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Abstract: The technical condition of bridges has become a crucial issue for organizing the maintenance
and repairs in bridge management systems. It is of great practical engineering significance to construct
an effective model for predicting the technical condition degradation of the bridge through the use
of the historical inspection data. Based on the semi-Markov random process, this paper proposes
a useful deterioration prediction model for bridges in the highway network. From the historical
inspection data of the prefabricated concrete box girder bridges, the degradation curves of technical
condition rating are obtained. The effect of bridge length on degradation rate of the prefabricated
concrete box girder bridges is analyzed. According to the Weibull distribution parameters of different
condition grades, the technical state degradation models for a bridge group and an individual bridge
are proposed to predict the performance of the overall bridge and superstructure of the bridge. The
results show that with the increase in bridge length, the degradation rate of bridge technical condition
increases. The degradation rate of the technical condition of the superstructure is faster than that of
the overall bridge. The proposed semi-Markov stochastic degradation model for the bridge group
can not only predict the different condition ratings of the bridges at any time, but also predict the
future deterioration trend of an individual bridge under any ratings.

Keywords: condition degradation; prediction model; semi-Markov process; technical state rating;
concrete box girder bridge

1. Introduction

Bridges play a key role in the arteries of the whole transportation network. However,
many bridges experience degradation in load-bearing performance due to the aging of
construction materials, the harsh environment and inappropriate management, which leads
to a potential threat to the safety and reliability of the bridge system. With the increasing
number of bridges and the demanding maintenance and management of highway network,
research focus has changed from construction to management and maintenance. However,
the maintenance strategies need to be decided according to the degree of bridge degradation.
Therefore, due to the problems of structural aging, steel bar corrosion and other structural
defects caused by long-term loading on bridges, it is crucial to construct an appropriate
degradation model based on the regular inspection information of bridges [1].

There are many models available for bridge performance evaluation and prediction.
Based on neural network and machine learning methods, Xia et al. [2] proposed an entire
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data-driven condition assessment framework for network-level bridges, including data
integration, condition assessment and maintenance management. Lallam et al. [3] proposed
a fuzzy hierarchical analysis (AHP) method to evaluate the damage state of bridges, which
is used in the decision-making of the maintenance planning of masonry arch bridges,
but the priority criteria are subjective. Martucci et al. [4] proposed the extreme value
function theory (EFT), which provides a convenient tool for damage detection based
on modal modes. Based on deep learning technology and a Bayesian network model,
Lei et al. [5] proposed a multi-level time-varying defect analysis method and provided
an overall evaluation framework for the bridge network according to inspection reports
of bridges over many years. Liu et al. [6] provided a state assessment method based on
variable weight synthesis method and grey relational degree theory to evaluate cable-stayed
bridges. However, the research mainly focused on cable stress, and other components
were not considered. In addition, it is necessary to study the impact of reinforcement
and maintenance on the evaluation and prediction of concrete beam bridges. Allawi [7]
verified through experimental testing and numerical analysis that the performance and
method of using external prestressing to reinforce beams can effectively improve the bearing
capacity of the reinforced beams. Allawi et al. [8] and Al-Sherrawi et al. [9] studied the
mechanical performance of full-size post tensioned precast concrete beams with different
node configurations. Vůjtěch et al. [10] applied Fe-Mn-Si shape memory alloy to reinforce
a historic road bridge, which significantly improved the yield and fatigue capacity of the
reinforced beam.

The stochastic model is also a commonly used method to predict the degradation process
of the bridge structure. The stochastic model typically uses a state-based Markov chain model,
which is constructed by using the transfer probability matrix obtained from the percentage
prediction method [11]. The uncertainty and randomness of the degradation process of
concrete bridges can be taken into account by the random model predictions [12–15]. The
typical stochastic methods include Gamma process, Weibull process and Markov process,
while the Markov model has been widely used in the degradation modeling of infrastructure
in cases where concrete inspection data are available.

State-based stochastic Markov chain model is often applied in bridge management
planning. By establishing a Markov chain model, the transfer probability of bridge com-
ponents in different conditions can be modeled and analyzed, and the degradation of
bridge components and their future damage development can be predicted. Yosri et al. [16]
developed a stationary GA-based Markov chain model to effectively predict future bridge
conditions based on historical data. Tao et al. [17] have proposed a novel hybrid Markov
decision process model that integrates a discrete-time Markov decision process model for
dealing with progressive deterioration and a continuous-time Markov decision process
model for dealing with sudden earthquakes into a unified framework. Schöbi et al. [18] pre-
sented an enhanced variant of partially observable Markov decision processes (POMDPs)
for the life cycle assessment and maintenance planning of infrastructure, which can achieve
a better balance between accuracy and computational efficiency. Lethanh et al. [19] used
Bayesian statistics and a Markov chain Monte Carlo simulation to propose a Poisson hidden
Markov model for predicting the deterioration process of pavement structures.

In contrast to traditional Markov processes, semi-Markov can reflect real-time bridge
state transitions, where the holding time of each state is assumed to follow a Weibull
distribution. Wu et al. [20] proposed a life cycle optimization model based on the semi-
Markov process, which makes the decision-making process of bridge management more
quantitative and explicit. Thomas et al. [21] concluded that the semi-Markov model is more
feasible and flexible than the traditional Markov chain model in predicting the deterioration
of existing transportation infrastructure. Fang et al. [22] proposed a semi-Markov process
model based on Weibull distribution for the prediction of urban bridge deterioration by
considering the time-dependent reliability in the bridge deterioration process, and showed
that the prediction accuracy of the semi-Markov model at the network level was better than
that of the regression analysis method. Masovic et al. [23] introduced the semi-Markov
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decision process and found that determining the optimal strategy in a finite time range has
high mathematical complexity. Zambon et al. [24] proposed a state rating model based on a
semi-Markov process, which can overcome the shortcomings of the original model that did
not take into account the properties of actual physical phenomena leading to deterioration.

In summary, the existing evaluation criteria and analysis methods have certain subjec-
tivity. The simulation of bridge degradation process ignores a large amount of measured
data and pays less consideration to bridge components. In addition, the traditional Markov
process cannot capture the real-time bridge condition state transition, while the state
transition of the semi-Markov process has the Markov property, and the time-varying semi-
Markov can transform the qualitative inspection data into quantitative technical condition
rating and prediction as well. Therefore, it is of great significance to study the degradation
prediction of concrete box girder bridges based on the semi-Markov process.

This paper uses the semi-Markov model of Weibull distribution to analyze the in-
spection data of concrete box girder bridges in the highway network, and simulates the
degradation of the technical states of the overall structure and the superstructure of high-
way bridges. This method can make full use of the bridge inspection data and technical
condition evaluation data. According to the data, the box girder bridge is classified accord-
ing to the bridge span and degradation rates; then, the technical condition degradation
simulations are carried out. Considering the transition probability and waiting time dis-
tribution of the bridge state, the real-time bridge state is obtained to better describe the
performance degradation law of the actual bridge and provide a more accurate prediction
model for bridge degradation simulations.

2. Discrete State Degradation Process Random Simulation
2.1. Time-Varying Markov Chain Method

Time-varying Markov chain is an extended form of the Markov chain. The evolution
of a Markov chain can be seen as a series of transitions between certain states under
certain conditions. This process requires the property of memorylessness, meaning that the
probability of future states depends only on the current state and not on the past states. For
the discrete parameter stochastic process (Xt) with a discrete state space, the properties of a
Markov chain can be represented as follows:

P(Xt+1 = it+1|Xt = it, Xt−1 = it−1, . . . , X1 = i1, X0 = i0) = P(Xt+1 = it+1|Xt = it) (1)

where it is the process state at time t; and P is the conditional probability of a future event.
When the system degradation of state i is modeled based on the Markov chains,

the transition probability, denoted as pij, from state i to state j in the next stage can be
represented as:

Pr(Xt+1 = j
∣∣X = i) = pij (2)

The transition matrix P is represented as follows:

P =
{

pij
}

M×M, where pij ≥ 0 and ∑M
j=1 p = 1 f or i, j =1, 2, . . . , M (3)

The dimension M of the transition matrix P depends on the number of possible states
in the system, and the sum of probability of each row in this matrix is unity. For a system
in state i, after n transitions, the transition probability matrix P(n) for the system to change
from state i to state j is given by:

P(n) = P·P· . . . ·P = Pn (4)

where P(n) is the probability of the system transitioning from state i to state j within n
transition periods. When the transfer period is one year, P(n) represents the probability of
the system moving from state i to j in year n. The Markov model can be expressed as:
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a(n) = Pn·A(0) = Pn·a(0) (5)

where a(n) is the state probability vector at time n; a(0) is the initial state probability vector
and P is the state transition probability matrix.

In this article, the time-varying Markov chain process is used to obtain the deterioration
model. For the time-varying Markov chain, the state transitions not only depend on the
current state, but also on the duration of time spent in each state. The characteristics of the
semi-Markov chain are that it can more accurately describe the duration of state changes
and the temporal characteristics of the transition process. By comparing with traditional
Markov chains, modeling and analysis of the time-varying Markov chain are more complex,
requiring consideration of the transition probability and waiting time distribution of states.
The probabilities of bridge states can be influenced and altered by external factors, such as
environmental conditions and vehicle loads. Therefore, the use of the semi-Markov chain
is more appropriate for the bridge performance degradation model.

2.2. Performance Degradation Modelling

In the process of assessing bridge degradation, the structure cannot transition directly
from one state to another state within a short period of time. Additionally, the structure
cannot transition from a worse state to a better state without any maintenance. Therefore,
the transition matrix can be represented as:

P =


p11 p12 0 0 0
0 p22 p23 0 0
0 0 p33 p34 0
0 0 0 p44 p45
0 0 0 0 p55

 (6)

In a traditional Markov chain, the transition probability matrix P is determined by
minimizing the difference between the inspected state values and the predicted states
obtained from bridge inspections:

min
pij

∑K
k=1

∥∥∥Bk − a(0)TPnk sT
∥∥∥ (7)

where Bk is the inspection value of the bridge condition at the degradation cycle; k
is the total number of inspection values; sT is the transpose of the bridge state space
s = [1, 2, 3, 4, 5], corresponding to bridge ratings from grade one to grade five (CR1–CR5);
a(0) = [1, 0, 0, 0, 0]T is the initial state probability. The grade ranges and qualitative descrip-
tions corresponding to the condition ratings from grade one to grade five (CR1–CR5) are
provided in [21], as shown in Table 1.

Table 1. The state classification of Chinese highway bridges [25].

Condition Rating Grade Range Damage Description

1 [95, 100] New condition, fully functional.
2 [80, 95) Small defects, no impact on the functionality of the bridge.
3 [60, 80) Moderate defects, still able to maintain normal functional use.

4 [40, 60) Major components have significant defects, affecting the functionality of the bridge or
reducing its load-bearing capacity, making normal use uncertain.

5 [0, 40) Major components have severe defects, rendering the bridge unusable and posing a risk
to bridge safety. The bridge is in a dangerous state.

In the semi-Markov process, the state space remains in a particular state for a given
time and then transitions to another state. The waiting time at any state can be modeled as
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a random variable with a Weibull distribution. The probability density function fi(t) and
survival function Si(t) of state i as a function of time t are represented as:

fi(t) = λiκi(λit)
κi−1 exp[−(λit)

κi ] (8)

Si(t) = exp[−(λit)
κi ] (9)

where λi and κi are the scale and shape parameters of the Weibull distribution in state
i, respectively.

From Equation (7), to obtain the semi-Markov transition matrix of the bridge, it is
necessary to calculate the probability pi,i+1 of transitioning from state i to the next state.
Therefore, considering the waiting time [T1, T2, T3, T4] corresponding to state i = [1, 2, 3, 4]
as a random variable, if the deterioration process is in state i at time t the conditional
probability of the bridge transitioning to the next state i + 1 in the next time step ∆t
(typically one year) is expressed as [26]:

pi,i+1(t) =
f1→i(t)∆t

S1→i(t)− S1→(i−1)(t)
(10)

where f1→i is the probability distribution function (PDF) of waiting time T1→i; T1→i is the
cumulative waiting time from state 1 to state i; S1→i and S1→i−1 are the survival functions
of waiting time T1→i and T1→i−1, respectively.

The current objective is to estimate the scale parameter λi and the shape parameter
κi for the inspection data. There are several methods to estimate the parameters, such as
expert opinion method and maximum likelihood estimation. In this paper, based on the
degradation curves, it is assumed that the survival probability Si(τi) corresponding to the
average waiting time of each state is 50%, and the estimation of the Weibull distribution’s
scale parameter λi and shape parameter κi is given by [27]:

Min∑τi
1 | exp[−(λit)

κi ]− pi

t
τi |2

Subject to : exp[−(λiτi)
κi ] = pi

(11)

where pi is the survival probability at time Ti = τi, obtained from assumptions. Based on
the determined Weibull distribution parameters of the rating waiting time [T1, T2, T3, T4],
the cumulative waiting time distributions for State 1+2, State 1+2+3, and State 1+2+3+4 can
be calculated using Monte Carlo simulations.

After obtaining the Weibull distribution parameters λi and κi for any state i, the
probability transition matrix for the improved semi-Markov process for state i can be
determined using Equation (11). The probability distribution of the state in year n can
be obtained from the probability transition matrix and the state probability distribution,
determined by:

a(t) = a(t − 1)Pt−1,t(t) (12)

where P(t) is the probability transition matrix at time t years; a(t− 1) is the state probability
distribution in year t − 1.

By multiplying the state probability distribution at time t by the transposition of the
bridge state space s = [1, 2, 3, 4, 5] the expected value of the state rating at time t is obtained
from the following:

e(t) = a(t − 1)Pt−1,tsT (13)

The flow chart for determining the probability distribution of bridge ratings using the
proposed method is shown in Figure 1.
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3. Deterioration Modelling of Highway Bridges
3.1. Bridge Technical Condition Evaluation

The assessment of the current condition of existing bridges of a highway network forms
the basis for bridge degradation prediction and maintenance decision-making. In China,
the technical condition assessment of highway bridges is mainly undertaken in accordance
with [25]. Periodic inspections are carried out to assign bridge technical condition scores
and determine the technical condition rating.

During inspections, bridges in the highway network are divided into three compo-
nents for inspection, i.e., bridge deck system, superstructure and substructure. Bridge
inspectors visually assess the extent of deterioration for each component and then assign
the corresponding values. Based on the standardized criteria, the technical condition scores
for each component are calculated; then, the technical condition scores of each bridge
components, and the bridge as a whole are obtained. Finally, as shown in Table 1, the
technical condition rating of the bridge is determined.

3.2. Deterioration Curve

The inspection data for approximately 30 years for a total of 1773 concrete box girder
bridges in Jiangxi province in China are collected. Among these bridges, a total of 1173 are
the prefabricated concrete box girder bridges, accounting for approximately 65% of the total
number of bridges. Therefore, this study primarily focuses on the degradation prediction of
prefabricated box girder bridges. The construction date of the concrete box girder bridges
is illustrated in Figure 2.

To construct a scientifically sound degradation model for bridge technical conditions at
the highway network level, a substantial amount of inspection data are required. In practice,
insufficient data, caused by the limited number of bridges, make it difficult to determine
the waiting time for each condition; thus, the reasonable Weibull distribution-based semi-
Markov degradation model for bridges may not be easy to obtain. The differences in
degradation patterns of bridges for the same bridge type exist in services, but could be
neglected in the current condition assessments. This study takes advantage of the large
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quantity of data available for prefabricated box girder bridges and divides the bridge into
multiple types for in-depth analysis.
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Through the collection and organization of the detection data, we found that there
are differences in the degree of degradation of different bridge sections, and there are also
differences in the degradation rate of the same bridge length. At present, there are also
relevant studies in the literature indicating a correlation between bridge length and the
degradation rate of technical conditions [28]. Therefore, in this study, the prefabricated box
girder bridges are classified into nine categories based on bridge length and degradation
rate. Firstly, bridges are categorized into three groups based on bridge length, i.e., 0–100 m,
100–200 m and >200 m. Secondly, each type of bridge length is divided into three types
based on degradation rate, i.e., fast, medium and slow degradation. The degradation rate
(fast, medium and slow degradation) of the bridge is determined as the maximum value
between the ratio of the detection score to the bridge age and the ratio of the difference
from two detection scores to the detection interval. Divide the degradation rate interval
to obtain bridges with fast, medium and slow degradation. According to the above
classification method, the overall bridge and the superstructure are divided into nine
categories. The linear regression method is employed to fit the degradation curves over
time for each category of prefabricated box girder bridges, for both the overall condition
and the superstructure condition, as shown in Figures 3 and 4. It is worth noting that the
service time of the bridge in this paper is relatively short, making it difficult to obtain a
complete degradation curve. However, we have added data on the degradation of the
bridge to ratings 4 and 5 after consulting the relevant literature, allowing the model to
predict the performance of bridges with longer service periods. Figure 3 shows the results
for the degradation curves of the whole bridge system with various bridge lengths; the
degradation curves are obtained from the relevant inspection data for the group of bridges
by the curve fitting method.
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From the results, in the case with moderate degradation rates, the overall technical
condition of the bridge with lengths of 0~100 m, 100~200 m and >200 m from condition
state 1 to state 3 takes 23 years, 20 years and 17 years to degrade, respectively. This indicates
that as the bridge length increases, the degradation rate of the bridge technical condition
also increases.

Figure 4 shows the degradation law of the superstructure technical conditions for
various bridge lengths. Here, in the case with a moderate degradation rate and a bridge
length of 0–100 m, it takes approximately 23 years for the overall condition to degrade from
a good condition to rating 3, while for the superstructure with a bridge length of >200 m, it
takes around 16 years, indicating that the deterioration rate of the service performance of
the superstructure degrades faster mainly due to the significant impact of traffic loads.
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4. Reliability Assessment and Prediction
4.1. Bridge Network

As mentioned earlier, there is a certain correlation between the overall and super-
structure degradation and the bridge length. Generally, as the bridge length increases, the
degradation of the technical conditions of the bridges accelerates. Furthermore, the analysis
of historical inspection data indicates that a significant number of bridges deteriorate at a
moderate degradation rate. Therefore, this study primarily focuses on the analysis of the
overall and superstructure degradation of prefabricated box girder bridges with a length
greater than 200 m at the medium degradation rate.

During the calculation for the transition matrix using the time-varying Markov chain
method, if there are waiting time data for different condition ratings of the bridge, the
Weibull distribution parameters can be estimated with the curve fitting method. However,
due to limited data availability, the average waiting times for each condition rating to



Buildings 2024, 14, 543 10 of 18

estimate the Weibull distribution parameters for the overall and superstructure condition
ratings are obtained using Equation (11). The estimated parameters are presented in Table 2.

Table 2. Parameter estimation of Weibull distribution with different ratings.

Grade

Whole Bridge Superstructure

Scale
Parameter

Shape
Parameter

Scale
Parameter

Shape
Parameter

1 0.1750 2.7433 0.2729 1.8329
2 0.0730 2.7794 0.0980 2.9121
3 0.0532 3.6581 0.0789 2.5968
4 0.0532 3.6581 0.0532 3.6581

According to the Weibull distribution parameters in Table 2, the Monte Carlo numerical
simulation is conducted to obtain the probability density functions and survival functions
for the cumulative waiting times of different condition ratings of the bridges in the highway
network. These functions are shown in Figures 5 and 6. From Figures 5 and 6, it can be
observed that the service time corresponding to the peak value of the probability density
function of cumulative waiting time in Figure 5 is the same as that corresponding to a
50% survival probability in Figure 6 for both the overall condition and the superstructure
condition, indicating the correctness of the model proposed in this study.
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In Figure 6, CR (1–4) represent the survival functions for the cumulative waiting
times of condition ratings 1 to 4. The expected lifespans for the overall condition and the
superstructure condition at a 50% survival probability are approximately 52 years and
41 years, respectively. These values agree closely with the lifespans shown in the degra-
dation curves, which demonstrates that the proposed degradation model can effectively
predict the degradation trends of bridge technical conditions at the highway network level.

After the probability density functions and survival functions for the cumulative
waiting times of different condition ratings are obtained, the transition probability matrix
for each time interval (t = 1) can be calculated from Equation (10). The transition probability
matrix is then applied to Equation (12) to obtain the probability distribution for different
condition ratings. Figure 7 illustrates the evolution of the distribution of all condition states
for the overall condition and the superstructure condition of the bridges in the highway
network. It is assumed that the probability distribution for rating 1 is unity at time t = 0,
and there are no maintenance or repair actions. For the overall condition, 44% of the bridges
do not degrade to rating 5 after 52 years in service, and for the superstructure condition,
almost all bridges have degraded to rating 5 after 60 years in service.
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4.2. Individual Bridge Case Study

The method for evaluating the degradation of technical conditions for an individual
bridge is similar to that used for assessing the degradation of bridges in a highway network,
shown in Figure 8. Here, the technical condition degradation is predicted for three compo-
nents, i.e., bridge bearing, superstructure and bridge overall. In this paper, a prefabricated
concrete box girder bridge with a length of 217 m built in 2012 is adopted for the individual
bridge case study; the bridge was inspected in 2015, 2018 and 2021, and the field inspection
results are summarized in Table 3.
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Table 3. Technical state scores for the bridge.

Inspection Time Bearing Superstructure Bridge Overall

Year 2015 100 92.8 96.08
Year 2018 81.43 88.32 94.24
Year 2021 75.33 82.23 92.17

By the linear regression fitting of technical state scores, the waiting times of rating 1 and
rating 2 are 3 years and 7 years for the superstructure and 6 years and 16 years for the
bridge overall, respectively. By comparing the degradation curves in Figures 3c and 4c, the
technical state scores of the superstructure and the bridge overall can be classified as the
moderate deterioration rate. The bearing has been degraded to rating 3 at present, and
the waiting times of bearing ratings 1 and 2 are about 4 and 3 years, respectively. Due
to the limited amount of inspection data, the waiting time of rating 3 and rating 4 are
difficult to obtain. The missing data are supplemented from the literature as indicated in
Figures 2 and 3, and their complete degradation curves are provided, as shown in Figure 9.
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Figures 10 and 11 show the results for estimating the cumulative wait time for rat-
ings by using Monte Carlo. As expected, the time for the maximum probability density
for three bridge components is approximately the same as that corresponding to a 50%
survival probability.
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In Figure 11, the life expectancy of the bridge bearing, superstructure and the bridge 
overall with CR (1~4) at 50% survival probability is given as 20 years, 31 years and 55 
years, respectively, which is basically consistent with the time shown by the degradation 
curves. 
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Figure 10. Probability density function of cumulative waiting time for different bridge components:
(a) bearing; (b) superstructure; (c) whole Bridge.

In Figure 11, the life expectancy of the bridge bearing, superstructure and the bridge
overall with CR (1~4) at 50% survival probability is given as 20 years, 31 years and 55 years,
respectively, which is basically consistent with the time shown by the degradation curves.

Figure 12 shows the semi-Markov transfer various probabilities of the bearing, super-
structure and the bridge overall, where pij represents the probability of transferring the
ith condition rating to the jth condition rating. It can be seen that under the same bridge
age, the probability p45 of the bearing transferring from CR4 to CR5 is greater than that
of the superstructure and the bridge overall. Compared with the bearing and the bridge
overall, the increase in superstructure p12 is the most obvious, since the degradation of the
superstructure from CR1 to CR2 is the fastest for the inspection data.
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Figure 11. Cumulative waiting time survival function for different bridge components: (a) bearing;
(b) superstructure; (c) whole bridge.

Similarly, the semi-Markov model based on the Weibull distribution is utilized to
predict the change in the technical state rating probability of the bridge over time, as shown
in Figure 13. As can be seen from Figure 13, compared with the bearing and superstructure,
the technical condition of the bridge overall deteriorates the slowest, and the probability
of CR5 disappears after about 80 years in service. For the bearing in Figure 13a at year 15,
the probabilities of CR3, CR4 and CR5 are approximately 40%, 49% and 11%, respectively.
In the following 10 years, the probability of CR4 first increases and then decreases, while
the probability of CR3 continues to decrease, indicating that the bearing could be within
CR4 or even close. It can be seen from Figure 13c that the time corresponding to the 50%
probability from CR1 to CR5 is approximately 6 years, 23 years, 40 years and 57 years,
respectively, which is only 1 or 2 years different from the times shown by its degradation
curve, indicating that the model can better predict the degradation trend of the technical
condition of individual bridges.
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5. Conclusions

This study utilizes the regular inspection data of the prefabricated prestressed con-
crete box girder bridges located on the highway network, and proposes a time-varying
deterioration model for the technical conditions of the structural components of both the
group and individual bridges. The following main conclusions can be drawn:

(1) The degradation curves of the technical condition of the superstructure and bridge
overall can be obtained from the inspection data, classified as fast, medium and slow degradation
curves and with three deterioration rates, i.e., fast, moderate and slow. It is found that when the
bridge length increases, the degradation rate of the technical condition also increases.

(2) Over the next 30 years, the proportion of the bridges in technical condition
ratings 1 and 2 gradually decreases in the highway network, while the number of bridges
in technical condition ratings 3 and 4 increases rapidly. The superstructure of the bridges, as
the main load-bearing component, is more significantly influenced by traffic loads, resulting
in a higher degradation rate compared to the bridge overall. When t = 21, the proportion of
CR = 3 and CR = 4 in the highway network was about 0.73 and 0.02, respectively, and after
7 years, the proportion of CR = 3 and CR = 4 was about 0.85 and 0.13, respectively.

(3) The time-varying Markov model, based on the Weibull distribution using the exist-
ing inspection data, can effectively predict the degradation of technical conditions for both
groups of bridges in the highway network and individual bridges. This method is helpful
for bridge managers to accurately grasp the degradation law of bridge performance and
make reasonable economic resource allocation and optimal maintenance timing decisions.
In the future, the established time-varying Markov model will be modified by using the
newly added detection data of bridges with the multiple service environments and longer
service life, so as to establish a more general and practical bridge degradation model.
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