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Abstract: Improper design of friction pendulum bearings can lead to poor seismic reduction per-
formance and may result in the failure of local vulnerable components. And the parameter design
of friction pendulum bearings mainly relies on experience and verification calculations at present.
This paper proposes an adaptive genetic algorithm considering the overall evolution state of the
population, adjusting crossover and mutation probabilities adaptively based on individual fitness and
population diversity. Compared to traditional algorithms, it exhibits better global search capabilities
and convergence efficiency. Combining the improved genetic algorithm with finite element models,
a parameter optimization method is proposed. The parameters of friction pendulum bearings are
optimized. In response to the situation in this paper, the optimal friction coefficient of the friction
pendulum bearing is determined to be 0.01 and the optimal equivalent radius is 3.3 m. This can
provide a reference for the design of seismic isolation devices.

Keywords: parameter optimization; adaptive genetic algorithm; seismic design; friction pendulum bearing

1. Introduction

After the COVID-19 pandemic, the growth of the global urban population is returning
to a positive trajectory, with an estimated addition of 2.2 billion urban residents by 2050.
Mega-cities such as Tokyo, Shanghai, and Mexico City, with populations exceeding ten
million, are facing challenges like land resource constraints and traffic congestion [1,2].
Global urban development experiences indicate that scientific development and utilization
of urban underground space are essential pathways to improve living spaces in cities and
transform urban development patterns [3,4]. However, in some countries, the development
and utilization of underground space face the threat of seismic disasters. Taking China as
an example, it is located between the Pacific seismic zone and the Eurasian seismic zone,
making it the world’s largest region with intense seismic activity originating from shallow
sources. The frequency, intensity, and widespread distribution of seismic activity in this
region are high. In recent years, the concept of seismic reduction has gradually been applied
in underground structures. By reducing the seismic response of underground structures,
their seismic resistance can be effectively improved. The common method for seismic
reduction in underground structures is to install seismic isolation devices at vulnerable
components in the structure. These seismic isolation devices can reduce the seismic damage
of the critical components. Therefore, the main structures can avoid overall instability
and failure.

Commonly used seismic isolation devices for underground structures include shear
panel dampers [5], lead core rubber bearings [6], friction pendulum bearings [7], and
column end sliding bearings [8].

When enhancing the seismic resistance of underground structures using seismic
isolation devices, improper design of these devices may reduce the seismic reduction ef-
fectiveness and could potentially lead to the damage of local vulnerable components [9].
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At present, the parameter design of these seismic isolation devices mainly relies on experi-
ence and verification calculations. In the optimization design of seismic isolation devices,
qualitative analysis methods are predominantly employed, resulting in low optimization
precision [10]. With the development of computer technology, various intelligent algo-
rithms to optimize complex nonlinear problems have been introduced. Researchers have
gradually applied these algorithms in the field of engineering. Di Trapani et al. imple-
mented the calculation of section forces for a three-dimensional reinforced concrete frame
structure within OpenSees. They utilized a genetic algorithm to optimize the location and
quantity of steel jacketing, effectively enhancing the seismic resistance and deformability
of reinforced concrete structures under earthquake effects [11]. Bekdas et al. proposed a
method utilizing the bat algorithm to optimize parameters of tuned mass dampers. This
approach was applied to optimize design variables such as the mass, period, and damping
ratio of tuned mass dampers [12].

Genetic algorithms treat each feasible solution as an individual in the population. By
simulating the biological evolution process in nature, genetic operations such as crossover,
recombination, and mutation are applied to individuals. This process retains superior
individuals while eliminating inferior ones, gradually guiding the population toward
the global optimum, ultimately obtaining the global optimal solution [13]. The genetic
algorithm exhibits weak correlation with the initial population settings. It possesses strong
robustness, and can find the global optimal solution for optimization problems. This paper
proposes an improvement to the traditional genetic algorithm and combines the enhanced
algorithm with the finite element calculation method to introduce a parameter optimization
method. Taking the friction pendulum bearing as an example, the paper optimizes the
parameters of seismic isolation devices.

2. Influence of Cross Probability and Mutation Probability on Genetic Algorithm

Genetic algorithms require repeated crossover and mutation operations on individual
genes during the optimization process. The algorithm controls these operations through the
crossover probability (Pc) and mutation probability (Pm). Pc and Pm are key parameters
in genetic algorithms. In traditional genetic algorithms, the values of Pc and Pm are fixed.
To investigate the specific impact of Pc and Pm on the optimization process of genetic
algorithms, the Rastrigin function was chosen to test the optimization efficiency and global
search capability under different parameter settings. The Rastrigin function is a highly
multimodal function [14], and its expression is as follows:

Ras(x, y) = 20 + x2 + y2 − 10[(cos 2πx) + cos (2πy)] (1)

The diagram of the Rastrigin function is shown in Figure 1. The function has a
minimum value of 0 when x = 0 and y = 0. As seen in the figure, the function has numerous
local optima to challenge the global optimization capability of the algorithm.
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The initial population size for the genetic algorithm is set to 50, the chromosome length
is 24, the number of generations is 1000, the Pc varies from 0.6 to 1.0, and the Pm ranges
from 0 to 0.4. When the Pm is 0.2, the optimization process of the genetic algorithm with
different Pcs is illustrated in Figure 2.
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Figure 2. Optimization process with different Pcs.

It can be observed from the figure that when the Pc is low, the genetic algorithm
converges quickly, and the search process is stable, but it is prone to a local optimum,
known as premature convergence. However, when the Pc is high, the stability of the genetic
algorithm decreases, leading to a reduction in search efficiency.

When the Pc is 0.8, the optimization process of the genetic algorithm with different
Pms is illustrated in Figure 3.
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It can be observed from the figure that as the Pm increases, the global search capability
of the genetic algorithm enhances, making it easier to escape the local optimum traps of
the Rastrigin function. However, with the increase in the Pm, the search becomes unstable,
evolving toward deteriorating individuals from the global optimum.

The orthogonal analysis of the Pc and Pm of the genetic algorithm was conducted. The
errors in the optimal values for x and y after optimization are illustrated in
Figures 4 and 5, respectively.

According to the optimization results of the genetic algorithm, it can be observed that
when the Pc and Pm are too small, the optimization tends to converge to a local optimum.
However, when the Pc and Pm are too large, the population may evolve in a direction far
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from the optimal solution, making it difficult to converge. The values of the Pc and Pm are
crucial for the optimization process of the genetic algorithm.
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3. Adaptive Genetic Algorithm Considering the Overall Evolutionary Status
3.1. Adaptive Genetic Algorithm

In traditional genetic algorithms, the values of crossover probability and mutation
probability are fixed. Recognizing that fixed Pc and Pm values may not meet the require-
ments of complex optimization problems, Srinivas et al. introduced an adaptive genetic
algorithm wherein the Pc and Pm are dynamically adjusted during the algorithm execution.
The Pc and Pm of the algorithm are automatically adjusted based on the fitness of the
population’s individuals [15]. This method is recorded as AGA-1. When an individual has
good fitness, the adaptive genetic algorithm lowers the individual’s Pc and Pm to prevent
disruption of excellent genes. Conversely, for individuals with poor fitness, larger Pcs and
Pms are used to enhance the global search capabilities of the algorithm. Building upon
this concept, various adaptive genetic algorithms have been developed [16–19]. Yan et al.
proposed a bilinear adjustment model for crossover and mutation probabilities [18]. This
method is recorded as AGA-2. Wang introduced a nonlinear adaptive model [19]. This
method is recorded as AGA-3. These adaptive genetic algorithms primarily use individ-
ual fitness as the basis for adjusting Pc and Pm, overlooking the impact of population
evolutionary status on algorithm efficiency.

3.2. Genetic Algorithm Considering Population Diversity

Population diversity refers to the distribution state of individuals in the feasible space.
When the population diversity is high, individuals are dispersed in space. When the
population diversity is low, individuals in the population are similar, and the search is
concentrated in a small area. As genetic optimization progresses, the number of similar in-
dividuals increases. Population diversity gradually decreases, and global search capability
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weakens accordingly. Population diversity can reflect the evolutionary status of a genetic
algorithm. Increasing the Pc and Pm when diversity decreases can effectively enhance the
global search capability of the algorithm.

Population diversity has been assessed using various metrics. Currently, commonly
used indicators include population fitness standard deviation, individual Hamming dis-
tance, and population entropy. Hamming distance is typically applicable only to genes
encoded in binary, limiting its use. Population entropy requires clustering analysis and
may not accurately represent population diversity in a timely manner. Population fitness
standard deviation has become a widely adopted and effective evaluation metric. A larger
fitness standard deviation indicates higher dispersion of the population in the feasible
space, reflecting greater population diversity.

This paper proposed an adaptive genetic algorithm that simultaneously considers
individual fitness and population diversity. The Pc and Pm for inferior individuals should
be increased when the population diversity is low to enhance the search capability. Con-
versely, when the population diversity is high, the Pc and Pm for superior individuals
should be decreased to ensure the preservation of their excellent genetics. The formulas for
calculating the Pc and Pm are as follows:

Pc =


Pc3 + (Pc2 − Pc3) exp[

−10( f ′− f )
fmax− f

], f ′ ≥ f

Pc2 +
(Pc1−Pc2)( f ′− f )

fmin− f
, f ′ < f , Si ≥ S0

2

Pc2 +
(Pc0−Pc2)( f ′− f )

fmin− f
, f ′ < f , Si <

S0
2

(2)

Pm =


Pm3 + (Pm2 − Pm3) exp[

−10( f− f )
fmax− f

], f ≥ f

Pm2 +
(Pm1−Pm2)( f− f )

fmin− f
, f < f , Si ≥ S0

2

Pm2 +
(Pm0−Pm2)( f− f )

fmin− f
, f < f , Si <

S0
2

(3)

where fmax is the maximum fitness of individuals in the population, f is the average
fitness of individuals in the population, f ′ is the fitness of the individual with higher
fitness in the parent individuals, f is the fitness of the individual entering the mutation
operator, Si is the fitness standard deviation of the current population, S0 is the initial
fitness standard deviation, Pc0, Pc1, Pc2, Pc3, Pm0, Pm1, Pm2, and Pm3 are the control parame-
ters for the cross probability and mutation probability in the adaptive genetic algorithm,
Pc0 > Pc1 > Pc2 > Pc3, and Pm0 > Pm1 > Pm2 > Pm3, with all values in the range [0, 1]. The
adaptive genetic algorithm considering population diversity is illustrated in Figure 6.
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3.3. Validation of the Efficiency of the Improved Genetic Algorithm

The traditional genetic algorithm is denoted as GA, the basic adaptive genetic algo-
rithm as AGA-1, the bilinear adaptive genetic algorithm as AGA-2, the nonlinear adaptive
genetic algorithm as AGA-3, and the adaptive genetic algorithm considering the overall
evolutionary status of the population as AGACO. The optimization capabilities of these
five adaptive genetic algorithms are compared using the minimum value problem of the
Rastrigin function. Previous studies have shown that the recommended value for mutation
probability is between 0 and 0.3, and the recommended value for crossover probability
is around 0.6 [20]. Here, Pc0 = 0.7, Pc1 = 0.6, Pc2 = 0.4, Pc3 = 0.2, Pm0 = 0.3, Pm1 = 0.2,
Pm2 = 0.1, Pm3 = 0.02. For these genetic algorithms, the population size is uniformly set to
100, the chromosome length is 24, and the number of generations is 500. The process of
finding the minimum value of the function using different genetic algorithms is shown in
Figure 7.
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It can be observed from the figure that GA, AGA-1, and AGA-2 converge to local
optimal solutions without finding the global optimum. AGA-3 and AGACO find the global
optimum. AGACO converges earlier than AGA-3, and AGA-3 has a final error of 0.02419,
while AGACO has a final error of 0.00342. By comparing the five genetic algorithms, it
can be concluded that the traditional genetic algorithm, due to its fixed Pc and Pm, is
prone to premature convergence or the destruction of excellent genotypes in complex
optimization problems. And adaptive genetic algorithms can reduce the destruction
of excellent genotypes while enhancing global search efficiency. However, if only the
individual fitness is considered and the overall evolutionary status is ignored, there is still
a risk of getting stuck in local optima when population diversity decreases. The genetic
algorithm that simultaneously considers population diversity and individual fitness can
effectively improve convergence efficiency and avoid premature convergence.

4. Finite Element Numerical Simulation
4.1. Finite Element of the Underground Station

Daikai Station was chosen as the underground structure for the application of friction
pendulum bearings. The cross-section of the station is illustrated in Figure 8, representing
a two-span station on one level. The station has a width of 17 m, height of 7.17 m, central
pillar width of 0.4 m, side wall thickness of 0.7 m, top plate thickness of 0.8 m, and bottom
plate thickness of 0.85 m. The spacing of the central pillars along the tunnel alignment is
3.5 m.
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During earthquakes, the structure may experience plastic deformation. Considering
the material nonlinearity of the structure will result in a greater dynamic response. After
considering the nonlinearity of the material, the optimization result of the friction coefficient
will not change, and the optimization result of the equivalent radius will slightly increase.
But considering the nonlinearity will increase computational costs, and it may cause
the calculation to fail to converge. To simplify the analysis, the station materials were
considered equivalent to homogeneous materials, using an elastic constitutive model. The
material has a density of 2500 kg/m3, a Poisson’s ratio of 0.2, and an elastic modulus of
31.5 Gpa.

Based on historical seismic damage records [21,22], the burial depth of the station
is 4.8 m, and the soil layers at the site can be roughly divided into six layers, each with
specific soil properties as indicated in Table 1. Rayleigh damping was employed for the soil
layers. Using Abaqus modal analysis functionality, the first and second mode frequencies
of the site were determined to be 1.8 Hz and 4.2 Hz, respectively. Calculating with Formula
(4), the Rayleigh damping coefficients for the soil layers were obtained as α = 0.799 and
β = 0.00264.

ξ =
α

2
× 1

ω1
+

β

2
× ω2 (4)

Table 1. Material properties of each soil layer.

Soil Type Thickness (m) Density
(kN/m3)

Shear Wave
Velocity (m/s) Poisson’s Ratio Dynamic Modulus of

Elasticity (Mpa)

Clay 1 19 140 0.333 99.3
Sand 4.1 19 140 0.488 111
Sand 3.2 19 170 0.493 164
Clay 3.1 19 190 0.494 205
Clay 5.8 19 240 0.49 326
Sand 22 20 330 0.487 648

4.2. Finite Element of the Friction Pendulum Bearings

The single curved friction pendulum bearing was chosen for the study. It is mainly
composed of three parts, which are a housing plate, a concave plate, and a slider. The
friction pendulum bearing has a height of 110 mm and a width of 400 mm. In the process
of parameter optimization, it is necessary to calculate the seismic reduction effectiveness
of friction pendulum bearings with different parameters. It is required to calculate the
seismic reduction effectiveness corresponding to each individual in each generation. The
simplified model can reduce computation time and lower computational costs. So, the
beam elements were used to simulate the friction pendulum bearing, and the finite element
model is shown in Figure 9. The changes in the friction coefficient and equivalent radius of
the bearings can be achieved by changing the surface friction coefficient and spring stiffness
of the simplified model. A linear elastic constitutive model was selected to simulate the
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material properties. The material of the friction pendulum bearing is steel, with a density
of 7850 kg/m3, elastic modulus of 206 GPa, and Poisson’s ratio of 0.3.
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mula (4), the Rayleigh damping coefficients for the soil layers were obtained as α = 0.799 
and β = 0.00264. 𝜉 = 𝛼2 1𝜔 + 𝛽2 𝜔  (4)

Table 1. Material properties of each soil layer. 

Soil 
Type Thickness (m) 

Density 
(kN/m3) 

Shear Wave Ve-
locity (m/s) 

Poisson’s 
Ratio 

Dynamic Modulus of 
Elasticity (Mpa) 

Clay 1 19 140 0.333 99.3 
Sand 4.1 19 140 0.488 111 
Sand 3.2 19 170 0.493 164 
Clay 3.1 19 190 0.494 205 
Clay 5.8 19 240 0.49 326 
Sand 22 20 330 0.487 648 
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Figure 9. Finite element model of the friction pendulum bearing.

4.3. Accuracy Verification of the Simplified Model

During the seismic process, the slider of the friction pendulum bearing is mainly
subjected to the vertical pressure W, the normal force on the sliding surface N, frictional
force f, and the horizontal restoring force F transmitted by the structure. Assuming the
friction coefficient of the sliding surface is µ, the equivalent radius of the sliding surface
is R, the angle of rotation is θ, and the horizontal sliding distance of the slider is D, the
following calculation formula can be obtained based on the moment balance condition:

W = N·cos θ (5)

f = µW·sgn(
.
θ) (6)

F · R cos θ = W · D + f · R (7)

When θ is relatively small, Formula (7) can be simplified to Formula (8):

F =
WD

R
+ f =

WD
R

+ µW sgn(
.
θ) (8)

To verify the accuracy of the finite element model of the friction pendulum bearing,
compare the calculation results of this finite element model with those of the theoretical
formula. The results are shown in Figure 10.
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Figure 10. Comparison between model results and theoretical results.

As shown in the figure, the curves are roughly coincident, indicating that the fi-
nite element model can simulate the mechanical characteristics of the friction pendulum
bearing well.

For above-ground buildings, friction pendulum bearings are placed under the struc-
tures. They can extend structures’ natural period and reduce the seismic damage degree [23].
For underground structures, friction pendulum bearings are placed at the vulnerable parts
in the structures. The friction pendulum bearing is placed at the top of the column in the
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station, and the overall finite element model is shown in Figure 11. The station surface and
the soil surface are tied together. The bottom of the finite element model is fixed except for
the direction of the seismic wave input. And an equal displacement boundary is adopted
to the side boundaries, which can avoid the reflection and refraction of seismic waves.
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5. Parameter Optimization of Friction Pendulum Bearings
5.1. Key Parameters of Friction Pendulum Bearings

The force–displacement curves of friction pendulum bearings with different equivalent
radii and friction coefficients under the same vertical pressure are shown in Figure 12.
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Figure 12. Force–displacement curve with different equivalent radii and friction coefficients.

In the figure, curves of different colors represent different combinations of bearing
parameters. According to Formula (8), the force–displacement curve is mainly determined
by vertical pressure W, equivalent radius R, and friction coefficient µ. When the displace-
ment D is the same, different directions of slider movement will change sgn(

.
θ). So, in the

force–displacement curves, the same D will correspond to two restoring forces.
When simulating friction pendulum bearings, the focus is on modeling the mechanical

characteristics, particularly the force–displacement curve. The mechanical performance
of friction pendulum bearings is mainly influenced by the friction coefficient and the
equivalent radius, which are the key parameters of friction pendulum bearings.

5.2. Seismic Reduction Effectiveness of Friction Pendulum Bearing

The friction coefficient of the sliding surface of the friction pendulum bearing was
taken as 0.02, and the equivalent radius was taken as 2 m. The Kobe wave with acceleration
amplitudes of 0.1 g, 0.2 g, and 0.4 g was input in the horizontal direction at the bottom of
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the model. The original acceleration time history curve of the Kobe wave is shown in the
Figure 13.
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Figure 13. Original acceleration time history curve of the Kobe wave.

The Kobe wave is the near-field seismic wave, which is more detrimental to the safety
of structures [24,25]. The effect of the friction pendulum bearing on the station under the
action of 0.2 g seismic wave is shown in the Figure 14. After installing the bearing, the
shearing force at the bottom of the central column has significantly decreased.
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Figure 14. Effect of the friction pendulum bearing on the station.

The calculation formula for seismic reduction effectiveness is as follows:

γ =
R0 − R f

R0
(9)

where R f is the dynamic response of the central column with the seismic isolation device
installed, and R0 is the dynamic response without the seismic isolation device. The destruc-
tion of underground stations is mainly caused by the destruction of central columns. In
other words, the internal force of central columns is crucial to the safety of underground
stations. The maximum shearing forces at the bottoms of central columns are extracted as
the indexes of dynamic response during the earthquake.

The seismic reduction effectiveness of friction pendulum bearings under different
intensities of earthquakes is shown in the Table 2.

From the table, it can be seen that as the seismic intensity increases, the seismic
reduction effectiveness of the bearing also increases.
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Table 2. Shearing force in the central column under different earthquakes.

Acceleration Amplitude 0.1 g 0.2 g 0.4 g

Without bearing 88 kN 172 kN 346 kN
With bearing 50 kN 71 kN 96 kN

Seismic reduction effectiveness 43% 59% 72%

The friction coefficients of the friction pendulum bearings were set to 0.01, 0.02, 0.03,
and 0.04, and the equivalent radii were set to 1 m, 2 m, 3 m, and 4 m. The maximum
shearing forces of the central column during the earthquake under the action of bearings
with different parameter combinations are shown in the Table 3.

Table 3. Shearing force in the central column under different friction pendulum bearings.

µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.04

R = 1 m 50 kN 75 kN 96 kN 101 kN
R = 2 m 42 kN 71 kN 95 kN 101 kN
R = 3 m 41 kN 71 kN 95 kN 101 kN
R = 4 m 43 kN 73 kN 95 kN 101 kN

5.3. Parameter Optimization Based on the Improved Genetic Algorithm

A Kobe seismic wave was selected as the input wave, and Daikai Station was selected
as the underground structure. The optimization variables include the friction coefficient
and equivalent radius of the friction pendulum bearing, with the friction coefficient values
ranging from 0.01 to 0.10 and the equivalent radius values from 1 m to 10 m. The parameters
were encoded using Gray code, with each parameter represented by a code of 6 units in
length. The optimization objective is to maximize the seismic reduction effectiveness of the
friction pendulum bearings.

The optimization of friction pendulum bearing parameters can be viewed as a math-
ematical problem of finding the maximum value of a function. Design parameters serve
as independent variables, while seismic reduction effectiveness represents the dependent
variable. Utilizing the finite element model as a function solver, the model parameters are
adjusted based on design parameters, and the seismic reduction effectiveness is computed.

The crossover probabilities for the adaptive genetic algorithm are set as Pc0 = 0.7,
Pc1 = 0.6, Pc2 = 0.4, Pc3 = 0.2, and mutation probabilities as Pm0 = 0.3, Pm1 = 0.2,
Pm2 = 0.1, Pm3 = 0.02. The population size is set to 30, and the total number of generations
is set to 100. The formula for calculating individual fitness is as follows:

fk =
γk − γmin

γmax − γmin
+ 1e−3 (10)

where fk is the normalized fitness of the k-th individual in the population, γmax is the
seismic reduction effectiveness of the individual with the highest seismic reduction effec-
tiveness, γmin is the seismic reduction effectiveness of the individual with the lowest seismic
reduction effectiveness. γk is the seismic reduction effectiveness of the k-th individual in
the population. To avoid hiding individuals with zero fitness, a small constant value is
added after the calculation. The optimization process for the friction pendulum bearing
parameters is shown in Figure 15.

It can be observed from the figure that, due to the utilization of an adaptive genetic
algorithm considering overall evolutionary status, even in the later stages of evolution,
some individuals continue to perform random searches in the space, attempting to find
the other optimum. Eventually, the friction coefficient of the friction pendulum bearing
converges to 0.01, and the equivalent radius converges to 3.30 m. When the friction
pendulum bearing is set to these parameter values, the seismic reduction effectiveness
is maximized.
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6. Conclusions

This paper analyzes the impact of Pc and Pm on the optimization process of genetic
algorithms. A genetic algorithm considering the overall evolutionary status is proposed.
Compared to traditional adaptive genetic algorithms, this algorithm considers the evolu-
tionary state of the population, allowing the algorithm to still have strong spatial search
ability in the later stages of evolution. Utilizing the improved genetic algorithm and finite el-
ement calculation method, an optimization method is proposed. This optimization method
can solve optimization problems in complex engineering. In this paper, the parameters
of friction pendulum bearings are optimized based on this method. The conclusions are
as follows.

(1) When the Pc and Pm of the genetic algorithm are small, the algorithm converges
quickly, and the optimization process is stable, but it is prone to converge to a local
optimal solution rather than a global optimal solution. When the Pc and Pm are large,
the randomness of spatial search is high, and the genes of excellent individuals are
easily disrupted, making convergence difficult. Choosing appropriate values of Pc
and Pm is crucial for the optimization ability of genetic algorithms.

(2) Using population diversity as an evaluation metric, an adaptive genetic algorithm
considering the overall evolutionary status is proposed. The algorithm dynamically
adjusts the Pc and Pm based on the fitness of individuals and the diversity of the
population. Comparing AGACO with other genetic algorithms validates that AGACO
has better global search capability and convergence efficiency.

(3) Combining the improved genetic algorithm with the finite element model, a parameter
optimization method is proposed. The parameters of friction pendulum bearings are
optimized based on the optimization method. The optimal friction coefficient of the
friction pendulum bearing is 0.01 and the optimal equivalent radius is 3.3 m. The
optimization method proposed has universal applicability. It is applicable to various
engineering optimization problems. But the optimization results are only applicable
to the situations proposed in this paper.

(4) The optimization results provide reference suggestions for the design of friction
pendulum bearings in future. According to the process of parameter optimization,
it can be found that the smaller the friction coefficient of the friction pendulum
bearing, the better the seismic reduction effectiveness. Simultaneously, the existence
of an optimal equivalent radius can maximize the seismic reduction effectiveness.
In the future design of friction pendulum bearings, the friction coefficient should be
minimized as much as possible. And the optimal equivalent radius can be found by
the optimization method.
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