prior knowl-
edge with structural learning and parameter learning, a dynamic Bayesian network (DBN) model
is constructed to dynamically evaluate the safety resilience of prefabricated buildings. Through
forward causal reasoning and backward diagnostic reasoning, the dynamic safety resilience value
of prefabricated buildings and the chain of maximum failure causes are obtained. Finally, by con-
ducting a sensitivity analysis on the target nodes, the key influencing factors of the safety resilience
of prefabricated construction are identified, and improvement suggestions for enhancing resilience
are proposed. The results indicate that establishing a resilience safety culture, preventing unsafe
behaviors of personnel, safety management, and supervision on the construction site, emergency
management actions, and building a risk management information system are crucial factors influ-
encing the safety resilience of prefabricated buildings. The enhancement of absorption capacity has
the greatest impact on the safety resilience of prefabricated buildings.

Keywords: prefabricated building construction; safety resilience; dynamic Bayesian network; data-driven

1. Introduction

In response to the high energy consumption and pollution characteristics of the
construction industry, the Chinese government has vigorously developed prefabricated
buildings in recent years, promoting industrial transformation and upgrading [1]. The
“Opinions on Promoting Green Development of Urban and Rural Construction” issued by
the General Office of the Communist Party of China Central Committee and the General
Office of the State Council in October 2021 pointed out that prefabricated buildings should
be vigorously developed, with emphasis on promoting the construction of steel structure
prefabricated residential units. The aim is to continuously improve the standardization
level of components and promote the formation of a complete industry chain, providing
guidelines for the green development transformation of urban and rural construction [2].
The “Development Plan for Building Energy Conservation and Green Building in the 14th
Five-Year Plan Period” issued by the Ministry of Housing and Urban-Rural Development
stipulated that by 2025, the proportion of prefabricated buildings in newly constructed
urban buildings should reach 30% [3].
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Compared with traditional cast-in-place buildings, prefabricated buildings have the
advantages of faster construction, less wet work on site, lower labor costs, energy sav-
ing and environmental friendliness, and shorter construction time [4,5]. However, the
construction of prefabricated buildings, characterized by different construction methods,
a significant quantity of large prefabricated components, and frequent human–machine
interactions, poses a higher risk of serious safety accidents [6]. Such accidents can result
in severe casualties, property damage, and profound negative social consequences [7].
Resilience-based safety management focuses on a system’s ability to respond to risks and
adverse events, adapt, recover, and ultimately achieve a new state of safety through a
variety of system actions [8]. Therefore, introducing resilience theory into prefabricated
building construction safety management, establishing a reasonable evaluation system,
and evaluating the safety resilience of prefabricated building construction through scien-
tific methods is of great significance to improving the ability of prefabricated building
construction systems to respond to safety accidents and ensuring construction safety.

Conventional qualitative and quantitative assessment methods have been used for
safety risk analysis and assessment in prefabricated building construction. For example,
Xu [9] evaluated the safety factor of prefabricated building construction by an interpretive
structural model (ISM) and Analytical Network Process (ANP), which can better reduce
safety risks in prefabricated building construction. Li [10] combined structural equation
modeling (SEM) with a system dynamic model (SDM) to construct a safety risk assessment
model for prefabricated building construction. Through the analytic hierarchy process
(AHP) and the entropy weight method, Liu [11] proposed a cloud model-based safety
evaluation method for prefabricated building construction, which is helpful to improve the
safety performance in the process of prefabricated building construction and reduce safety
accidents. However, conventional approaches are unable to utilize the real-time information
collected to update prior beliefs [12] or to incorporate the multi-state variables encountered
in modeling complex systems. Bayesian inference can solve the limitations of the above
methods due to its characteristics of dealing with uncertainty and updating beliefs.

As an effective reasoning tool that can model both historical data and expert experi-
ence, Bayesian network (BN) models have been widely used in infrastructure resilience
assessment [13–16]. However, traditional BN-based analyses are static models that repre-
sent a joint probability distribution for a fixed point or time interval. They cannot effectively
capture the dynamics of changing variables [17]. DBNs incorporate the element of time
and integrate key nodes representing the evolution of accidents, making them an extension
of conventional BNs [18]. However, in research based on DBN models, most researchers
rely heavily on subjective methods to determine the structure and parameters of the BN.
This reliance on expert knowledge and experience can lead to the incomplete discovery of
all relevant relationships between factors, which significantly affects the subsequent risk
propagation analysis [19]. As a result, the research results obtained may differ significantly
from the real-world situation. The emergence of data-driven BN learning methods has led
to a response to this question.

Data-driven BNs are used to find a highly fitting BN structure given a specific data set.
Amin et al. combined principal component analysis (PCA) with a data-driven Bayesian
network (BN) and proposed a fault detection and diagnosis (FDD) method [20]. Joo et al.
constructed a Bayesian network from a reproducible long-term data set to perform a
probabilistic assessment of driver collision risk [21]. Furthermore, when a problem proves
resistant to a straightforward and precise solution, data-driven approaches can construct
an approximate model based on historical data to approach the actual scenario [22].

To overcome the above challenges, this paper constructs a resilience index system and
evaluation model for the evaluation of safety management in the construction phase of
prefabricated buildings. Based on the resilience theory, the concept of safety resilience in
prefabricated building construction is proposed and the theoretical framework for the safety
resilience evaluation of prefabricated building construction is constructed. Combined with
the relevant literature and expert interviews, a systematic and dynamic safety resilience
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evaluation index system for prefabricated building construction is constructed from four
perspectives: absorptive capacity, adaptive capacity, recovery capacity, and optimization
capacity. In order to avoid the BN conditional probability assignment, which may produce
a large deviation due to the strong subjectivity of the expert scoring method, this study
proposes to firstly integrate the expert opinions to establish the mandatory relationship
between factors and then combine with the optimization algorithm to carry out in-depth
learning of the structure and parameters of the DBN model to construct the data-driven
DBN-based dynamic evaluation model of the safety resilience of the prefabricated building
construction. In this paper, the concept of resilience is integrated into risk management,
which breaks the deficiency of existing risk management that mostly emphasizes on ex ante
control and provides a new perspective and theoretical method for the research of safety
management in the construction phase of prefabricated buildings. The research results
of the resilience evaluation system of the prefabricated building construction system and
the optimization suggestions provide reference for improving the risk-resistant capability
of the prefabricated building construction system, the rapid recovery capability after
the occurrence of risky accidents, and the adaptive learning capability of potential risky
accidents, so as to reduce the probability of occurrence of risky accidents or to reduce the
losses due to the occurrence of risky accidents.

The paper is organized as follows: Section 2 presents the relevant literature. Section 3
introduces the methodology and establishes a model for the problem of this paper. Section 4
performs numerical calculations and results analysis. Section 5 discusses the model and
puts forward some relevant management suggestions. Section 6 summarizes the full text.

2. Literature Review
2.1. Safety Management of Prefabricated Building Construction

Most research on safety management in prefabricated building construction has been
carried out in the following three aspects: (1) Identification of safety risk factors. Statistical
analysis has identified falls from height and lifting injuries as the most common types
of accidents in prefabricated construction. The source of risk has often been attributed
to structural instability. The main contributing factors to accidents have been found to
be poor safety culture within the company and lack of compliance with safety manage-
ment rules and procedures by employees [6,23,24]. (2) Quantification of safety levels in
prefabricated building construction. Firstly, through theories such as accident causation
theory, WBS-RBS matrix analysis [25], or WSR methodology [26], risk factors in prefabri-
cated building construction have been identified from five aspects: personnel, machinery,
regulations, environment, and management, and an evaluation index system has been
established. Weighting methods such as the analytical hierarchy process [27], entropy
weighting method [28], and integrated weighting method were used to assign weights
to the evaluation criteria. Qualitative and quantitative evaluation methods such as fuzzy
comprehensive evaluation [29], rough set theory [30], and support vector machines [31]
were used to evaluate risks and determine risk levels. (3) Integration of advanced technolo-
gies for effective safety management. To improve the effectiveness of construction safety
management of prefabricated buildings, the integration of technologies such as Building
Information Modeling (BIM), Radio Frequency Identification (RFID), Internet of Things
(IoT), and Artificial Intelligence (AI) has been proposed to enable intelligent monitoring
and supervision of the construction process [32,33].

Most existing research on construction safety risk assessment has primarily empha-
sized on evaluating risks in prefabricated buildings based on static time and stationary
conditions. However, these studies often overlook the interactive coupling evolution
among different factors and fail to capture the dynamic evolution process of risks during
different construction phases. Moreover, the current approach to safety risk management
in prefabricated buildings is predominantly passive and primarily emphasizes pre-control
measures. The main emphasis is placed on risk identification, assessment, and early warn-
ing to proactively establish effective response measures, thereby achieving the goal of
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avoiding risk accidents. There is a lack of research on how to manage and control risk
accidents during their occurrence to minimize the resulting losses. Similarly, there is a
research gap on how to improve the ability to respond to hazard events after they occur.
There is a need for systematic research on construction safety resilience assessment and the
dynamic prediction that is aligned with project progress. Such research should focus on
the development of strategies to effectively manage hazard events as they unfold and to
improve the overall ability to respond to them.

2.2. Safety Resilience in Prefabricated Building Construction

The term “resilience” comes from the Latin word “resilio”, meaning “to bounce back”
or “return to the original state”. Canadian ecologist Holling was the first to apply the
concept of resilience to ecosystem research. It described the ability of an ecosystem to
maintain normal functioning when faced with external threats or to recover a state of
equilibrium after a disturbance [34]. The concept emphasized the connection between
resilience and systems. Since the 1990s, scholars have extended the study of resilience to
various domains such as urban systems [35–37], complex system design [38,39], supply
chains [40,41], manufacturing industries [42,43], and infrastructure resilience [44–46]. The
concept of resilience has gradually gained recognition and importance in many fields.

Currently, research on resilience measurement of infrastructure systems mainly fo-
cused on two perspectives: system performance curve-based measurement and resilience
capacity characterization-based measurement. The measurement of infrastructure system
resilience based on system performance curves, exemplified by Bruneau et al., involved
quantifying resilience values by evaluating the area enclosed between the temporal vari-
ation curve of system performance and the target performance curve [47]. With further
research, scholars have improved and refined the basic models and proposed alternative
dynamic measurement methods. For instance, they have introduced the ratio between the
area enclosed by the actual system performance curve after perturbation and the time axis,
and the area enclosed by the target performance curve and the time axis as a representation
of resilience value [18,48]. Another approach is to use the ratio of the system’s recovery
performance to its loss performance as a measure of resilience [49]. Research on resilience
measurement in infrastructure systems, based on the representation of resilience capabili-
ties, focused on quantifying resilience according to the definition of resilience. Scholars,
represented by Vugrin, quantified system resilience as a combination of “absorption capac-
ity, adaptation capacity, and recovery capacity”. In this approach, suitable indicators were
selected based on resilience capacity, and a combination of qualitative and quantitative
methods were employed to measure resilience [44,50]. For example, Majeed et al. proposed
that the resilience of engineering systems consists of absorption capacity, adaptation capac-
ity, and recovery capacity. They conducted a resilience assessment of engineering systems
using an object-oriented dynamic Bayesian network approach and found that adaptation
capacity contributed the most to system resilience, followed by absorption capacity and
recovery capacity [15].

Through the analysis and synthesis of relevant resilience studies, it is found that
resilience, as a new research direction, has varying definitions across different fields. This
study introduces resilience theory to safety management during the prefabricated construc-
tion phase. Considering the complexity, uncertainty, fuzziness, and resource limitations
associated with prefabricated construction, the resilience of safety in prefabricated building
construction throughout this paper is defined as follows: During the process refabicated
construction, when faced with unknown disturbances or impacts, safety management can
resist or even prevent risks through its resilience. In the event of a risky accident, the
system can spontaneously recover and learn from the accident, optimizing itself to better
cope with risks. Figure 1 illustrates the concept curve of safety resilience in prefabricated
construction, quantifying it as a combination of absorption capacity, adaptation capacity,
recovery capacity, and optimization capacity. The absorption capacity during the t0~t1
phase refers to the system’s ability to automatically absorb disturbances and minimize the
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consequences while in the initial safe state. At time t1, the system encounters a risk shock,
and the adaptability during the t1~t2 phase refers to the system’s ability to adjust itself
and respond to the disturbances without any recovery activities. The recovery capacity
during the t2~t3 phase refers to the system’s ability to recover to an acceptable level of
normal performance by taking necessary emergency measures to address the risk shock or
disturbance. Finally, the optimization capacity during the t3~t4 phase refers to the ability
of the system to improve its ability to respond again to risk disturbances by modifying its
structure and components based on accident learning.
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3. Materials and Methods

The process of constructing a DBN model for assessing the safety resilience of prefab-
ricated building construction is shown in Figure 2. The first step is to identify and filter
the evaluation indicators for the resilience of safety in prefabricated building construction.
The data obtained are then used to construct the BN model. This process involves relying
on expert knowledge and referring to different algorithm models to construct or optimize
the structure of the BN model and the probability distributions of its nodes. Finally, BN
reasoning is performed based on the constructed model. There are three main types of
BN reasoning: causal reasoning, diagnostic reasoning, and sensitivity analysis. Causal
reasoning, also known as forward reasoning or top-down reasoning, involves inferring
the probabilities of different outcomes from known evidence and analyzing the factors
that influence these outcomes. Diagnostic reasoning, also known as reverse reasoning or
bottom-up reasoning, aims to infer the most probable causes and their probabilities based
on known results. Sensitivity analysis examines the impact of small changes in parameters
(in this case, probabilities) on the target object, quantitatively analyzing the importance of
these parameters for the target object [51].

3.1. Establishment of Evaluation Index System

Constructing a systematic and comprehensive evaluation index system is the key
to evaluating the safety resilience of prefabricated building construction. Based on the
systemic structure of safety management, the resilience functions of the system are identi-
fied. Through analysis of the relevant literature on safety management in prefabricated
building construction [7,10,52], investigation reports of production safety accidents, stan-
dards and specifications, and technical regulations, as well as research related to resilience
theory [53,54], indicators are extracted. A preliminary library of resilience indicators has
been refined based on the resilience connotation and the four resilient characteristic ca-
pabilities of prefabricated building construction safety management, namely absorption
capability, adaptation capability, recovery capability, and optimization capability. The
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Delphi method was used to develop the initial resilience indicator questionnaire. Data
were collected, organized, and analyzed to identify indicators with low consensus and
significant deviations in factor correspondences were eliminated. Eventually, a total of
29 final indicators for evaluating the safety resilience of the entire process of prefabricated
building construction were selected, as shown in Table 1. Among them, each resilience
evaluation index corresponded to a BN node. In order to reduce the complexity of the
BN structure and improve the computational efficiency of model learning, some related
indicators were merged into nodes.

Buildings 2024, 14, x FOR PEER REVIEW  6  of  24 
 

Identify network 
nodes

Determine the BN 
structure

Determine the BN 
parameters

Forward causal 
reasoning

Reverse diagnostic 
reasoning

Expert experience
Tabu-Search 
(TS) algorithm

Expert experience EM algorithm

Metric construction 
safety resilience

Clarify the critical 
path

Identify key 
influencing factors

Sensitivity analysis

 

Figure 2. The process of constructing a DBN model for safety resilience evaluation of prefabricated 

building construction. 

3.1. Establishment of Evaluation Index System 

Constructing a systematic and comprehensive evaluation index system is the key to 

evaluating the safety resilience of prefabricated building construction. Based on the sys-

temic structure of safety management, the resilience functions of the system are identified. 

Through analysis of the relevant literature on safety management in prefabricated build-

ing construction [7,10,52], investigation reports of production safety accidents, standards 

and specifications, and technical regulations, as well as research related to resilience the-

ory [53,54], indicators are extracted. A preliminary library of resilience indicators has been 

refined based on the resilience connotation and the four resilient characteristic capabilities 

of prefabricated building construction safety management, namely absorption capability, 

adaptation  capability,  recovery  capability,  and  optimization  capability.  The  Delphi 

method was used to develop the initial resilience indicator questionnaire. Data were col-

lected, organized, and analyzed to identify indicators with low consensus and significant 

deviations in factor correspondences were eliminated. Eventually, a total of 29 final indi-

cators for evaluating the safety resilience of the entire process of prefabricated building 

construction were selected, as shown in Table 1. Among them, each resilience evaluation 

index corresponded to a BN node. In order to reduce the complexity of the BN structure 

and improve the computational efficiency of model learning, some related indicators were 

merged into nodes. 

Table 1. Evaluation index system of safety resilience of prefabricated building construction. 

Target Layer  Primary Indicator  Secondary Indicator 

Prefabricated 

building construc-

tion safety resili-

ence R 

Absorption capa-

bility A 

Safety awareness of personnel A1 

Preventing unsafe behavior of per-

sonnel A11 

Professional technical level and operational 

proficiency of personnel A2 

Personnel physiological and psychological 

state A3 

Figure 2. The process of constructing a DBN model for safety resilience evaluation of prefabricated
building construction.

Table 1. Evaluation index system of safety resilience of prefabricated building construction.

Target Layer Primary
Indicator Secondary Indicator

Prefabricated building
construction safety

resilience R

Absorption
capability A

Safety awareness of personnel A1

Preventing unsafe behavior of personnel A11

Professional technical level and operational
proficiency of personnel A2

Personnel physiological and
psychological state A3

Machinery and equipment condition and performance A4

Quality of prefabricated components A5

Maturity of key technologies for construction and installation of prefabricated components A6

Reliable connection of prefabricated components A7

Safety management and supervision on the construction site A8

Risk source assessment and countermeasures A9

Information monitoring and processing system setup A10
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Table 1. Cont.

Target Layer Primary
Indicator Secondary Indicator

Prefabricated building
construction safety

resilience R

Adaptation
capability B

Multidimensional cooperation B1

Self-organizing ability of the organization B2

Substitutability of key resources B3

Integrity and efficiency of security messaging B4

Recovery
capability C

Accident emergency management system C1

Emergency management actions C7Emergency Response Plan C2

Emergency access and shelter settings C3

Emergency organization and dispatching capability for managers C4

Emergency life-saving capabilities for personnel C5

Emergency material supply C6

Optimization
capability D

Accident cause investigation and experience summary D1

Establishing security information sharing and
management platform D2

Building a risk management information
system D7

Intelligent transmission of risk disaster safety
early warning information D3

Safety education training and drills D4

Developing transformational leadership D5

Establishing a resilience safety culture D6

3.2. Data-Driven Construction of Static BN

A BN is a probabilistic graphical model that represents the relationship between
variables by pointing through arrow lines. Each node in the network represents a variable,
the root node represents the probability of node occurrence using a priori probability,
and the conditional probability between nodes represents the strength of the association
between nodes. Bayesian formulas are based on conditional probabilities to explore the
causes of events. Let X1, X2, . . . . . .Xn constitute a complete event, the variables are mutually
exclusive and P(Xi) > 0. Assuming that there exists an event Y, which occurs at the same
time as the other events X1, X2, . . . . . .Xn, then there is a Bayesian formula as shown in (1):

P(Xi|Y) =
P(Xi)P(Y|Xi)

n
∑

j=1
P(Xi)P(Y|Xi)

(1)

P(Xi) in the formula denotes the probability that Xi occurs and is the a priori probability
of node Xi. P (Xi|Y) denotes the probability of event Xi occurring under the condition
of event Y occurring and is the Xi’s posterior a priori probability. In a BN, the posterior
probability can be obtained by updating the prior probability. P (Y|Xi) is the conditional
probability solved using the BN.

The BN as a whole satisfies the conditional independence assumption, that is, each
node is independent of its non-parent node. Therefore, the joint probability of all nodes in
the network can be expressed as the product of the conditional probabilities of each node,
as shown in Equation (2):

P(X1, X2, · · · , Xn) =
n
∏
i=1

P(Xi|X1, X2, · · · , Xi−1)

=
n
∏
i=1

P(Xi|Pa(Xi))
(2)
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3.2.1. Structure Learning

Whether the subjective learning network is scientific and effective depends directly
on expert knowledge, which is subjective and fails to make full use of the advantages of
BN data-mining technology [55]. This method may fail to ensure objectivity and reliability.
Constructing a BN structure using machine learning algorithms can achieve higher learn-
ing efficiency and eliminate subjective experience. However, the technical limitations of
statistical methods raise concerns about the rationality of the network. Indeed, a widely
recognized and effective approach is to combine both subjective and objective elements in
the construction of a BN [20]. This involves initially using machine learning algorithms
and objective datasets to build the network structure. Subsequently, expert knowledge
is incorporated to make reasonable adjustments and refinements. By integrating subjec-
tive and objective information, the network model can be continuously optimized and
improved. This approach aims to achieve a balance between the advantages of data-driven
techniques and the expertise of domain specialists. Considering the data availability and
model accuracy, this paper adopts a combination of expert knowledge and self-learning
from the database to construct a BN. This approach takes advantage of the efficiency of
self-learning and avoids the redundancy of nodes and the confusion of structures.

Structure learning is used to determine the most appropriate topology for a BN by
utilizing a training sample set and prior knowledge. In BN learning, an effective structure
learning algorithm is the foundation for constructing the optimal network structure. As a
heuristic search algorithm, the Tabu-Search (TS) algorithm simulates the human memory
function and prevents repeated searches of already searched areas through the tabu table,
speeding up the search progress and marking the visited areas’ local optimal points, thus
avoiding falling into the local optimal point during the search process and ultimately
achieving global optimization [56,57]. The basic steps are as follows [21]:

(1) Set algorithm parameters and initialize network structure.
(2) Define tabu table. Create a tabu table to record structures that have been banned from

exploration to avoid duplication during the search process.
(3) Determine termination conditions. The algorithm ends when a certain number of

iterations is reached or the objective function value becomes stable.
(4) Determine the current solution domain and generate candidate solutions. The algo-

rithm generates a new structure by performing a neighborhood search on the current
structure and evaluates its quality via an objective function.

(5) Determine whether the candidate solution satisfies the contempt criterion. The
defiance criterion compares the Bayesian scoring function values of two network
structures to determine whether to accept a new structure that has been added to
the tabu list, preventing the algorithm from missing the possible global optimal
solution because it avoids taboo solutions during the search process. Improved
algorithm flexibility.

(6) Update tabu list. Update the tabu table with the taboo object corresponding to the
new current solution, and then go to step (4).

The flow chart of the TS algorithm is shown in Figure 3.
To ensure the integrity and reliability of the data, this study collected reports of prefab-

ricated building construction safety accidents from various sources, including the Ministry
of Emergency Management of the People’s Republic of China, the Ministry of Housing
and Urban-Rural Development, and the production safety supervision administration of
various provinces and cities. The data collection spanned from 2010 to 2022, and a total of
267 prefabricated building construction safety accident reports were collected, of which
233 reports were deemed usable for analysis. The dichotomous processing of the extracted
resilience index factors is beneficial for standardizing the data type and reducing parameter
calculation complexity, as well as facilitating the subsequent quantification work. Therefore,
there are only 2 simple cases of factors failing or not failing, with factors not failing recorded
as “Yes” and factors failing recorded as “No”. Before learning the network structure, the
researchers set a black-and-white list of arrow connections between nodes. The black list
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refers to the arrow connections that should not be learned, and the white list refers to the
arrow connections that are specified to exist [19]. Based on the established safety resilience
evaluation index system of prefabricated building construction and expert consultation
opinions, a whitelist was set for nodes with known causal relationships to obtain the initial
BN structure for structural learning, as shown in Figure 4.
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The BN learning in this study was performed using the bnlearn package in R 4.2.2 software.
The visualization and reasoning demonstration of the model was implemented using GE-
NIE 3.0 software. The structure of the BN model developed by the TS algorithm is shown
in Figure 5.
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3.2.2. Parameter Learning

Parameter learning of the BN is used to determine the conditional probability distribu-
tion related to each node in the directed acyclic graph under the condition of knowing the
topology of the BN. When complete data sets are available, the most commonly used pa-
rameter learning methods are maximum likelihood estimation and Bayesian methods, but
in realistic situations, the collected data may be missing to varying degrees. When learning
parameters for Bayesian networks with missing data, the Expectation-Maximization (EM)
algorithm can be used. The essence of the EM algorithm is to transform incomplete data
into complete data [58].

The EM algorithm is primarily composed of two steps: the E step to calculate the
expectation and the M step to maximize it. By iterating these two steps until the algorithm
converges, the estimates of the unknown parameters are calculated [59]. In fact, calculating
the expectation is to calculate the lower bound of the log-likelihood function: set X as
the unknown variable, Y as the observed variable, and D as the training set, and define
q(X = x|Y) as the probability of X = x when the observed value is Y. Then, we can obtain
∑
x

q(X = x|Y) = 1.

Let the log-likelihood function L be

L(θ) = ∑
m

log∑
n

P(X = xi, Y = D) (3)

Assuming that the function P(X = xi, Y = D) is a convex function with extremes,
then according to Jensen’s inequality we can obtain

L = ∑
m

log∑
n

q(X|Y)× P(X = xi, Y = D)

q(X|Y) ⩾ ∑
m

∑
n

q(X|Y)× log
P(X = xi, Y = D)

q(X|Y) (4)

The EM algorithm obtains the lower bound of the parameter in the E step and updates
the calculation in the M step to obtain its maximum value. Let q(X = x|Y) = P(X|θt) , θt
represent the unknown parameter of the current iteration result and θt+1 be the parameter
of the next iteration. Solving the lower bound of L is actually to find the parameter of the



Buildings 2024, 14, 570 11 of 23

next iteration given the current parameter, with the lower bound of L set to Q(θt+1|θ) ,
and then

Q(θt+1|θ) = ∑
m

∑
n

P(X|θt) log P(X, D|θt+l) (5)

Following the method in maximum likelihood estimation, find the parameter
.
θ̂t when

Q(θt+1|θ) is maximum.
.
θ̂t =

ENijk

ENij
(6)

In the formula, ENijk represents that the data set D satisfies Xi = xik, Pa(Xi) = Pa(Xi)j,
that is, when the value of node i takes the kth value, the corresponding parent node is the
data of j.

The BN network structure of this study has been determined. The research data were
imported into GENIE, and the built-in EM algorithm of the GENIE 3.0 software was used
to learn the parameters of the BN and finally obtain a complete static BN model that can be
used for visual reasoning, as shown in Figure 6.
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3.2.3. Model Validation

K-fold cross-validation is a method used to evaluate the performance and stability
of BN models. In cross-validation, a value of k = 10 is commonly chosen, where the
dataset is divided into 10 equal parts. The model is then trained using 9 of these parts,
while the remaining part is used for testing. This process is repeated 10 times, each time
using a different part as the test set. Finally, the average of the 10 test results is calculated
as the performance metric of the model. Cross-validation of the BN helps evaluate the
generalization ability of the model, i.e., how well it performs on new data [60]. After the
k-fold cross-validation is completed, the receiver operating characteristic (ROC) curve and
the confusion matrix of the model can be obtained. The area under the curve (AUC) of the
ROC is usually used to measure the accuracy of the test results, and the model is considered
to be of high utility when the AUC value is between 0.7 and 0.9 [61]. Figure 7 shows
the validation of the ROC curve of the static evaluation model for the safety resilience of
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prefabricated building construction. The AUC value reached 0.773, which confirms the
effectiveness of the model.
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The confusion matrix emerges from a validation process, portraying the connection
between the actual condition and the anticipated condition linked to the model [61]. To
comprehensively evaluate the performance of the constructed BN model in the study, four
evaluation metrics should be applied: Accuracy, Precision, Recall, and F1 Score [62]. These
metrics can be calculated from the elements of the confusion matrix obtained from the
output terminal of the model verification, as shown in Table 2. Each row of the confusion
matrix represents the actual class, and each column represents the class predicted by the
model. TN represents the total count of instances where incorrect categories are accurately
predicted. FN indicates the total count of accurate categories classified as incorrect. FP
is the total count of cases where the true category in the sample, marked as negative, is
predicted as positive. TP signifies the total count of accurately predicted instances.

Table 2. The confusion matrix.

Predicted Negative Predicted Positive

Actual Negative TN (True Negative) FP (False Positive)
Actual Positive FN (False Negative) TP (True Positive)

Accuracy is the proportion of correctly classified samples to the total number of samples.
A higher Accuracy indicates a better classification performance of the model. The formula
for calculating Accuracy is as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (7)
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The F1 Score is the harmonic mean of Precision and Recall. Precision represents the
proportion of true positive samples among the samples predicted as positive, while Recall
is the proportion of true positive samples correctly classified. The formulas for Precision,
Recall, and F1 Score are as follows:

Precision = TP/(TP + FP) (8)

Recall = TP/(TP + FN) (9)

F1Score = 2 × (Precision × Recall)/(Precision + Recall) = 2TP/(2TP + FP + FN) (10)

The confusion matrix obtained by k-fold cross-validation of static BN for safety re-
silience assessment of prefabricated building construction is shown in Table 3.

Table 3. The confusion matrix of static BN.

Predicted Negative Predicted Positive

Actual Negative 37 18
Actual Positive 25 153

According to Formulas (5)–(8), the Accuracy of the model is 81.55%, the Precision is
89.47%, the Recall is 85.96%, and the F1 Score is 87.68%. These results demonstrate that the
model, constructed under the dual driving forces of both knowledge and data, performs
well in terms of predictive performance.

3.3. Construction of DBN

Prefabricated building construction risks will undergo complex changes over time,
and a static BN cannot accurately reflect the dynamic evolution process of construction
risks. A DBN is a new stochastic model formed by expanding a static BN on time series,
which can mine the inherent development and change laws contained in the time series
data of each variable state. In addition to having many advantages of static BNs, a DBN
can also process time series data and perform quantitative reasoning of risks, dynamic
prediction, evaluation and diagnostic analysis, etc. It has great advantages in representing
complex random processes and studying the dynamic characteristics of things. The DBN
theory usually holds based on two assumptions: one is the Markov assumption, which
assumes that the probability of a node at time t is only affected by the moment t − 1, and
is independent of time slices prior to the moment t − 1, i.e., it is not allowed to span time
slices; and second is the stationarity, which means that the conditional probability of nodes
and nodes between two time slices in the DBN transfer network is exactly the same as
that in the initial network and that the conditional transfer probability is kept constant
throughout the DBN and is a fixed value. The DBN can be expressed as (B0, B→), where
B0 is the BN defining the prior probability P(Xt) and B→ is the transfer network. The
conditional probability distribution can be expressed as Equation (9):

P(Xt+∆t|Xt) =
n

∏
i=1

P(Xi
t+∆t|Xi

t) (11)

Using the DBN model to evaluate the safety resilience of prefabricated building
construction can consider the dynamic behavior of the system and perform transient
analysis when the system is disturbed or impacted by unknown factors until the system
fully recovers from the damaged state.

3.3.1. DBN Structure Determination

The initial network B0 of the DBN model is determined through the TS algorithm based
on expert experience and prefabricated building construction safety accident investigation
report data, as shown in Figure 5. The transfer network B→ is an extension of the initial
network B0. By considering the mutual influence between variables in adjacent time slices, a
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causal relationship is established to reflect the probability changes between these variables.
Transfer network B→ is manually constructed based on expert opinions, extending the
prefabricated building construction safety resilience R, absorptive capacity A, adaptation
capacity B, recovery capacity C, and optimization capacity D into transfer nodes. At
the same time, different optimization capabilities D affect the absorptive capability A,
adaptation capability B, and recovery capability C in future periods. The DBN network
structure is shown in Figure 8.
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3.3.2. Transfer Probability Matrix Determination

Determining a reasonable state transfer probability is a critical step in DBN reasoning.
According to the assumption of transfer probability invariance, the transfer probability of
the DBN is the same on all time slices. But because it is difficult to collect the historical
data of all factors in different time slices from the investigation reports of prefabricated
building construction accidents, it is impossible to learn such probabilities through training
sample sets. In this paper, the transfer probability of each node is obtained by expert survey
method using the fuzzy set theory, 7-level linguistic variables are introduced, and the
expert language is transformed by triangular fuzzy number. The correspondence between
natural language variables and triangular fuzzy number is shown in Table 4.

Table 4. Correspondence between natural language variables and triangular fuzzy numbers.

Linguistic Terms Fuzzy Number

Very low (0, 0.1, 0.2)
Low (0.1, 0.2, 0.3)

Lower (0.3, 0.4, 0.5)
Moderate (0.5, 0.6, 0.7)

Higher (0.6, 0.7, 0.8)
High (0.7, 0.8, 0.9)

Very high (0.8, 0.9, 1.0)

Six experts engaged in the field of construction engineering safety analysis and prefab-
ricated building are invited to evaluate the transfer probability of the transfer node, and
each expert has the same weight. The experts’ ratings are averaged, and the fuzzy mean
probability is converted into a precise value through the mean area method. The calculation
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of the triangular fuzzy number average is as shown in Formula (9). The calculated value of
node transition probability is shown in Table 5.

Pij,A =
aij + 2bij + cij

4
(12)

Table 5. Node transfer probability table.

A(t + 1)
A(t)

B(t + 1)
B(t)

YES NO YES NO

YES 0.84 0.33 YES 0.82 0.38

NO 0.16 0.67 NO 0.18 0.62

C(t + 1)
C(t)

D(t + 1)
D(t)

YES NO YES NO

YES 0.77 0.36 YES 0.73 0.29

NO 0.23 0.64 NO 0.27 0.71

R(t + 1)
R(t)

A(t + 1)
D(t)

YES NO YES NO

YES 0.87 0.28 YES 0.78 0.26

NO 0.13 0.72 NO 0.22 0.74

B(t + 1)
D(t)

C(t + 1)
D(t)

YES NO YES NO

YES 0.65 0.33 YES 0.71 0.31

NO 0.35 0.67 NO 0.29 0.69

The above probabilities were input into the model described in Section 3.3.1 to obtain
the complete DBN model for the safety resilience evaluation and analysis of the prefabri-
cated building construction.

4. Case Study
4.1. Project Overview

This study takes a prefabricated residential community in Wuhan, Hubei Province,
China, as an example to evaluate the construction safety resilience using the established
data-driven DBN model, thereby validating the effectiveness of the model. The project
developed 15 high-rise residential buildings with a total construction area of 178,000 m2.
The building structure adopted a prefabricated concrete shear wall structure, with prefabri-
cated components used for the exterior walls, floor slabs, and stairs. The overall assembly
rate was 51.2%, and the total construction duration was 300 days.

4.2. Resilience Evaluation

In this section, the construction safety resilience assessment model for prefabricated
building construction, which was developed based on the safety resilience evaluation index
system established in Section 3 and the integration of expert knowledge and data-driven
approaches, is applied to dynamically evaluate the safety resilience at different stages of the
construction process. The total construction duration of the project is 300 days, and the DBN
model is divided into 10 time slices based on a monthly interval in the GENIE 3.0 software.

By the sixth month of the project (time piece T = 5), the state of construction site
management was chaotic, with a lack of safety management and supervision on the con-
struction site. The workers’ safety awareness was insufficient, resulting in improper use of
construction machinery and equipment on-site. As a consequence, there were defects in
material quality and construction safety accidents in that month. After the accident, the con-
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struction unit promptly conducted accident cause investigation and experience summary
and enhanced safety education and training and drills. The above scenarios were input into
the DBN model as evidence, i.e., P(A1/A2/A5/A8) = 0 and P(D1/D4) = 1. Figure 9 shows
the DBN model with evidence input. Figure 10 shows the dynamic probability changes of
construction safety resilience and the four resilience metric nodes with evidence input.
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Figure 10. The dynamic probability changes of nodes with evidence input.

The value of absorptive capacity at time slice T = 5 rapidly decreased from 82.9% to
53.6%. Due to insufficient absorptive capacity, the system resilience value R decreased
from 77.1% to 69.3% after the accident, and the probability of non-failure of the system’s
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adaptive capacity B and recovery capacity C also decreased. However, due to the fact
that the construction company promptly conducted the accident cause investigation and
experience summary, as well as strengthened the safety education, training, and drills,
the optimization capability D non-failure probability of the construction system increased
from 72.1% to 74.7%. Numerically analyzed, the value of safety resilience in prefabricated
building construction meets the passing level but is not very high, indicating significant
room for control and improvement. The three resilience metric node values of adaptation
capacity, recovery capacity, and optimization capacity are generally above 70%, among
which the adaptation capacity value is the most considerable. This suggests that the current
prefabricated building construction system is capable of effectively withstanding the impact
of accidents, promptly responding to control the damage caused by accident disturbances
and reducing performance losses and other destructive consequences. The results are
consistent with the actual situation on site, indicating that the proposed DBN model can
accurately reflect the impact of accidents on the probability of resilience and the dynamic
change characteristics of resilience.

4.3. Diagnostic Reasoning

The reverse diagnostic reasoning of the BN model is to calculate the posterior probabil-
ities of other node variables given the known target node of the network model. Utilizing
the model for reverse diagnosis can infer the weak links in the BN of construction safety
resilience in prefabricated buildings. This helps strengthen inspections, preventive mea-
sures, and enhancements for nodes with lower posterior probabilities of non-failure. Based
on the constructed DBN model, by setting the leaf node “safety resilience of prefabricated
building construction (R)” as the evidence node with a failure probability of 100%, the
posterior probability distribution of other nodes is derived and the Ratio of Variation (RoV)
value of each sub-node is calculated. The RoV’s importance in sensitivity analysis is used to
select key events by comparing the variation between the prior and posterior probabilities
of basic events [63]. The basis for sensitivity analysis using the RoV value in the BN is
to understand the impact of changes in node probabilities or parameters on the entire
network. The RoV value is an indicator used to measure the relative degree of change. By
changing the input (the probability or parameter of the node) and observing the relative
change of the output, the dependence between nodes and the robustness of the network
can be revealed. A higher RoV value for a basic event indicates a greater contribution
of that event to the occurrence of the top-level event, thus requiring more attention. The
calculation of RoV value is as follows:

VRO(Xi) =
π(Xi)− θ(Xi)

π(Xi)
(13)

In the formula, VRo is the ROV value of the node Xi, Xi is the root event, θ(Xi) is
the posterior probability of Xi, and π(Xi) is the prior probability of Xi. By analyzing
and comparing the posterior probability values of each node and ranking the importance
of the root nodes based on their RoV values, key influencing factors affecting the safety
resilience of prefabricated building construction are identified. The results are shown
in Tables 6 and 7.

Table 6. Root node posterior probability and RoV value sorting (secondary indicator).

Indicator Prior Probability Posterior Probability Sort RoV Value Sort

Safety awareness of personnel A1 0.8236 0.8112 24 0.0151 10
Professional technical level and operational proficiency

of personnel A2
0.8797 0.8713 11 0.0095 17

Personnel physiological and
psychological state A3

0.8837 0.8756 10 0.0092 19

Preventing unsafe behavior of
personnel A11

0.8695 0.8365 19 0.0379 2
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Table 6. Cont.

Indicator Prior Probability Posterior Probability Sort RoV Value Sort

Machinery and equipment condition
and performance A4

0.9069 0.9004 6 0.0072 20

Quality of prefabricated components A5 0.9122 0.9092 3 0.0033 25
Maturity of key technologies for
construction and installation of
prefabricated components A6

0.8949 0.8911 8 0.0042 24

Reliable connection of prefabricated
components A7

0.8916 0.8875 9 0.0046 23

Safety management and supervision on the
construction site A8

0.8597 0.8296 22 0.0350 3

Risk source assessment and
countermeasures A9

0.8433 0.8353 21 0.0095 18

Information monitoring and processing
system setup A10

0.8141 0.8033 26 0.0133 14

Multidimensional cooperation B1 0.8370 0.8286 23 0.0101 16
Self-organizing ability of the

organization B2
0.8517 0.8389 16 0.0150 11

Substitutability of key resources B3 0.9051 0.8923 7 0.0141 13
Integrity and efficiency of security

messaging B4
0.8502 0.8380 17 0.0143 12

Accident emergency management
system C1

0.9042 0.9028 5 0.0015 28

Emergency Response Plan C2 0.9136 0.9119 2 0.0019 27
Emergency access and shelter settings C3 0.9187 0.9175 1 0.0013 29

emergency management actions C7 0.826 0.801 27 0.0303 4
Emergency organization and

dispatching capability for managers C4
0.8761 0.8611 14 0.0171 8

Emergency life-saving capabilities for
personnel C5

0.8513 0.8362 20 0.0177 7

Emergency material supply C6 0.8795 0.8655 13 0.0159 9
Accident cause investigation and

experience summary D1
0.9255 0.9065 4 0.0205 6

Establishing security information
sharing and management platform D2

0.8527 0.8426 15 0.0118 15

Intelligent transmission of risk disaster safety early
warning information D3

0.8403 0.8376 18 0.0032 26

Building a risk management information system D7 0.7828 0.7609 28 0.0280 5
Safety education training and drills D4 0.8740 0.8694 12 0.0053 22

Developing transformational leadership D5 0.8116 0.8062 25 0.0067 21
Establishing a resilience safety culture D6 0.7208 0.6898 29 0.0430 1

Table 7. Root node posterior probability and RoV value sorting (primary indicator).

Indicator Prior
Probability

Posterior
Probability Sort RoV Value Sort

Absorption capacity A 0.8239 0.6422 3 0.2205 1
Adaptation capacity B 0.8706 0.6977 1 0.1986 3
Recovery capacity C 0.8259 0.6521 2 0.2104 2

Optimization capacity D 0.7224 0.6089 4 0.1571 4

5. Results and Discussions

Compared with the inference result of the static BN shown in Figure 6, the DBN
inference results are slightly lower due to the indirect influences related to construction
activities at different points in time are considered to affect the construction activities. In
this case, the construction safety resilience transmission chain becomes longer, leading to a
slight decrease in the safety resilience of the construction activities. The DBN model can
effectively accumulate the inference results from the previous time step and feed them back
to the new time nodes, obtaining more and more information over time. Thus, the method
can continuously improve the accuracy of resilience assessment and effectively reduce
the uncertainty of the assessment process [17]. Unlike a static BN, the DBN evaluation
model can infer and update the states of other time points based on the current state
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information, allowing an effective combination of mathematical reasoning and expert
experience. Therefore, in practical application, the model is not significantly biased by
missing or distorted data at a particular moment in time.

Based on the posterior probability, when the safety resilience of prefabricated build-
ing construction completely fails, the order of the non-failure probabilities for the re-
silience metric node is as follows: optimization capability (60.89%) < absorption capability
(64.22%) < recovery capability (65.21%) < adaptation capability (69.77%). The smaller the
posteriori probability of a node, the higher the probability of its failure. The failure probabil-
ity of the optimization capability is the largest. Starting from node R, the most approximate
causal chain for safety resilience failure in prefabricated building construction can be found
by searching backwards and downwards for the parent node with the smallest posterior
probability of each child node. The causal chain for safety resilience failure is Build-
ing a risk management information system D7 → Establishing a resilience safety culture
D6 → Optimization capability D → Prefabricated building construction safety resilience R.

According to the RoV value of the root nodes, D6 establishing a resilience safety
culture, A11 preventing unsafe behaviors of personnel, A8 safety management and supervi-
sion on the construction site, C7 emergency management actions, and D7 building a risk
management information system are the key factors influencing the safety resilience of
prefabricated building construction. This indicates that the organization should focus on
establishing a resilient safety culture during the construction of prefabricated buildings.
Resilient safety culture is characterized by continuous improvement in safety performance,
identifying and anticipating changing forms of safety risks in complex socio-technical
systems, and aiming to achieve consistently high safety performance. Additionally, it is
crucial to manage and supervise safety at construction sites and raise the safety awareness
of construction personnel, while also taking preventive measures against unsafe behav-
iors by individuals [7]. After a safety accident occurs, prompt emergency management
should be carried out to minimize casualties and accident losses. It is essential to improve
the emergency management mechanisms and emergency plans, ensuring the adequacy
of material reserves and other resources [64]. Building a risk management information
system enables dynamic risk assessment of the information monitored in the construction
of prefabricated buildings and the release of construction safety warning information, as
well as monitoring construction quality to ensure project quality [65].

From a macroscopic perspective, the RoV values of the four resilience metric nodes go
from absorption capacity > recovery capacity > adaptation capacity > optimization capacity,
which means that the absorption capacity has the greatest impact on improving the safety
resilience of prefabricated building construction. Therefore, when formulating a safety re-
silience improvement strategy for prefabricated building construction, in the case of limited
resources and similar improvement effects of influencing factors of different capabilities,
the influencing factors of absorption capacity should be improved first. Subsequently, the
impact factors of recovery capacity should be enhanced, followed by those of adaptation
capacity, and finally, the influencing factors of optimization capacity should be improved.

6. Conclusions

A DBN evaluation model for assessing the safety resilience of prefabricated building
construction processes is developed in this paper. The model analyzes the pathways of
resilience failure and identifies key resilience influencing factors. The findings provide
valuable insights into how to comprehensively manage the construction risk of prefabri-
cated buildings in the future and how to improve the anti-risk ability, rapid recovery ability
after risk accidents, and adaptive learning ability of potential risk accidents. By reducing
the probability of risk incidents and minimizing the losses caused by such incidents, the
study aims to achieve safer and more efficient prefabricated construction projects. The
main contributions of this paper are as follows:

(1) Based on the concept of resilience and its characteristics, combined with the char-
acteristics of prefabricated building construction, the concept of safety resilience of
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prefabricated building construction is proposed. The evaluation index system of safety
resilience of prefabricated building construction is constructed from the absorption
capacity, adaptation capacity, recovery capacity, and optimization capacity. This paper
integrates the concept of resilience into the safety risk management of prefabricated
building construction, improving the existing risk management that only emphasizes
prior control and focusing on the construction system’s adaptability to accidents and
optimization capabilities. It emphasizes learning the impact experience of disturbance
after the accident and improving the adaptability to uncertain events through acci-
dent review and learning to achieve system optimization. Resilience engineering is
a new path and method for risk management and safety management in the face of
increasingly complex socio-technical systems.

(2) Combining the relevant literature and expert knowledge, structure learning by the
TS algorithm and parameter learning by the EM algorithm are used to construct a
DBN evaluation model for the safety resilience of prefabricated building construction.
Compared with traditional BN model construction based on expert experience, data-
driven BN construction can learn the structure and parameters of the model from
a large amount of actual data without relying on the prior knowledge of domain
experts. This makes the model more flexible and adaptable, capable of capturing
complex relationships and patterns in the data. At the same time, data-driven BNs
allow models to be dynamically updated to reflect changes in new data. This real-
time update enables the model to continuously improve and optimize, adapting to
changing environments and conditions. This has important implications for decision
making and risk management during the construction of prefabricated buildings.

(3) Combined with a specific engineering case, the model obtained the dynamic change
curve of the safety resilience of prefabricated building construction when the evidence
was input. With the help of the model’s reverse diagnosis reasoning, the top five
key resilience factors of the case project were identified from the micro perspective
as establishing a resilience safety culture, preventing unsafe behaviors of personnel,
safety management and supervision on the construction site, emergency management
actions, and building a risk management information system. From a macro perspec-
tive, the sensitivity of the four resilience metric nodes is absorption ability, recovery
ability, adaptation capacity, and optimization ability from large to small.

This study also has some limitations. In the measurement of construction safety
resilience based on a DBN, the influencing factors are set as discrete variables, and two
states of “failure” and “no failure” are set. However, in practice, the influencing factors
may be continuous variables, so continuous variables can be added in future research to
further improve the accuracy of the construction safety resilience measure for prefabricated
buildings. Moreover, this study obtained a large amount of data from prefabricated
building construction safety accident reports as a training set. This process was laborious
and prone to human error. Future work would focus on using automatic data collection
technology to study real-time intelligent monitoring mechanisms and develop automatic
decision-support systems.
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