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Abstract: The ecological landscape design of urban rivers plays a crucial role in mitigating the urban
heat island effect and preserving urban ecology. This study focuses on the construction process data of
key landscape nodes along Nanjing’s urban rivers. By employing a whole life cycle emergy approach
and carbon emission method, the sustainable changes in the landscape system are quantitatively
assessed. Furthermore, artificial neural networks have been used to conduct long-term sustainability
analysis and predictions for the landscape system. The research findings reveal that over time, the
maintenance investment in landscape projects gradually becomes dominant, increasing from 2% in the
first year to approximately 75% after 30 years. This phenomenon signifies a decline in the efficiency
of the landscape system. Sustaining the ecological balance of the landscape system necessitates
continuous inputs of material flow, energy flow, and information flow. The major contributors
to carbon emissions in the landscape engineering system are diesel fuel, cement, and steel. This
highlights opportunities for sustainable improvement from a low-carbon perspective. To enhance the
ecological sustainability of urban waterfront landscapes, three measures are proposed: sponge city
construction concepts, coupled sewage treatment systems, and information flow monitoring systems.
The effectiveness of these measures was preliminarily validated.

Keywords: sustainability; LCA–Emergy–Carbon footprint analysis; artificial neural network method;
water landscape system

1. Introduction

In the face of the deteriorating global environment, an ecologically sustainable urban
environment is crucial. The urban system involves numerous environmental impact factors,
and rivers possess exceptional characteristics. Through waterfront landscape design,
rivers can effectively mitigate the urban heat island effect and reduce carbon emissions
in cities [1,2]. The purpose of this study is to provide a feasible approach for urban
sustainable development through the ecological and low-carbon assessment and analysis
of waterfront landscapes.

Urban waterfront landscapes can protect and restore local ecosystems. Wetlands and
vegetation in these landscapes have the ability to filter water, absorb pollutants, and provide
habitats for various flora and fauna. The vegetation in waterfront landscapes can absorb
harmful gases from the air and release oxygen, thus improving the air quality of cities.
Trees and plants also help reduce air temperature and mitigate the urban heat island effect.
Urban waterfront landscapes can manage water resources through rainwater collection and
treatment systems. These systems can collect and utilize rainwater, reducing the burden
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on city drainage systems and minimizing the demand for groundwater. Additionally,
waterfront landscapes provide recreational activities and social spaces for residents. Contact
with natural environments and engagement in outdoor activities are crucial for physical
and mental well-being. Moreover, green waterfront landscapes alleviate psychological
stress and enhance residents’ quality of life. In conclusion, urban waterfront landscapes
effectively enhance the ecological standards of cities through their roles in ecosystem
protection, air quality improvement, water resource management, and the promotion of
community health and well-being [3,4].

The ecological emergy theory is a promising method for conducting sustainable
assessment research on urban waterfront landscapes. The theory of emergy, originally
introduced in the field of ecology [5–7], has been extended to multiple domains including
urban studies [8,9], industrial sectors [10,11], building systems [12,13], and economic
fields [14]. Currently, many scholars have coupled the emergy theory with other methods,
such as GIS approaches [15,16], carbon emission methods [17,18], ecological footprint
methods [19–21], and life cycle assessment (LCA) evaluation [22].

Among them, the LCA–Emergy methodology creates a comprehensive approach that
enables the calculation of emergy values throughout the entire lifecycle. This integration
ensures the completeness of the assessment. It considers the entire lifecycle of a specific
system, including stages such as resource acquisition, manufacturing, use, disposal, and
waste management, when assessing its sustainability. By using emergy as a universal unit,
this method calculates the emergy consumed and generated by the system at different
stages. The key advantage of the LCA–Emergy method is its ability to quantify and com-
prehensively consider the energy consumption, material flows, and environmental impacts
of the system, thereby providing more comprehensive and holistic assessment results. By
integrating life cycle theory with the concept of emergy, it enables a better understanding
and evaluation of the energy efficiency and environmental performance of the system
at different stages, facilitating informed decision-making for sustainability [23–25]. The
research on the integration of the LCA–Emergy method with the ecological sustainability
of urban waterfront landscapes involves several aspects [26–28], such as: (1) Sustainability
assessment: The LCA–Emergy method can serve as one of the tools to assess the ecological
sustainability of urban waterfront landscapes. (2) Optimization of waterfront landscapes:
By employing the LCA–Emergy method, the performance of different design options can
be evaluated and compared in terms of energy, material, and ecological benefits, thereby
providing decision support and design recommendations to achieve more sustainable wa-
terfront landscapes. (3) Energy management: By analyzing the flow of emergy and energy
conversion processes, critical areas of energy utilization can be identified and optimized to
reduce energy waste and promote energy efficiency improvement in waterfront landscapes.
(4) Evaluation of ecosystem services: The LCA–Emergy method can be used to assess
the value of ecosystem services provided by urban waterfront landscapes. In summary,
the LCA–Emergy method can support the design, assessment, and management of urban
waterfront landscapes, facilitating the achievement of their ecological sustainability. At
the same time, the ecological sustainability of waterfront landscapes can be quantified and
analyzed through the application of the LCA–Emergy method, providing a scientific basis
for decision-making.

In addition, the integration of LCA and carbon emissions is a recognized methodology
for studying the sustainability of systems. The cross-methodology of LCA and carbon
emissions is known as carbon footprint assessment, which combines LCA methods with
carbon emission calculations to evaluate the carbon emissions generated by products,
services, or systems throughout their entire life cycle. By combining LCA with carbon
emission calculations, carbon footprint assessment comprehensively considers the carbon
emissions associated with products, services, or systems, helping to identify and optimize
high-carbon-emitting stages to achieve carbon reduction and sustainable development
goals. It can not only be applied in corporate environmental management and product
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design, but also provides clear carbon information to consumers, promoting sustainable
purchasing and consumption behavior [29–37].

Neural network models have potential applications in predicting the sustainable effects
of waterfront landscape design to achieve intelligent waterfront landscape design [38–40].
The key steps include: (1) Data collection and feature selection: Collecting relevant data
related to the sustainability of waterfront landscapes and performing feature selection
for the prediction target. These data may include parameters of waterfront landscape
design, environmental indicators, ecosystem service values, etc. (2) Model training and
optimization: Utilizing the collected data to train and optimize the neural network model.
This involves selecting an appropriate neural network structure, setting model hyperpa-
rameters, and training the model using the data to accurately predict the sustainability
effects of waterfront landscape designs. (3) Prediction and evaluation: After model training,
using the model to predict new waterfront landscape design scenarios. By inputting the
corresponding design parameters and features, the model can output predictions such as
ecosystem service values, energy utilization efficiency, etc. These predictions can help eval-
uate the sustainability effects of different design scenarios and support decision-making.
(4) Model validation and improvement: To validate the accuracy and robustness of the
model, independent test datasets can be used for model validation. If the model performs
poorly, improvements can be made by adjusting the neural network structure or parameters,
or introducing other enhancement methods.

To date, no scholars have explored the coupling of LCA–Emergy–Carbon with a neural
network model to predict the ecological sustainability of waterfront landscapes. This study
addresses this research gap and introduces an innovative approach by integrating the LCA,
emergy analysis, carbon footprint method, and neural network model to comprehensively
analyze the ecological sustainability of waterfront landscapes. This integrated analysis
provides a more comprehensive and accurate assessment, revealing the long-term impacts
of waterfront landscape design on ecosystems.

Traditionally, assessments of waterfront landscapes have primarily focused on the
environmental benefits during the design phase, often overlooking the energy consumption
and environmental impacts throughout the entire life cycle. By applying the LCA–Emergy–
Carbon approach, this study considers the integrated effects of energy consumption and
environmental loadings across various stages, including material acquisition, construction,
operation, and decommissioning. The carbon footprint method serves as a measure of
human activities’ contribution to greenhouse gas emissions. By incorporating the carbon
footprint analysis, this study quantitatively evaluates the carbon emissions associated with
different waterfront landscape design scenarios, providing guidance for reducing carbon
footprints. Additionally, the use of a neural network model enables predictions based on
historical data and relevant features, allowing for inference on the impact of waterfront
landscape design scenarios on ecological sustainability. This model can handle complex
non-linear relationships and provide accurate prediction results.

By combining these three approaches, this study offers a more comprehensive, ac-
curate, and innovative analysis in assessing the ecological sustainability of waterfront
landscapes, thereby providing robust support for future waterfront landscape design and
decision-making.

2. Materials and Methods
2.1. Research Framework

The study in this paper is based on the methodology of systems engineering to conduct
a sustainable assessment of landscape systems. The application of systems engineering
methodology and the study of ecological emergy and low-carbon cross-coupling in ar-
chitecture can help categorize the various input factors of the building system, establish
a modular framework, and define structural boundaries. This facilitates comprehensive
evaluation and design for the entire building system. In order to establish a research model
for the building system, the input types are divided into three categories: material flow,
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energy flow, and information flow. Figure 1 illustrates the research framework of the
entire paper.
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Figure 1. Research framework.

In addition, this paper takes a dynamic approach to the architectural system, involving
not only static analysis but also the sustainable aspects and predictions of carbon emissions
related to subsequent riverfront landscape projects. This contributes to the enhancement of
efficiency for urban managers.

2.1.1. Hypothesis for Research

This article verifies the following three hypotheses through an ecological assessment
of urban river landscapes:

(1) Ecological assessments of landscape transformation projects should consider the
impact of information lag on sustainability outcomes. In general, information lag
can have a negative effect on the overall sustainability performance of the building
system, particularly concerning feedback from landscape designers.

(2) The influence of feedback structures should be evaluated to examine their impact on
the entire building system. Feedback structures can be categorized into open-loop,
closed-loop, and cross-feedback structures.

(3) The effect of water quality in rivers on the ecological sustainability of the entire river
landscape, including emergy and carbon emission aspects.

2.1.2. Typical Feedback Structure

The feedback systems are evaluated based on two aspects: ecological energy value
and carbon emissions. The three types of feedback systems are open-loop feedback system,
closed-loop feedback system, and cross-feedback system. These systems are represented by
measures such as energy value quantity, energy value indicators, and carbon emissions. A
diagram of the feedback system pathways can be found in Figure 2 of this article.



Buildings 2024, 14, 386 5 of 25

Buildings 2024, 14, x FOR PEER REVIEW 5 of 25 
 

measures such as energy value quantity, energy value indicators, and carbon emissions. A 

diagram of the feedback system pathways can be found in Figure 2 of this article. 

 

Figure 2. Typical feedback system path. 

2.2. LCA–Emergy Model 

2.2.1. Emergy Introduction 

The ecological emergy method is an analytical approach used to assess and compare 

the impacts of different decision options on ecosystems. It is based on ecological principles 

and aims to quantify the value of ecosystems as energy values, helping decision-makers 

make sustainable choices between environmental conservation and economic develop-

ment. The ecological emergy method takes into account the structure, functions, and ser-

vices provided by ecosystems, as well as their contributions to human well-being. By con-

verting these ecological values into emergy values, it becomes possible to compare the 

costs and benefits of different decision options for ecosystems and reveal their potential 

environmental benefits and risks. In the ecological emergy method, the first step involves 

assessing the ecosystem, including data collection and analysis of aspects such as species 

diversity, ecological processes, and natural resources. Then, by using appropriate indica-

tors and models, the emergy of the ecosystem is quantified as emergy values and inte-

grated into the decision analysis framework. One of the advantages of the ecological 

emergy method is its ability to quantify the value of ecosystems, allowing for comparisons 

Figure 2. Typical feedback system path.

2.2. LCA–Emergy Model
2.2.1. Emergy Introduction

The ecological emergy method is an analytical approach used to assess and compare
the impacts of different decision options on ecosystems. It is based on ecological principles
and aims to quantify the value of ecosystems as energy values, helping decision-makers
make sustainable choices between environmental conservation and economic development.
The ecological emergy method takes into account the structure, functions, and services
provided by ecosystems, as well as their contributions to human well-being. By converting
these ecological values into emergy values, it becomes possible to compare the costs and
benefits of different decision options for ecosystems and reveal their potential environmen-
tal benefits and risks. In the ecological emergy method, the first step involves assessing the
ecosystem, including data collection and analysis of aspects such as species diversity, eco-
logical processes, and natural resources. Then, by using appropriate indicators and models,
the emergy of the ecosystem is quantified as emergy values and integrated into the decision
analysis framework. One of the advantages of the ecological emergy method is its ability
to quantify the value of ecosystems, allowing for comparisons with economic benefits.
This helps raise awareness and appreciation for ecosystems, promoting decision-making
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that supports sustainable development. Additionally, the ecological emergy method can
uncover the ecological risks and uncertainties associated with decision options, aiding
decision-makers in better managing environmental issues. The UEVs consist of three types,
which are sej/kg, sej/j, sej/USA$, respectively [41].

2.2.2. Emergy Indicators

The sustainability hierarchy can be realized based on a set of emergy indicators [42,43].
In this study, three are four critical indexes that have been displayed in Figure 3.
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The environmental loading rate of a landscape system is an indicator that assesses the
pressure exerted by the system on environmental resources in terms of resource consump-
tion, energy utilization, waste generation, and pollution emissions. It helps in understand-
ing the extent of the landscape system’s impact on the environment.

The emergy yield rate measures the efficiency and output levels of a landscape system
in providing ecological services, maintaining ecological functions, and supporting human
well-being. It quantifies the system’s contribution to energy flow, material cycling, and
ecological processes, and evaluates the value it creates for the socio-economic system.

The environmental sustainability indicator comprises a set of indicators and factors
used to assess the sustainability performance of a landscape system. These parameters
consider factors such as resource use efficiency, ecological conservation capacity, carbon
footprint, water footprint, and biodiversity protection, aiming to ensure the harmonious
development of the landscape system with environmental protection and achieve long-term
sustainable development goals.
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These three categories of indicator collectively provide a comprehensive assessment
of the landscape system. They consider its impact on the environment (ELR), evaluate
its contribution to the socio-economic system (EYR), and also focus on its sustainability
performance (ESI). This aids in guiding landscape planning and management, promoting a
balance between ecological conservation and economic development.

2.3. LCA–Carbon Calculation Model

In accordance with the national carbon emission calculation standards [44], Figure 4
and Table 1 have been designed and presented. Figure 4 represents the carbon emission
implementation pathway, while Table 1 depicts the carbon sink calculation pathway.
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Table 1. Carbon sink calculation list.

Method Types Equations Explanations

Soil type method
Tjd = ∑k

i=1 ρiPiDi(1 − Si)

Md = ∑k
j=1 AjTjd

ρi is the soil weight; Pi is the average organic carbon storage; Di is soil
thickness; Si is the average gravel content. Aj is the area of a grid cell,
Tjd is the unit mean organic carbon density; n is the total soil area
grid units.

Life zone method BD = b0 + b1D + b2lgC f
C = C f + BD(1 − δ2)V

BD is the soil weight; b1, b2, b3 is the constant of soil weight and
carbon density under different vegetation types; D is the depth from
the surface to the center of the soil layer; C f is the organic carbon mass
fraction. δ2mm is the gravel fraction; V is the soil layer volume.

Remote sensing
technology method Ci = 0.58Si∑ (HjQjWj)

i is the soil type; Ci is the soil organic carbon storage (t); 0.58 is the
carbon storage conversion factor; Si is the soil area; Hj is the mean soil
thickness; Qj is the average mass fraction of soil organic matter; Wj is
the average soil weight.

Classical concrete
carbonation theory d =

√
2DCO2 C0

m0
·
√

t

d is the concrete carbonation depth; DCO2 is the effective diffusion
coefficient of carbon dioxide in concrete; C0 is the concentration of
the concrete surface; m0 is the carbon dioxide absorption per unit
volume of concrete; t is the carbonization time.
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2.4. Artificial Neural Network Method

Artificial neural network models can be used to predict and analyze the changing
trends in ecological sustainability of landscape engineering. By training the model with
historical data, it can learn patterns and trends related to the ecological sustainability of
landscape engineering. Subsequently, the model can be utilized to forecast future trends
and provide recommendations on how to improve or maintain ecological sustainability.
It is important to note that the predictive capability of artificial neural network models
is influenced by factors such as data quality, feature selection, and model parameters.
Hence, during predictive analysis, ensuring the accuracy and representativeness of data
and conducting appropriate tuning and validation of the model are crucial to enhance the
reliability and accuracy of the prediction results.

Figure 5 illustrates the implementation steps and pathway of the neural network.
Figure 6 represents the basic prediction model of the neural network.
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This study involves a significant amount of data statistics, which is crucial for the
accuracy of the research methods. Analyzing from the perspectives of ecological emergy
and carbon footprint methods, both require a comprehensive life cycle inventory of the
research system, which poses some challenges for this study. Additionally, evaluating the
accuracy of neural network prediction models is also a difficulty. As the number of hidden
layers increases, the overall accuracy of the prediction model will vary, thus influencing
the research results of this study.
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2.5. Data Identification and Collection

The entire landscape renovation project involves multiple types of data, including
material inventory data, energy inventory data, labor input data, etc. This article also
involves information flow-related data, which has a crucial impact on analyzing the ecolog-
ical transformation of the entire landscape. Figure 7 illustrates the process of data collection
and selection.
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The importance of data filtering lies in its ability to help us extract useful information
from a large volume of data, enabling decision-making and insights. For instance: improv-
ing data quality: data filtering eliminates invalid, erroneous, or duplicate data, ensuring
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the reliability and accuracy of the analyzed data set. Reducing noise and redundancy:
by filtering data, it is possible to reduce the impact of noise and redundant information,
leading to clearer and more credible analytical results. Saving time and resources: data fil-
tering allows for the exclusion of irrelevant or unnecessary data, saving time and resources
involved in processing and analyzing data. Discovering hidden patterns and trends: by
filtering and focusing on specific subsets of data, it becomes easier to uncover hidden
patterns, trends, and correlations within the data. Supporting decision-making: carefully
filtered data can provide strong evidence for decision-making, reducing decision risks, and
guiding organizational actions in market, operational, and strategic aspects. In conclusion,
data filtering is a crucial step to ensure the effectiveness and accuracy of data analysis. It
improves data quality, saves time and resources, and supports decision-making.

3. Case Study
Case Introduction

This case is located in Nanjing, Jiangsu Province, China. In order to enhance the
urban living environment and promote ecological sustainability, a portion of the river
landscapes has been redesigned. The selected rivers mainly focus on the main channel of
the Jinchuan River, with a total length of approximately 50 km. The overall condition of
the buffer zones on both sides of the river varies greatly, with limited space for landscape
design and being mostly in a neglected state. From a landscape design perspective, the
design of the riverbanks is monotonous, with a single type of planting, and lacks distinctive
features. Table 2 and Figure 8 summarize the current status of waterfront greening in
selected sections of the river (a total of nine river locations). Figure 9 shows a diagram of
node changes in the river channel before and after landscape design.

Table 2. The current status of waterfront greening in selected sections of the river.

No. Name Length (km) Waterfront Greening Status

1 Neijin River
mainstream 2.88

Most of the waterfront areas have been restored as leisure green belts, with widths
ranging from 2 to 10 m. The overall landscape greening quality is high, with lush
vegetation along the riverbanks. Deciduous and shrub tree species are combined
with riparian aquatic plants. Along the riverbanks, the use of stacked stones and
faux wood pilings creates an environment for the growth of aquatic plants,
achieving a unified combination of esthetics and ecology.

2 Neijin River
east tributary 2.22

With the exception of small-scale riverside buildings in certain areas, most of the
waterfront leisure green belts have been restored, with widths ranging from 2 to
5 m. The green belts along the riverbanks are generally connected, dominated by
single rows of tall trees, with a linear and relatively simple hierarchy.

3
Neijin River

central
tributary

1.42

The green belts are discontinuous, with some sections lacking sufficient space
along the river channels, resulting in the absence of waterfront green belts. Some
sections of the rivers have abundant green spaces on both sides, with rich
vegetation and pleasant walking experiences.

4
Neijin River

central
tributary

1.27

Apart from small-scale riverside buildings in specific locations, most of the
waterfront leisure green belts have been restored. However, due to the dense
surrounding residential areas and narrow landscape spaces along the river
channels, it is not possible to form large-scale waterfront green belts. The width
typically ranges from 2 to 5 m. Some sections of the rivers lack softscape due to
their proximity to residential areas, parking lots, etc. The green belts along the
mainstream of the Neijin River are intermittent, featuring linear and monotonous
plant landscapes, and they lack connections with surrounding parks and
green spaces.
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Table 2. Cont.

No. Name Length (km) Waterfront Greening Status

5 Northwest City
Moat 1.16

The two sides of the waterfront leisure green belts are mostly connected, with
widths ranging from 2 to 10 m. The combination of riverside landscapes and
public green spaces creates an overall high-quality open space. While meeting the
basic greening requirements along the entire line, attention is paid to the
arrangement of tall trees, shrubs, and grass layers, creating a pleasant and
high-quality walking and recreational experience.

6 North City
Moat 1.13

The two sides of the waterfront leisure green belts are mostly connected, with
widths ranging from 2 to 10 m. The overall quality of greening is high, with
reasonable arrangements of tall trees, shrubs, flowers, and plants. The vegetation
is well-distributed, creating a beautiful and pleasant riverside recreational space
with rich layers, vivid colors, and distinct seasonal changes.

7
South Ten-Mile

Long Ditch
mainstream

0.93

Most of the waterfront leisure green belts have been restored, but there are
significant differences in the current state of waterfront greening across different
sections of the rivers. The river section in Yuanyuan Residential District has a
purely hard landscape with a lack of softscape, while the river section near
Hongshan Zoo Station has a good landscape environment with well-planned
arrangements of tall trees, shrubs, flowers, and plants.

8 Zhang Wang
Miao Ditch 0.86

There are significant differences in the current state of waterfront greening across
different sections of the rivers. The section from Jianning Road to Mufu South
Road is adjacent to a major road without any greenery. The section along Jinbi
Road has a rich variety of green plants and shows healthy growth.

9 Waijin River 0.79

Most of the waterfront leisure green belts have been restored, with widths ranging
from 2 to 10 m. The spaciousness of the waterfront leisure green belts allows for
abundant vegetation with diverse colors that change noticeably throughout
the seasons.
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4. Results and Discussion

The entire landscape engineering transformation process can be divided into five
stages: the design stage, building material production stage, transportation stage, con-
struction stage, and maintenance stage. By analyzing the emergy and carbon emissions
throughout the five stages of the life cycle, the ecological sustainability of the entire land-
scape transformation system can be assessed. Additionally, by using a neural network
prediction model, long-term ecological sustainability analysis of landscape engineering can
be conducted.

Due to the large scale of the urban riverfront in the city, three specific locations
have been selected to conduct a comprehensive life cycle analysis of emergy and carbon
emissions for three small-scale landscape projects.

4.1. LCA–Emergy Analysis
4.1.1. Dominated Contributor

Taking the Neijin River mainstream landscape renovation project (Project No. 1) as an
example, the emergy ratios across five stages are calculated and displayed for analysis. The
time points chosen for analysis are the first year and the 20th year of operation. Figure 9
provides a clear view of the emergy changes in each stage.

From the perspective of the entire life cycle, Figure 10A depicts the emergy distribu-
tion of five stages of landscape engineering operations over one year. Material-related
emergy has the highest contribution, accounting for approximately 49%. Construction
comes next, representing 23% of the total. The other three stages have a smaller impact and
are considered secondary. In Figure 10B, which simulates the operation of the landscape
project over 20 years, it is evident that the emergy proportion during the entire operational
phase reaches 75%, significantly higher than the other four stages. This indicates that
the ecological sustainability of the entire landscape system requires continuous mainte-
nance, including a constant input of material flow, energy flow, and information flow.
Consequently, the proportion of emergy in the maintenance stage keeps increasing.
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4.1.2. Emergy Indicator Analysis

Using No. 1 project as an example (Table 2), the sustainability indicators were sim-
ulated for three periods: a 10-year cycle, a 20-year cycle, and a 30-year cycle. Figure 10
illustrates the changes in the indicators at these three time points. From Figure 11, it can be
observed that the EYR (Energy Yield Ratio) decreases over time, indicating a decreasing
emergy production efficiency of the entire landscape system and a tendency toward decline.
Conversely, analyzing the Environmental Load Ratio, which increases continuously from
132.8 to 238.6, indicates a gradual increase in the environmental cost of operating the land-
scape system. Based on the assessment of the emergy production rate and environmental
load ratio, the Energy Sustainability Index (ESI) is quantitatively calculated. The ESI for
the landscape system operating for 10 years is 0.335, reducing to 0.212 after 20 years and
further declining to 0.109 after 30 years. This implies that the landscape system requires
reconstruction or major refurbishment.
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4.1.3. Sensitivity Analysis

Data uncertainty analysis is a crucial step in understanding and assessing uncertainties
within data. It aids decision-making, model evaluation, information communication, and
risk management, thereby enhancing the accuracy and reliability of data analysis.

To quantitatively demonstrate the sensitivity of data using EYR (Economic Yield Ratio),
ELR (Energy Loss Rate), and ESI (Emergy Sustainability Index) as core indicators, we can
analyze the following hypotheses:

Hypothesis 1. Basic data fluctuates by 10%, including material flow data, information flow data,
energy flow data, etc.

Hypothesis 2. The energy conversion rate fluctuates by 5% to examine the sensitivity changes of
the three indicators.

Figure 11 presents the sensitivity trends of nine landscape engineering (Table 2) sus-
tainability parameters.

Figure 12 presents the sensitivity results, showing that the first three types of land-
scape renovation project result in minor changes in sustainable parameters, as depicted in
Figure 12 (No. 1/No. 2/No. 3). Taking the ESI parameter as an example, the fluctuation
ranges are 8.47% and 4.31% for Scenario 1 and Scenario 2, respectively. However, the
middle three items (No. 4/No. 5/No. 6) exhibit significantly increased fluctuations, with
ESI changes of 11.6% and 7.29%, respectively. The last three landscape renovation projects
(No. 7/No. 8/No. 9) have fluctuations ranging from 8% to 12%.
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As the proportion of assumed data fluctuations increases, the final variation in sus-
tainable indicators also increases. Additionally, in situations with a smaller sample size,
the sensitivity is more pronounced, and the impact received is greater.

4.2. LCA–Carbon Emission Analysis

This chapter consists of two parts: carbon emission calculations for nine landscape
renovation nodes, and calculation and validation of carbon sequestration effects.

4.2.1. Carbon Emission Analysis

In this section, the energy consumption of transportation (diesel fuel) is accounted for
in the materials, totaling eight items. Figure 13 illustrates the carbon emission calculation
results for nine landscape renovation nodes. From Figure 13, it is evident that diesel fuel
has the highest carbon emissions, followed by cement, steel, and gravel. The other four
materials (brick, lime, sand, and wood) contribute less to carbon emissions. Analyzing the
nine types of renovation project, Project 1 has the highest carbon emissions from diesel fuel
at 33.8 tCO2, followed by cement at 26.6 tCO2 and steel at 18.7 tCO2. Due to the largest
length of landscape renovation in Project 1, it has the highest consumption of materials
and energy.
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4.2.2. Carbon Sink Effect Analysis

Carbon sink calculations can help assess and determine the contribution of landscape
renovation projects to carbon emission reduction targets. It quantifies the amount of carbon
dioxide absorbed by projects through measures such as increasing vegetation coverage
and improving soil quality, providing a basis for evaluating their environmental benefits.
Carbon sink calculations can be used to evaluate the effectiveness of landscape renovation
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projects in adapting to climate change. By increasing vegetation and enhancing soil health,
projects can enhance ecosystem resilience and reduce vulnerability to climate change.

Section 2.3 provides models for calculating four types of carbon sink, including soil car-
bon sinks and concrete material carbon sinks. Landscape systems are an important approach
to mitigating climate change because they can absorb carbon dioxide through the elements
planted within the landscape system, thereby reducing CO2 levels in the environment.

Taking soil carbon sequestration as an example, the selected parameters are an average
carbon concentration of 26.41 g/kg (1–20 cm) for riverbank soil and a carbon density of
3.98 kg/m2. The regional variation coefficient is 0.48. Based on these parameters and the
formulas from Section 2.3, the calculated annual carbon sequestration for soil is 2.46 tCO2.
Similarly, the carbon sink capacity of concrete (used for river embankments) can reach
5.63 tCO2 per year. This demonstrates that the carbon sequestration potential of the entire
landscape renovation project is significant and requires special attention and should not
be ignored.

4.3. Neural Network Model Prediction Analysis

The neural network model can be used to predict and analyze the ecological sustain-
ability of landscape engineering systems. In this section, taking the ESI index as an example,
the predicted trends of the sustainability of the entire landscape engineering system over
10, 20, and 30 years are analyzed. Figure 14 illustrates the patterns of these changes.

Figure 14A shows the ESI indicator trends over a 10-year period, indicating an overall
growth despite significant fluctuations in individual data points. This demonstrates that the
landscape engineering system is in its early stage of development and is still in a sustainable
state. Figure 14B presents the projected ESI trends over a 20-year period, showing a
continued growth trend, although the rate of growth is diminishing. In Figure 14C, which
represents the ESI indicator trends over 30 years, the landscape system is observed to
be gradually declining. Although regular maintenance and small-scale renovations are
implemented for the landscape system, the overall sustainability of the system decreases.

Neural network models can play a positive role in predicting the ecological emergy of
building projects, similar to architectural engineering. While some scholars have conducted
neural network evaluations for various aspects of building projects [43–46], research on the
sustainable ecological energy value of landscape architecture is still in its early stages. This
paper represents a forward-looking exploration of this aspect.
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Neural network systems can be used to predict the ecological emergy sustainability
of landscape engineering. By collecting and analyzing relevant data, neural networks
can learn and establish patterns to forecast the trends and sustainability of the ecological
emergy in landscape engineering systems. These predictions can assist decision-makers
in evaluating and optimizing the design, management, and maintenance of landscape
engineering to achieve better ecological benefits and sustainable development. However,
this requires appropriate training datasets, rational feature selection, and effective neural
network architectures to ensure accurate prediction results and reliable decision support.

5. Landscape System Correction Strategy

According to the research in this article, the overall sustainability of the system needs
to be improved from an ecological energy perspective. Furthermore, the efficiency of the
entire system needs to be enhanced based on carbon footprint evaluation. This article
attempts to improve the sustainability of the system from three aspects: sponge city system,
coupling of sewage treatment subsystems, and optimization of landscape engineering
system efficiency. By implementing these three enhancement measures, the sustainability
of the waterfront landscape system can be improved to some extent, providing valuable
reference for urban managers.
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The concept of a sponge city Is a planning and design approach aimed at address-
ing water resource management and environmental issues in urban areas. This concept
emphasizes transforming cities into sustainable entities that can absorb, store, and utilize
rainwater by mimicking the functions of natural ecosystems. The advantages of a sponge
city include reducing the risk of flooding, improving urban microclimates, enhancing water
resource utilization efficiency, increasing urban green spaces and ecological functionality,
and improving residents’ quality of life. This concept has been widely applied in many
cities and has become an important strategy for tackling climate change and promoting
urban sustainability.

A wastewater treatment system is a facility and process used to treat wastewater gen-
erated from urban, industrial, and rural areas. Its purpose is to remove or reduce harmful
substances in the wastewater to an acceptable level in order to protect the environment
and public health. The implementation of wastewater treatment systems helps to reduce
water resource pollution, improve environmental quality, and protect public health. This
concept is widely applied in urban and rural areas to ensure sustainable water resource
management and protection.

A landscape engineering information flow monitoring system is a facility and tech-
nology used to collect, analyze, and monitor information flows related to landscape en-
gineering projects. The implementation of the landscape engineering information flow
monitoring system helps landscape engineering teams and relevant stakeholders gain an
in-depth understanding of public attitudes, feedback, and demands regarding projects for
effective project management, public sentiment handling, and decision-making.

5.1. Coupled Design of the Sponge City Concept

The sponge city design approach enhances the sustainability of waterfront landscapes
through several key elements. Firstly, it focuses on effective stormwater management
by integrating green infrastructure such as permeable pavements, rain gardens, and bio-
retention areas to absorb and filter rainwater, reduce runoff, and improve water quality.
Secondly, sponge city design promotes the protection and restoration of natural ecosystems
in waterfront areas. This includes creating wetlands, riparian buffers, and green spaces that
provide habitat for wildlife and serve as natural filtration systems for water bodies. Addi-
tionally, the design approach encourages the use of sustainable materials and technologies
in construction and development. This includes adopting energy-efficient techniques, utiliz-
ing recycled materials, and implementing low-impact development practices to minimize
environmental impact. By implementing these strategies, sponge city design enhances the
resilience and long-term sustainability of waterfront landscapes, ensuring their ecological
integrity and promoting a more sustainable and livable urban environment. Figure 15
illustrates the implementation pathway of the sponge city design approach.

The main improvement measures in this section involve selecting three types of
sponge city practice. Firstly, the hierarchical landscape drainage system (Figure 15A–C)
is implemented to intercept materials from reinforced cages filled with broken stones
(naturally sourced) and set up water discharge gates with varying elevation differences
using gravity. The reinforced cages can filter some large particle pollutants in wastewater,
thereby improving water quality to a certain extent. At the same time, planting vegetation
inside the reservoirs (Figure 15A,B,E,F) helps in automatically purifying the water and
further enhancing the sustainability of the water system. Additionally, to filter the water
entering the river from both sides, a cascading landscape design can be established along
the riverbanks, serving the dual purpose of mitigating urban river overflow and purifying
the water quality entering the river (Figure 15D).

To validate the specific effects, an emergy estimation was conducted for the landscape
renovation project of Project 1 (Table 2). If the design approach of the sponge city is adopted,
there will be a significant increase in the overall engineering quantity of the landscape
system. Initially, it may require substantial investment. However, as the usage period
increases, based on the ecological emergy index ESI calculation, the overall sustainability
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of the landscape project can be improved by approximately 15% (from ESI = 0.335 to 0.385).
The efficiency of this aspect has been confirmed by relevant scholars. For specific details,
please refer to references [45–47].
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5.2. Sewage Purification System

Wastewater treatment systems can effectively purify the water of urban rivers. These
systems employ a series of physical, chemical, and biological processes to remove sus-
pended solids, organic substances, nutrients, and harmful substances from wastewater.
Firstly, wastewater undergoes primary treatment where solid residues are removed and
settled. Next, the wastewater enters secondary treatment, utilizing biological methods
such as activated sludge or anaerobic digestion to eliminate organic matter and nutrients.
During this process, bacteria and other microorganisms decompose organic matter, thereby
reducing the pollutant content in the water. Finally, the wastewater undergoes advanced
treatment to remove residual organic matter, nutrients, and microorganisms. Common
methods for advanced treatment include biofiltration, biogas fermentation, and ozone
oxidation. These processes further purify the water quality, ensuring compliance with envi-
ronmental standards and sustainable development requirements. The water treated by the
wastewater treatment system is then discharged into urban rivers, significantly improving
their water quality. This helps protect aquatic ecosystems, provide clean water resources,
and reduce adverse impacts on the environment and human health. However, continuous
monitoring and effective maintenance are crucial to ensure the proper functioning and
safety of wastewater treatment systems.

Figure 16 depicts the basic flow path and key nodes of a wastewater treatment system.
Taking the ESI (Ecological Sensitivity Index) as an example, coupling wastewater treat-
ment with landscape engineering systems significantly enhances ecological sustainability,
increasing it from 0.335 to 2.41, representing an approximately 7.19-fold improvement.
However, this calculation does not consider the various inputs required by the wastewater
treatment system; it only focuses on the positive effects of integrating the wastewater
treatment system into the landscape engineering.

Studies conducted by relevant scholars regarding the impact of wastewater treatment
systems on urban river water quality have been validated and shown to have significant
effectiveness in greatly enhancing the sustainability of urban rivers [48,49]. However, their
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shortcomings are also evident, namely the requirement for a substantial investment and
the need for assessment as a subsystem of the entire urban system.
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5.3. Information Flow Optimization Control System

In order to enhance the intelligent management level of landscape engineering, a
complete monitoring, detection, and control topology diagram is designed and applied.
Figure 16 represents the topology control system diagram. The entire process involves
data collection from cameras, detectors, sensors, and probes, which is then collected and
processed by regional servers. The data are uploaded to a central processing computer for
data analysis, providing managers with appropriate recommendations.

The smart landscape topology diagram is a visual representation of the interconnected
components and systems that make up a smart landscape. It illustrates the structure and
relationships between various elements such as sensors, actuators, controllers, data net-
works, and management systems. At the center of the topology diagram is typically a
central control hub or server that serves as the core of the smart landscape system. This
hub receives data from different sensors distributed throughout the landscape, such as
weather sensors, soil moisture sensors, light sensors, and motion sensors. The central
control hub processes and analyzes the collected data in real time. Based on the analysis
results, commands and instructions are sent to actuators and devices distributed across the
landscape. These devices can include irrigation systems, lighting fixtures, water pumps,
and other infrastructure components. The smart landscape topology diagram also depicts
the communication infrastructure used for seamless data transmission and exchange be-
tween different components. This may involve wired or wireless networks, including local
area networks (LANs), wide area networks (WANs), and Cloud-based platforms. Overall,
the smart landscape topology diagram provides an overview of how different components
within the system are connected and interact to create an intelligent and efficient manage-
ment system for landscapes. It helps stakeholders understand the flow of information,
control mechanisms, and the overall architecture of the smart landscape solution.

According to the design and application of the topology diagram in Figure 17, the
information flow within the entire landscape system is more efficient, avoiding ecological
landscape damage caused by information delays. Taking the ESI index as an example,
the use of the complete monitoring system greatly increases the proportion of emergy in
the information flow. In this study on landscape ecology in design engineering, ESI can
improve efficiency by approximately 25% (from 0.335 to 0.268).

Similarly, there is a limiting negative factor. Due to the higher cost associated with
the overall automated monitoring system, when converted into ecological costs, it has a
significant negative impact in the early stages of landscape projects. The positive effects
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can only become evident as the lifecycle of the landscape project is extended. Relevant
scholars have also studied the effectiveness of information flow topology [50,51].
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6. Discussion on the Comparison with Other Studies

Sustainability research on urban waterfront landscapes is a hot topic, especially re-
garding the influencing factors, including water bodies, landscapes, slopes, and manage-
ment [52–56]. Specifically, different researchers have analyzed and discussed this type of
research from various perspectives.

For example, some researchers investigate the energy efficiency of different design
strategies for urban riverfront landscapes and propose sustainable approaches to reduce
energy consumption [57]. Several authors evaluate the carbon emissions associated with
urban riverfront development in two cities and identify potential mitigation measures to
enhance sustainability [58]. By using life cycle assessment to analyze the environmental
impacts of green infrastructure, interventions in urban riverfront redevelopment, focusing
on energy use and carbon emissions, have been realized [59]. From the view of the
importance of incorporating green spaces into urban planning for carbon reduction, the
research [60] assesses the carbon sequestration capacity of riverfront parks in an urban
context, emphasizing the importance of incorporating green spaces into urban planning for
carbon reduction. A study examines energy-efficient design strategies applied to urban
riverfront landscapes, highlighting successful practices and lessons learned from a case
study in GHI city [61].

Compared to previous studies, this article conducts an assessment and research on
the sustainability of waterfront landscapes from the perspective of the entire life cycle’s
emergy and carbon emissions. Specifically, focusing on urban river scenarios, an estimation
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is made of their ecological emergy and carbon emissions, providing new insights for urban
ecological sustainability research.

7. Conclusions

To verify the ecological sustainability of urban river landscape systems, this study
applies the whole life cycle emergy and carbon emission methods to landscape renovation
projects. Additionally, through the prediction of artificial neural networks, a long-term
assessment of the ecological sustainability of landscape projects is conducted.

From the perspective of ecological emergy, in the long term, landscape engineering’s
ecological maintenance emergy accounts for approximately 75% and is a major influencing
factor. Over time, the three main indicators (EYR/ELR/ESI) show varying degrees of
change, especially the emergy sustainability parameter ESI, which serves as a core reference
indicator, exhibiting a decreasing trend. This indicates that as time goes on, the landscape
system gradually becomes less efficient. Analyzing carbon emissions from nine types
of landscape node, diesel fuel, cement, steel, and other factors were identified as the
main contributors to carbon emissions. At the same time, a quantitative estimation of
the landscape system’s carbon sink was conducted, which helps to clearly identify and
understand the carbon emissions of the entire landscape system. This is beneficial for urban
managers in implementing low-carbon management.

To enhance the ecological sustainability of the entire landscape system, three types
of improvement measure have been preliminarily designed and applied. These include
sponge city design enhancement pathways, coupled wastewater treatment systems, and
optimization of information flow. From the effectiveness perspective, these measures have
a certain positive impact on the landscape’s ecological sustainability as described in this
article. However, all three improvement measures require relatively high investment costs,
especially the coupling of wastewater treatment modes and information flow monitoring
systems. The selection of these measures should be based on the type and pattern of
different ecological landscapes.

In addition, this study needs to consider the continuity of waterfront landscapes,
especially their ecological impact on the entire urban system. This is an area that requires
in-depth research. Moreover, due to the significant carbon sequestration effects of water
systems, precise calculations at the carbon sink level are necessary to enhance the overall
accuracy of the study. Therefore, the next research step should focus on these two aspects.
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