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Abstract: The concept of a Positive Energy District (PED) has become a vital component of the
efforts to accelerate the transition to zero carbon emissions and climate-neutral living environments.
Research is shifting its focus from energy-efficient single buildings to districts, where the aim is to
achieve a positive energy balance across a given time period. Various innovation projects, programs,
and activities have produced abundant insights into how to implement and operate PEDs. However,
there is still no agreed way of determining what constitutes a PED for the purpose of identifying
and evaluating its various elements. This paper thus sets out to create a process for characteriz-
ing PEDs. First, nineteen different elements of a PED were identified. Then, two AI techniques,
machine learning (ML) and natural language processing (NLP), were introduced and examined
to determine their potential for modeling, extracting, and mapping the elements of a PED. Lastly,
state-of-the-art research papers were reviewed to identify any contribution they can make to the
determination of the effectiveness of the ML and NLP models. The results suggest that both ML and
NLP possess significant potential for modeling most of the identified elements in various areas, such
as optimization, control, design, and stakeholder mapping. This potential is realized through the
utilization of vast amounts of data, enabling these models to generate accurate and useful insights
for PED planning and implementation. Several practical strategies have been identified to enhance
the characterization of PEDs. These include a clear definition and quantification of the elements,
the utilization of urban-scale energy modeling techniques, and the development of user-friendly
interfaces capable of presenting model insights in an accessible manner. Thus, developing a holistic
approach that integrates existing and novel techniques for PED characterization is essential to achieve
sustainable and resilient urban environments.

Keywords: Positive Energy District; machine learning; natural language processing; characterization

1. Introduction
1.1. Background

More and more energy prosumers in single buildings are interacting with the grid.
Their frequent energy consumption and injection demands means that bi-directional grids
are increasingly necessary. This scenario is likely to cause a significant redesign of both
grid hardware and energy systems [1]. To alleviate this situation, district-level energy
management could reduce the volume of interactions with the grid, thus making the energy
system more stable. Within the EU, a common agreement has been reached to develop
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district-level-based approaches. The Positive Energy District (PED) is one of these methods
for improving energy management efficiency, while accelerating the transition to zero
emissions in the building sector [2].

Although there have been a number of PED initiatives and pilot projects, the roadmap
towards the construction of 100 PEDs by 2025 in Europe is still complex [3,4]. The difficulties
comprise an unsettled definition of PEDs [5], the current need for multiple development
phases [6], insufficient implementation tools [7], and other technical and non-technical
challenges [8]. Many of the projects are still in their early phase [9,10]. Lessons learned from
a project on one specific site are not easily transferred to another because of the context
discrepancy. Difficulties in understanding the interactions of urban systems for building
PEDs is a significant obstacle to applying a single method, making the characterization of
PEDs still vague [2]. A technical report of the Joint Research Center (JRC) [11] considers the
design a zero-energy district like a PED as a complex process, where multiple stakeholders
need to collaborate on an shared target. Ashrafian et al. [8] identified seven factors that
are vital to the success of a PED, of which governance is the most significant factor. It
needs to be based on a network of interdependency, pluralism, negotiation, and trust for all
stakeholders, so that it can then provide support for the other factors. At the same time, the
impact of culture cannot be neglected. Different cultural contexts and approaches can mean
that cooperation levels between stakeholders can change when collaborating on common
goals over a long period [12].

Input data and its customization, grid impact, multi-energy interaction, and informa-
tion on district infrastructure are the key challenges for energy modeling [13]. Because
there is no single tool that integrates all of the necessary information, these challenges exist
across the whole of the three-stage PED modeling process: pre-simulation, simulation,
and post-simulation [7]. Although external databases can be used, it is not efficient to
fit the parameters of these data to a local context. Specifically, research data, operational
and observational data, monitoring and evaluation data, and documentation and reusable
knowledge are the main types of inputs for modeling PEDs [2]. How to acquire these data
and the method to be used for their comprehensive analysis are the fundamental challenges
that a PED model thus faces.

1.2. The Importance of PED Characterization and the Need of AI Techniques

Many studies and pilot projects have already sought to develop the idea of the PED
and further demonstrate feasible solutions to its existing challenges [14,15]. One area that is
particularly important is the activity necessary for scaling up or replicating successful PEDs.
PEDs have a number of shared characteristics, even though they are also very specific to
their local context. Cities often differ from each other due to various geographic, historical,
political, structural, social, legal, and economic factors [16]. Given that the replication of a
PED is not simple, it is important to extract the maximum replication potential of a PED
when in the early design stages [17,18]. Characteristics of existing PEDs can be used to
construct tailor-made solutions for other local contexts. These characterizations can then
form an objective foundation from which to construct an efficient PED replication plan.
As a result, it is important to characterize PEDs and find the common solutions necessary
to boost the replication potential of PEDs for the achievement of climate neutrality and
energy surplus.

Existing studies have explored various aspects of PEDs. For example, the densifica-
tion of residential areas has been recognized as an effective means to reduce both energy
consumption and land use for inhabitants within the PED framework [19]. Additionally,
management innovation offers a flexible approach in dealing with battery cycling aging,
particularly in the context of vehicle-to-building interactions [20]. To facilitate large-scale
retrofitting initiatives, providing accurate predictions of potential business scenarios is
crucial [21]. Testing facilities play a key role in ensuring the optimal replication of PEDs.
They also help identify opportunities for sharing these facilities and enhancing the effi-
ciency of resource utilization [22]. Furthermore, when developing PEDs, it is important
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to incorporate citizen engagement methods. These methods help in the understanding of
how various efforts can be synergistically combined and improved from a social stand-
point [23,24]. Despite these efforts, only a few studies have really looked to characterize
what actually comprises a PED [15]. As a guide for the development of PEDs in the future,
a deeper understanding of existing PEDs is necessary. This means that more comprehen-
sive scientific knowledge about PEDs and the best methods for running them needs to
be gathered. Advanced analytical methods, like artificial intelligence (AI), could be one
way to extract the characteristics of PED and, in so doing, generate a virtual PED reference
at a more detailed level. This then generates the research question: how can a deeper
learning be applied to existing PEDs so that future PED development and implementation
can benefit?

1.3. AI Techniques

Energy management strategies, improved energy storage technologies, flexible district
energy requirements, and coordinated efforts in cleaner power generation are all required
for the energy paradigm shift toward carbon neutrality [25]. It is necessary to demonstrate
the efficacy and efficiency of the developed strategies during the design and implementation
phases of PEDs through new techniques [26]. PEDs also generate a significant amount of
data from various sources: design and construction processes, building services, operational
and building management systems, energy infrastructure and transportation systems,
and maintenance and replacement systems. The increasing use of digital twins has also
facilitated the collection of large amounts of geometric and non-geometric data (building
characteristics), weather conditions, and energy data. Analyzing the patterns in these data
is crucial to understanding how various systems and infrastructures relate to one another
and whether or not they are operating effectively, because PEDs demand the integration
of various systems and infrastructures and the interaction between buildings, users, local
energy, mobility, and information and communication technology (ICT) systems [27].

AI techniques can be used to analyze large amounts of data and extract valuable
insights about the performance of PEDs. These approaches have successfully addressed
a wide range of applications, including load predictions, the profiling of energy patterns,
mapping regional energy consumption, benchmarking for building stocks, and analyzing
the effects of retrofit strategies [28,29]. The ability to learn relationships between input
and output makes AI models efficient tools for handling massive and complex data [30].
However, as of yet, there has been no research conducted on how to extract more infor-
mation about the characteristics of PEDs using AI methods. Even though AI models are
being used in more and more areas, the fact that, to date, most studies of PEDs are based
on data, models, and model parameters that are unique precludes their conclusions from
being broadly applicable. A general framework for AI techniques should be established, so
that the performance of PEDs can be more easily analyzed. This should serve to broaden
and improve the general applicability of PEDs.

The aim of this paper is to investigate how two AI techniques—machine learning (ML)
and natural language processing (NLP)—can be used to analyze the characteristics of PEDs,
so that PEDs can be better understood, compared, implemented, and replicated. The rest of
the paper is organized as follows. Section 2 introduces the characteristics of PEDs identified
in this paper, their nineteen distinct elements. It also outlines the method adopted for the
literature review. Section 3 outlines the two AI techniques for analyzing these elements.
Section 4 analyzes the reviewed literature based on the elements and the key algorithms.
Section 5 discusses the main findings and Section 6 concludes the paper.

2. Elements of PEDs and Research Method

In their PED Reference Framework, the Joint Programming Initiative Urban Europe
(JPI UE) defines PEDs as ‘energy-efficient and energy-flexible urban areas or groups of
connected buildings which produce net zero greenhouse gas emissions and actively manage
an annual local or regional surplus production of renewable energy’ [31]. This report also
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highlights the importance of integrating urban systems with the energy supply and quality
of life. However, the process of developing and creating a PED is still an ongoing research
topic because of its inherent complexity and uncertainty. For example, diverse climate
zones and technology settlements make the optimal location for establishing a PED to
be areas in southern Europe that, unlike northern Europe, lack district heating [13]. This
section examines the existing literature on PEDs that has in some way sought to analyze
the definition of a PED or to identify the key factors or main elements of a PED. The
identified elements will then form the basis for a review of the AI techniques proposed to
analyze them.

2.1. Elements of a PED

Definitions of PEDs and other related concepts have been shaped by the understanding
of sustainable development and the three pillars of sustainability: economic viability,
environmental protection, and social equity. Casamassima et al. [32] adopted this tripartite
approach to identify six criteria defining a PED: spatial resolution, energy balance, emission,
land use, energy efficiency, and energy justice. These were selected because they are
independent of geographical location. Land use and energy justice are the main features
that distinguish a PED from other similar concepts. PEDs can be seen as contributing to
some of the targets identified in the sustainable development goals (SGDs) SGD7, SGD11,
and SGD13 [33]. However, the lack of connection of the sustainability dimensions makes
the assessment of PEDs fragmented. For a systematic assessment of a PED’s contribution
to sustainability, the defined Key Performance Indicators (KPIs) need to consider the links
between the sustainability pillars [34].

An online-based guideline survey conducted by the IEA EBC Annex 83 group pointed
out three clusters of PED elements: the energy system carriers; procedural, institutional, and
governance aspects of PEDs; and environmental and spatial quality and the social fabric of
PED areas [35]. Bottecchia et al. [36] emphasized thermal and electricity loads in buildings,
renewable energy generation, energy management systems, the spatial resolution to identify
the boundaries and where to place the generation technologies, temporal resolution, and
the objective functions to characterize PEDs, where the multi-objective functions can
include energy balance, emissions, cost, and indoor human comfort. Derkenbaeva et al. [37]
considered four elements of a PED: geographical boundary, interaction with the energy grid,
the energy supply method, and the balancing period. Albert-Seifried et al. [5] compared
PED definitions used by European organizations and programs and put forward balanced
calculation, boundary, and key energy concepts as the main elements of a PED.

As one of the most important activity and funding leaders, the JPI UE identified three
functions of a PED in the urban energy system: energy production, energy efficiency, and
energy flexibility [31]. It went on to study these functions in more detail from different
angles [5,13,37]. Energy produced for PEDs needs to be sourced from local or regional
renewable sources, and achieve the goal of zero emissions. High energy efficiency means
the optimal utilization of technologies to reduce energy consumption, which should be
prioritized, since the space needed for renewable energy generation is limited in an urban
area [37]. Energy flexibility contributes to the resilience and balancing of the regional energy
system in consideration of demand management, sector coupling, and storage. It manages
the interactions between the systems at different levels. These functions are balanced by
consideration of the guiding principles of life quality, inclusiveness, sustainability, and the
resilience and security of the energy supply [31].

In summary, by examining the diverse definitions in the existing literature, a common
set of PED elements can be drawn up. These elements, rather than offering a narrative
description, work to condense definitions by providing a collection of concrete factors that
are vital to the success of PEDs and can be individually treated as a means of characterizing
PEDs. Nineteen elements have been identified. Each one is either a specification or
an enabler of one of the four principles. For example, comfort is an important metric
for evaluating life quality and smooth interaction with the grid when the production of
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renewable energy can ensure the resilience and security of the energy supply. The elements
are grouped into two clusters in Figure 1, with the bottom semicircle being the three
functions of the urban energy system and the top semicircle being non-energy issues. Each
of the functions forms a sub-cluster, where energy efficiency is on a higher level due to
its priority to be considered among the three functions. A similar clustering process has
been applied to the non-energy issues. In the upper left quarter, for example, the three
pillars of sustainability have been clustered together, alongside a cluster of principle- and
policy-related elements. The elements in the top right quarter reflect specific aspects of the
local implementation process.
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2.2. Research Method

In this paper, we conduct a survey of the literature that has explicitly used ML or NLP
to analyze the elements of PEDs. The literature search was carried out in the databases Web
of Science, and Google Scholar by combining a PED element and at least one ML algorithm
or NLP task in the search term. To be included as an algorithm or task, it was essential that
the ML or NLP models could be used for buildings at a district level and had the potential
to complement the elements. The large number of papers published on ML has meant that
this paper is not an exhaustive search for all of the research related to ML. Only papers
published in the last five years (2018–2023) that have had a significant impact are reviewed
here. After reading, screening, and elimination of irrelevant papers, we have been able to
identify 34 papers related to ML and 37 papers related to NLP. This group of 71 papers
forms the basis for the analysis in Section 3.
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3. Machine Learning and Natural Language Processing

Artificial intelligence (AI) means designing and applying algorithms in a computa-
tional environment to simulate human intelligence and solve complex problems, such as
computer vision, control, entity recognition, and classification. As the application of AI
in many domains has assisted people and often worked to improve productivity, the inte-
gration of AI techniques into building energy management mainly concerns thermal com-
fort [38] and energy use [39] prediction, building system control [40], fault detection [41],
and building information modeling [42]. The evidence from these applications, therefore,
provides abundant hands-on experience for PED learning and replication. Among the
various AI techniques, the versatility and scalability of machine learning (ML) and natural
language processing (NLP) make them highly suitable for large datasets and complex
problems. These two techniques are also constantly evolving, with new models and algo-
rithms being developed to improve their performance all the time. Through constructing
problem-oriented algorithms, ML learns to automate analytical models from data rather
than being taught how to improve its learning abilities. Deep learning, as a subset of ML,
is based on multi-layer artificial neural networks that can efficiently model the complex
relationships between neurons and recognize complex patterns in the input data. As a
sub-field of AI, NLP integrates linguistics and computer science to enable a computer to
process and understand natural language data. The most common data source for helping
a computer to develop rules for decoding information comes in the form of audio and
text. Typical NLP tasks comprise named entity recognition, part-of-speech tagging, topic
modeling, machine translation, and text classification. Sometimes, as indicated in Figure 2,
NLP tasks need to be executed by using ML or a deep learning method. In these cases,
there can be overlaps between solving an NLP task and ML algorithms. Training ML
and NLP models requires feeding them with large amounts of labeled or unlabeled data
and utilizing an algorithm to optimize and iteratively refine the parameters to improve
their performance. The flow of actions necessary for this training to take place—from data
collection to final model—are compared in Figure 3 and explained in the following sections.
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Since the research focus in energy is shifting from single buildings to the district level,
a few ML techniques have been developed that seek to understand energy modeling and
management at a district level [43,44]. However, studies employing NLP to mine text data
are extremely rare [45]. One of the reasons is that the fast growth in big data applications
and deep learning architectures occurred at the beginning of the 2010s with the significant
increase in computing speed. This breakthrough enables the machine to train millions of
parameters to create sophisticated and nonlinear relationships that map the input data.
However, it was not until the late 2020s that the execution of NLP tasks by unsupervised
pre-trained language models started to outperform human ability [46,47]. By using a
huge corpus of input data, these language models are pre-trained to capture the implicit
linguistic rules and semantic relationships displayed in human language construction
without manually labeling the model output.

3.1. Features and General Machine Learning Processes
3.1.1. Features of ML

PEDs are crucial for a sustainable energy transition to combine high levels of energy
efficiency, smart infrastructures, and renewable energy sources in accordance with energy
demand [27]. Accurate performance measurement of the different elements that comprise
a PED are equally important. Modeling and simulation methods are frequently utilized to
assess the current energy use of the building stock, estimate energy demands at various
spatial and temporal resolutions, evaluate various design or retrofit options to reduce
energy use and environmental impacts, quantify the effects of climate change, and develop
energy-efficient strategies for optimization problems [48]. Physical models (also called
engineering methods or white-box models) are based on thermodynamic principles and use
energy simulation software, for example, EnergyPlus 23.2.0 and IES VE 2023 and detailed
input data for energy modeling [27]. Physical models, however, require a high level of
operational expertise and extensive modeling data [27,30]. Modeling a PED, therefore,
would require a process that can assess the effect of various strategies for evaluating retrofit
measures, renewable energy, energy optimization, and implementing effective policies.

ML is a data-driven method designed to complement physical models. Its strength
lies in its ability to manage non-linear relationships among data and account for complex
interactions and uncertainties. Because they are easy to run, ML models are frequently
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employed in energy demand forecasts, the profiling of energy patterns, various retrofit
strategies [10], and the forecasting of renewable energy production. For ML, however,
gathering the historical data necessary for model training on a large scale is a challenging
issue [49]. Data with higher time resolutions, for example, is harder to come by than
datasets with lower resolutions, such as quarterly or annual [50]. In cases where no real
data exists, where monitoring, for example, has not taken place, ML models can be trained
using synthetic data generated from simulations.

Depending on the learning outcome, ML algorithms can be divided into three broad
categories: supervised, unsupervised, and reinforcement learning [51,52]. In supervised
learning, a model makes predictions for all unseen data points using a set of labeled sam-
ples as training data [53]. Applications of this method include using regression to forecast
energy usage, predict indoor air quality, compare various retrofit scenarios, control HVAC
equipment, and for system management [54]. In addition, classification may handle the en-
ergy pattern profiling of particular use cases, the mapping of regional energy consumption,
and establishing energy benchmarks for a particular building stock [28]. Unsupervised
learning refers to identifying patterns and structure without any prior knowledge and
explicit guidance by using unlabeled data [53]. Reinforcement learning is based on a model
finding a series of actions to take in a particular circumstance in order to maximize a
delayed reward [51,52]. Thus, each of these ML approaches has been shown to be useful
for modeling some aspects a PED.

Moreover, the optimization of a PED could be accomplished via a digital twin, a cou-
pled technique for new types of modeling and analysis based on big data and ML/AI [26].
Digital twins based on ML methods continue to evolve in city pilot projects. The potential
of a digital PED twin based on ML is to record the dynamic and intricate interactions
between the various PED elements and thus to open up new levels of analysis for already
complicated energy environments.

3.1.2. General Process of ML

As indicated in Figure 3, the development of an ML model follows the following
main stages: data collection, data pre-processing, model training, model evaluation, and
final model.

• Data collection—ML requires input data that is mostly collected by sensors or generated
synthetically [55]. The Internet of Things (IoT) has a significant potential to enhance the
efficiency, effectiveness, and scalability of sensor techniques, while computer simulations
and statistical methods are often used for generating synthetic data.

• Data pre-processing—The ranges of the acquired data may be significantly dissimilar
from one another or the data may contain outliers, which could lead ML models
to inadequate accuracy or learning. In order to tackle these challenges, data pre-
processing is used to prepare and transform data into an appropriate form so that
useful patterns can be extracted from the data [56]. This pre-processing includes
data cleaning, data reduction, data transformation, and data integration [55]. Data
splitting can further divide data into training data (for model training), testing data
(for testing and evaluating the model) and validation data (for the tuning of model
parameters) [57].

• Model training—An algorithm is selected to adjust the parameters in the model based
on the training set. The goal is to deploy the trained model on the testing set until it is
able to make accurate predictions or optimal decisions.

• Model evaluation—The performance of the ML models is evaluated based on dif-
ferent metrics including, among others, mean absolute error (MAE), mean absolute
percentage error (MAPE), mean bias error (MBE), mean square error (MSE), root mean
square error (RMSE), coefficient of determination (R2), and coefficient of variation
(CV). These performance metrics enable the comparison of different models. Apart
from these main steps, hyperparameter tuning sets the optimal parameters necessary
to improve the performance of algorithms [58]. Despite being a computationally
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expensive process, hyperparameter tuning leads to the increased accuracy, robustness,
and reliability of ML models [59].

3.2. Natural Language Processing
3.2.1. Features of NLP

It was not until 2018 that the concept of PEDs started to gain traction. At that time, a
number of projects examining alternative ways to carbon neutrality in urban environments
published their results. The reports, interviews, publications, and other deliverables issued
by these projects provide ample text data that could be interpreted and analyzed by NLP.
Until now, it has been the qualitative dimension of these text data that has received attention
for PED. Challenges in qualification, data structuring, and semantic extraction have also
limited the use of these data. There has been improvement in the use of ML techniques
in the field of sustainable development, but there is still considerable potential for the
use of NLP in areas like PEDs [60]. For example, one of the current NLP techniques is
word embedding, where words are represented as real-valued vectors, so that semantic
regularities present in the data can be identified. In addition, NLP is also able to extract
knowledge and develop associations between words, which helps in creating clusters of
similar words [61]. While topic modeling identifies categories of themes from a collection
of documents, pre-trained large language models can perform a wide range of NLP tasks
by modifying the structure and finetuning the parameters.

Some pioneering studies have attempted to utilize text data for PEDs. By examining
the transcript data and the Knime dashboard in a preliminary analysis of 60 PED projects
in Europe, Zhang et al. were able to show the presence of commonly used words and
sentiments in the characterization of PEDs [15]. Hedman et al. developed a keyword cloud
from research papers on the topic of PEDs or similar [1], which showed that, to date, PED
research has focused on building-level innovations, such as zero-energy buildings (ZEBs),
intelligent buildings, energy efficiency, and renewable energy sources (RES). Neumann et al.
adopted 25 guidelines to shape their collection of opinions regarding spatial scale, audience,
and main contents and from this produced a series of keyword and topic clusters [35].
These works have gone some way to setting up the necessary qualitative paradigms for
using text mining when characterizing PEDs. However, it is unknown what algorithms
were used in these studies and how more advanced algorithms for handling text data might
contribute to PED characterization.

3.2.2. General Process of NLP

Apart from the words that carry significant meaning, qualitative data also consists of
dates, pronouns, prepositions, and articles that only serve to hamper the working of an
NLP algorithm. Data pre-processing, therefore, is a vital early step to perform for any NLP
algorithm. It gets rid of unwanted data and identifies the root source, while reducing the
size of the data and improving the system’s overall performance. Feature extraction and
task-specific modeling can then be implemented. The most important techniques in this
process are:

• Tokenization—This is a process of separating words, sentences, and phrases into
meaningful pieces from a stream of text-making elements called tokens. These tokens
are then used as input for further processing. Some textual data contains punctuation
marks, dates, and time formats which can create inconsistencies.

• Removing stop words—A number of common words that do not add meaning or
generate results in their own right need to be eliminated. Eliminating the most
frequently observed stop words such as ‘and’, ‘are’, ‘the’, and ‘that’ also reduces the
size of the data and enhances the performance of the model.

• Stemming—This is a process whereby one word with variant forms is converged
into a single ‘stem’. For example, the words ‘decarbonization’, ‘decarbonizing’, and
‘decarbonized’ can all be reduced to the single term ‘decarboni’. Stemming gives the
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root or base word, removes the last few characters of a word, and gives a short word,
even though this word usually does not have a meaning.

• Lemmatizing—This is a process similar to stemming but one where the context of
the root word is understood and used to generate meaningful representations and
aid in information retrieval (IR). Lemmatizing is based on the presumption that an
occurrence of the term ‘decarbonizing’, for example, indicates a connection to data
where words like ‘decarbonized’ and ‘decarbonization’ are present.

• Feature selection—A process that encodes words into a data type that a computer can
use for computation. Bag-of-words, one-hot encoding, and word2vec are all examples
of feature selection. Term frequency–inverse document frequency (TF-IDF) is usually
used in combination with feature selection to determine the importance of a word in
a document.

• Task-specific modeling—In addition to statistical methods, many ML methods can
be used for modeling complex problems. A specific NLP task needs to be defined so
that the ML model can learn the parameters. When the model is trained, evaluation
criteria can be used to measure its performance.

4. Overview of the Literature
4.1. Applications of ML to PED Elements

Applying ML techniques to the characterization of PED elements has mainly focused
on energy efficiency, energy production, sustainability/environment issues, and comfort.
As can be seen from Table 1, ANN-based approaches, support vector machines (SVMs),
and tree-based approaches are considered to be the most important techniques. Other
studies involving ML techniques have utilized statistical methods such as multiple linear
regression, Bayesian regression, and k-nearest neighbors. In comparison to other PED
elements, a large number of applications are found for modeling load and renewable energy.

Table 1. Application of ML to PED elements.

PED Elements
ML Method

ANN SVM Tree-Based Approaches Other

Energy efficiency [62–65] [63–65] [62,64,65] [63–65]

• ICT [66–70] [67] [67,69]
• Load (temporal scale) [71–77] [71–75,77] [73,75–77] [73,75–78]
Energy production

• Renewable energy [79–86] [79,84–87] [84–86,88] [81,84,89]

Sustainability [90] [91] [90,91]
Comfort [92] [93] [93] [92–95]

4.1.1. Common Approaches in ML
ANN-Based Approaches

Artificial neural networks (ANNs) use artificial neurons to recognize and store in-
formation in a manner similar to how brain neurons function [96]. ANNs are a family of
methods where the mapping between input and output is modeled as a composition of
neurons as simple processing units. A basic ANN structure (Figure 4) involves three main
neuron layers: input, hidden and output. Based on the complexity of the modeling task,
the number of hidden layers can vary considerably.
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In a conventional ANN, the input x = (x1, . . . , xt)
T of a fully connected multi-layer

neural network is linearly transformed through multiple layers, with I[i]j = g
(

ω
[i]
j I[i−1] + b[i]j

)
for neurons j in layer [i], with I[0] denoting the input x and g(·) a non-linear activation
function. The values of each layer are fed forward to the next layer until the output

layer turns into y. If W[i] is defined as a weight matrix with the rows being
(

ω
[i]
j

)T
and

b[i] =
(

b[i]1 , .., b[i]j

)T
, a representation of the layers is:

I[1] = g
(

W[1]x + b[1]
)

I[2] = g
(

W[2] I[1] + b[2]
)

...
ŷ = I[h] = g

(
W[h] I[h−1] + b[h]

)
,

(1)

where h − 1 is the number of hidden layers and ŷ is the predicted output. A loss function
L(ŷ, y) is then defined for optimizing the parameters W and b. Due to their ability to learn
the complex relationships in a dataset, ANNs have been widely used in forecasting energy
demand [55,59,97] and the estimation of renewable energy production [98].

Support Vector Machines

Support vector machines (SVMs) solve classification or regression tasks by transform-
ing data into a high-dimensional space that can be easily separated by a hyperplane [99].
SVMs are designed to maximize the distance between the decision boundary and the
nearest data points of each class. This distance is known as the margin, and it plays a
crucial role in defining the region of the feature space where the SVM is expected to have
good generalization performance.

As shown in Figure 5, the hyperplane is defined as

f (x) = WT φ(x) + b, (2)

where f (x) denotes the output prediction, W is the weight factor, b is the adjustable
factor, and φ(x) maps the input space into a high-dimensional feature space. The margin
between the support vectors can be easily described as 2

||W|| and with this, the training

objective of an SVM can be formulated as minimizing ∥W∥2
2, subject to the samples being

classified accurately.
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Tree-Based Approaches

Partitioning data into smaller subsets, in a structure similar to the roots of a tree, is
another mechanism for solving classification and regression problems. Each non-leaf node
corresponds to a single feature, each branch corresponds to a different value for a feature,
and each leaf node represents a class of predictions. Random Forest (RF) is one of the
most commonly used tree-based approaches. In RF, predictions are made by combining
an ensemble of trees in a forest [100]. Given the diversity in any dataset, the combined
approach of trees in a forest will lead to more reliable results than a single-tree approach.
Figure 6 shows the diagrammatic structure of RF. RF has been used for both classification
and regression problems, including modeling solar irradiation, age of building and energy
consumption, and forecasting electricity load [101].
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4.1.2. Energy Efficiency

The increase in energy consumption and the global energy crisis has increased the
importance of energy efficiency research. Efficient energy use reduces energy demand and
reduces dependence on external sources of energy for a PED. Studies have explored the
use of ML models to improve building energy efficiency over the past few decades [65].
Zekic-Susac et al. attempted to provide an answer as to how to use ML as a key component
in effectively managing energy efficiency in the smart city [62]. For this purpose, they
utilized deep neural networks, a Rpart regression tree, and RF for predicting the energy
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consumption of buildings. Other studies have identified the potential of using industrial
data to assist in achieving goals linked to energy efficiency [63]. A framework has been
suggested to serve as a reference for process industries on the selection of suitable ML
tools for energy efficiency goals. Zhang et al. [64] have examined recent studies that
used ML to forecast occupancy behavior and trends with a view to enhancing energy
efficiency. They also provided an evaluation of the applicability of different ML algorithms
in energy-efficient applications examining occupancy behavior.

Information and Communication Technology (ICT)

‘Building ICT’ refers to the information technology and communication systems in
a building that produce data that can be collected and analyzed so as to improve the
building’s operational efficiency. ICT is also one of the most important elements of a PED,
since it provides stable and reliable connectivity between active and passive devices used
for everyday purposes by residents in smart cities [66]. The design, decision-making, and
implementation phases of a sustainable and smart buildings system is reliant on an ICT
framework, into which an ML method can be implemented [67]. Through the dynamic and
ongoing adaptation of network behavior, ML is required to achieve the requisite quality
of ICT performance. Data gathered by IoT sensors placed in various locations in a smart
city can be utilized by ML to efficiently manage resources and assets [68]. A deep learning
model proposed to assess and forecast the performance of an IoT communication system
concluded that the model can be useful to modify IoT system behavior [66]. In another
study, Serrano integrated reinforcement learning in an intelligent infrastructure model
that monitors energy consumption and traffic rates [69]. With the intention of improving
energy efficiency, ICT makes it possible to obtain large amounts of data, process these data,
and prepare them for application. For example, ML models have been used to classify
buildings based on their energy efficiency. These studies have shown how ICT and data
science technologies and techniques can be developed for the classification of building
energy efficiency [70].

Load

Studies have shown that ML can help evaluate energy load and balances by predicting
the heating, cooling, ventilation, and electrical energy demand and load of buildings at
both building scale [72,75,76] and district scale [71,74], where 57% of the efforts were
carried out at the individual level, and 43% across multiple buildings [77]. Together, these
studies contribute to the use of ML-based predictions of energy consumption as a means of
evaluating various energy-saving methods. They also provide insight into the use of ML
in future energy efficiency applications. Predictions enable demand-side management to
perform intelligent control decisions, analyze/balance energy supply and demand, and
evaluate the energy flexibility of a building based on smart grid strategies [73].

A number of studies can be clustered around their concern with time granularity.
All of them show that it is high temporal resolution data (hourly/sub-hourly as opposed
to monthly/yearly) that enables an optimized analysis of the real-time management of
energy use in buildings and electrical networks [74,75]. Predictions based on high temporal
resolution data can enable utilities to manage resources and also implement strategies to
balance the supply and demand of electricity, leading to efficient grid interaction. The
studies using high temporal resolution data show that it is possible to evaluate and develop
optimization, control, and management for energy-efficient and smart grid applications.
For example, minute resolution studies can be used to estimate potential energy flexibility
and can enhance both the technical and financial performance of smart grid operations [78].

The research also generally acknowledges that ML methods show higher accuracy
performance in the short term and are more effective at making predictions for short time
periods than long ones, like, for example, a year or more [74]. While this will be useful in a
PED context for short-term energy sharing planning, it is essential for PED development
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that accurate long-term predictions are made concerning how to develop an energy supply
strategy and capital investment for energy-efficient applications.

4.1.3. Renewable Energy

Renewable energy sources constitute a crucial component of the electricity grid re-
garding reliability, affordability, and environmental impact [87]. Real-time estimation
of produced energy from renewable sources is essential for the planning, management,
and operation of electrical power and energy systems. Given the intermittent and un-
predictable nature of renewable energy, it is essential to use forecasting as a means of
reducing associated risks. This is important for the management and operation of electrical
power and energy systems in PEDs. Although applications of ML for renewable energy
are mostly related to solar and wind energy predictions [102], studies that benefit from
ML models to model energy production from renewable sources can be found across a
wider range, including solar energy [79,85,86,89], wind [81,85,86,88], hydropower [82],
geothermal energy [84], biomass [83] and wave [80].

4.1.4. Sustainability and Environment

ML approaches for sustainability assessment are essential to help decision makers
determine which actions to take to improve sustainability [91], since urban energy systems
need to be made more inclusive, safe, resilient, and sustainable [103]. While various
methods have been proposed for assessing sustainability performance, fuzzy clustering and
supervised ML techniques are more flexible in accepting the large number of sustainability
indicators to be used in the assessment of sustainability [90]. Supervised ML techniques
have been mostly used for prediction, while unsupervised techniques have been used
for the development of new products and materials in the energy sector. However, the
availability and refinement of data have been crucial for ML penetration in the energy
sector [104]. The main working areas should include engineering, electrical and electronic,
computer science, information, and telecommunications. Organizations also need to
connect and provide analysis techniques in the data provided by others to create clusters of
work and specialization [103].

4.1.5. Comfort

Indoor comfort directly impacts the well-being and satisfaction of the occupants of
buildings. If the indoor environment is uncomfortable, occupants may be more likely to
make changes to the building’s HVAC system or lighting, which could negatively impact
the energy efficiency of the buildings. This, in turn, could affect the overall energy balance
of the PED. Various ML models can be applied for developing personal comfort systems.
Personal comfort models, which are based on the heating and cooling behavior of occupants,
can be utilized in daily comfort management practices to enhance occupant satisfaction
and optimize energy usage [93]. ML-based control models can also be used to ensure
optimal air quality and thermal comfort, while using the least amount of energy from
air-conditioners [95]. They manage heat pumps, as well as chilled and domestic hot water
storage, for multiple buildings to ensure indoor comfort [94]. This is because an advanced
algorithm is able to identify intricate relationships between the air-conditioning systems
and thermal environments [92].

4.2. Applications of NLP to PED Elements

The cases where NLP approaches have been applied to PED elements have focused
on energy efficiency, energy production, sustainability issues, context, markets, and land
use. The techniques used most frequently are word2vec, topic modeling, and BERT and
its variations, followed by a number of computationally less intensive techniques, such as
POS, text similarity/co-occurrence, and TF-IDF. As can be seen from Table 2, some studies
combined multiple techniques to address a specific element [105–113], while some less
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frequently used or known techniques were discovered in building ICT, building load, and
renewable energy.

Table 2. Application of NLP to PED elements.

PED Elements

NLP Method

Word2vec Topic Modeling *BERT* POS TF-IDF Similarity/Co-
Occurrence Other

Energy efficiency [105,114] [105,106,115] [106,116] [117,118]

• ICT [107,119] [108,120] [108,121] [107] [122–124]

• Load [125–127] [109] [109] [128]
Energy production

• Renewable energy [110,115,129] [130] [110] [111] [111] [131–133]

Sustainability [112] [112,134]

• Environment [113] [113]

Context [135,136]
Market [137]
Land use [138–140] [141]

*BERT* represents the original BERT and its variations.

4.2.1. NLP Techniques
Word2vec

As the most popular implementation of word embedding, word2vec is a technique
used in NLP to represent words in a continuous and dense vector space. Two com-
monly used techniques for word2vec are continuous bag-of-words (CBOW) [142] and
skip-gram [143]. CBOW is a model that seeks to capture the semantic and syntactic relation-
ships between words by using the context window of the surrounding words to predict a
target word. It learns the representation of words by training on a large corpus of text. The
representation of each word is learned by minimizing the cross-entropy loss function [144]
upon observing the surrounding context, namely

LCBOW = −log P(wO|wI,1, . . . , wI,C), (3)

where wO is the output word and wI,1, . . . , wI,C are the context words with length C. Skip-
gram, on the other hand, is a generative model that predicts the surrounding context given
a target word. Unlike CBOW, skip-gram uses the target word to predict the context words
by minimizing

LSkip−gram = −log P(wO,1, . . . , wO,C|wI). (4)

Both CBOW and skip-gram are widely used in NLP tasks such as text classification,
language translation, and named entity recognition. CBOW is typically faster to train
compared to skip-gram, but skip-gram has been shown to perform better in capturing the
semantic and syntactic relationships between words. Both are effective techniques for word
embedding. The choice of technique depends on the specific NLP task required and the
computational resources available.

LDA Topic Modeling

Latent Dirichlet Allocation (LDA) is an unsupervised method for identifying latent
topics in a corpus [145]. It is a way of determining if a group of words within a given
dataset semantically relate to each other. LDA uses bag-of-words to consider a document
as a vector of word frequency and as a probabilistic generative model for collections of
words. In a generative process, a topic is sampled from a topics distribution created for
each document. The distribution of words within the sampled topic is then used to select a
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word. The process is repeated until the traversal of each word. The observable variables
are the words wm,n and the latent variables are the distributions of topics and words.

As indicated in Figure 7, K is the number of topics, M is the number of documents, and
Nm represents the length of words in document m. The topics and words are characterized

by the multinomial distributions zm,n ∼ Multinomial(
→
θ m) and wm,n ∼ Multinomial(

→
φk),

respectively. The prior information is given by the Dirichlet distribution
→
θ m ∼ Dir(

→
α )

and
→
φk ∼ Dir(

→
β ), where

→
α and

→
β are the prior parameters and

Dir(
→
α ) = P(

→
θ m

→
α ) =


Γ
(

∑K
k=1 αk

)
∏K

k=1 Γ(αk)

K

∏
k=1

θ
αk−1
m,k , θm,k ∈ [0, 1]

0, elsewhere

. (5)

The rectangles in Figure 7 indicate replicated sampling from the distributions. Thus, a
joint distribution can be formulated [146] as

P
(
→
φk,

→
θ m, zm,n, wm,n

)
=

K
∏

k=1
P(

→
φk|

→
β )

M
∏

m=1
P(

→
θ m|

→
α )

Nm
∏

n=1
P(zm,n = k|

→
θ m)P(wm,n|

→
φk, zm,n = k).

(6)

Various estimation techniques of the parameters in Equation (6) are available in [147].
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BERT

The Bidirectional Encoder Representations from Transformers (BERT) is designed to
pre-train a bidirectional representation of language model conditioning on both the left and
right context in all layers [46]. In training BERT, the masked language model (MLM) for
predicting words at token level and next sentence prediction (NSP) at sentence level are
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used on unlabeled data. In MLM, 15% of the tokens are masked for prediction. To be able
to better fine-tune the downstream tasks, the masked token is replaced by a [MASK] token
with 80% probability, by a random token with 10% probability, and an unchanged token
with 10% probability. For the NSP, two sentences separated by a [SEP] form a training
instance, where 50% of the time one sentence is next to the other and 50% of the time the
sentences are randomly selected. The trained parameters are then further fine-tuned for
downstream NLP tasks with labeled data. For example, a sentiment classification can be
indicated by a specific token [CLS]. An illustration of this process is given in Figure 8, where
both MLM and NSP are used for pre-training. Multiple downstream tasks are fine-tuned
by concatenating a task-specific layer.
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4.2.2. Energy Efficiency

In addition to serving as a corpus for quick co-occurrence analysis [117,118], research
papers have also been primarily collected as the document for training word2vec models.
For example, Abdelrahman et al. analyzed 30,000 papers with the objective of capturing
the relationships between data science and energy efficiency within a network of four
categories: data, data science, energy efficiency, and phase [114]. Word2vec was used
to represent each word in each category in a vector of 300 dimensions. The consequent
usability relation extraction shows that passive design, demand-controlled ventilation,
model predictive controls, fault detection and diagnosis, and retrofit analysis use data
most frequently, but this is not the case for measurement and verification or operation
and maintenance. Moreover, Generative Adversarial Networks, dimensionality reduction,
segmentation, and anomaly detection may have potential in modeling energy efficiency.
Another consequent analysis of the clustering of concepts based on word2vec identifies key
clusters of data science. Similarly, complemented by LDA, word2vec quantifies semantic
relationships between keywords for facilitating community detection [105], with heating,
ventilation, and air conditioning (HVAC) being the central topics of interest. Factors such as
thermal environment, indoor illumination, and occupant behaviors should be considered
for modeling energy efficiency.

Energy saving is a key feature of energy efficiency. Wang and Wang identified a topic
of household energy-saving technology based on invention patent data and LDA topic
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modeling in 31 provinces of China. Sub-topics concern appliances, vehicles, and light-
ing [115]. One of the challenges of energy efficiency measures is that they are described and
organized in different ways [106]. By using 3490 energy efficiency measures from 16 differ-
ent documents, the topic modeling helps identify six topics, which are distributed in each
document, to compare the document [106]. For example, ‘ASHRAE Standard 100-2018, En-
ergy Efficiency in Existing Buildings’ [148] is 96% identical to ‘Energy Efficient Technologies
and Measures for Building Renovation: Sourcebook’ [149]. ‘Commercial Energy Auditing
Reference Handbook’ [150] is only 14% like ‘National Residential Efficiency Measures
Database’ [151]. In the same study, part-of-speech (POS) tagging was used to reveal the
syntactical structure of the documents, where POS learned different parts of speech of each
word so that its grammatical role could be extracted. For example, most of the measures
are written in the verb–noun format indicating an action–component format. However,
description in sentences implies a complex format. In a study of energy conservation
measures (ECM), POS tagging was used to pre-process energy audit report data with ECM
descriptions. The frequency of each word was then calculated to form ECM dictionaries
from the auditors’ recommendations. The results were able to guide the implementation of
energy efficiency measures by matching the building permit description data [116].

ICT

Among the different sources of data, building type plays a critical role in PED imple-
mentation due to its impact on energy performance, regulation, and occupant behavior.
Chen et al. applied topic modeling to categorize points of interest (POIs), an approach
where building types can be identified based on land use parcels and reclassified POIs [107].
The concept of automated document classification was adopted in [119] for classifying cases
of building information modeling (BIM) using topic modeling. The phrases of each BIM
use were detected by measuring and comparing the similarities between the definitions of
BIM uses and phrases.

Building metadata usually contains physical characteristics, construction materials,
systems, and the usage of buildings, which is vital for the maintenance, renovation, and
energy efficiency evaluation of a PED. The deployment of smart building applications
would be more cost-effective with a standard metadata representation [120]. Waterworth
et al. studied a pre-trained RoBERTa [152], an improved BERT, to automatically tag the
building sensors with semantic tags based on more than a half million data points on
152 buildings [120]. The authors estimate that, with an accuracy achieving 80%, this
approach could assist in the automation of tagging sensor data. In another study, 10 BERT-
based and 4 bidirectional language models were compared on POS-tagged building code
data to automate regulatory information extraction [108]. A precision of over 95% can be
found in a bidirectional LSTM architecture and BERT in combination with error-driven
transformational rules. Other applications of NLP to building ICT can also be found
for model metadata, such as character-based LSTM as a named entity recognition (NER)
model [122] and fuzzy string matching [123].

Load

Modeling building energy load is helpful in improving energy efficiency because it
provides information about how energy is being used and where energy savings can be
achieved. It is vital for identifying areas where energy is used inefficiently and pointing out
how significant energy savings can be achieved, while improving occupant comfort. Based
on word2vec, an energy2vec model was proposed by taking time series building load data
as its input, with a window length of one minute and the status of appliances [125]. The
embedded vectors revealed contextual information about the energy profile by characteriz-
ing the habits of the residents and their appliance use. Different lengths of sliding windows
of word embedding can be set to decompose the load due to the different operating cycles
of the appliances [127]. The issue of encoding categorical attributes and extracting the most
relevant ones hinders load prediction. Carrying out word2vec on the attributes before fit-
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ting an attention-based LSTM can solve this problem and offers advantages in the medium-
and long-term for load forecasting [126]. In addition to word2vec, other techniques have
also been used to discover more about trends in energy saving [109] and to outline the ML
techniques useful in evaluating energy consumption and intelligent computing [128].

4.2.3. Renewable Energy

PEDs can benefit from renewable energy production as it provides them with access to
sustainable and carbon-neutral energy sources. The local production of renewable energy
can ensure energy independence and increase the resilience of PEDs. Kumar and Ng
conducted topic modeling on 100 research papers to understand the factors of success
and growth in renewable energy projects [129]. The identified factors can be prioritized
as follows: (1) government policies; (2) public–private partnerships with risk sharing;
(3) community support or involvement; (4) positive fiscal mechanisms or terms; and
(5) talent. Another analysis on time trends used POS to remove the irrelevant words from
26,533 abstracts and identify more than 1100 topics, with both hot and cold topics in the
current research on renewable energy [110]. The hot topics in research may focus on energy
storage, photonic materials, nanomaterials, or biofuels, while cold topics may include
sustainable development and agriculture. A research task is to find ways to establish and
optimize renewable energy systems.

Public acceptance of renewable energy can have a significant impact on the success
of an energy transition process. A positive attitude towards renewable energy can lead to
increased demand, greater investment, and higher popular support for these technologies.
Kim et al. utilized tweet data to fine-tune RoBERTa so as to understand the public stance
in the United States towards the adoption of solar energy [130]. The study showed that
more positive sentiments were expressed in states with consumer-friendly net metering
policies and a more mature solar market. Jeong et al. analyzed more than 18,000 questions
registered on the largest portal site in Korea to identify public concerns about renewable
energy. TF-IDF was used to place the central words and categories on a word map [111]. A
cosine similarity was then conducted based on word2vec to measure how similar two words
were. This study confirmed that the public is typically concerned about understanding the
characteristics, pros, and cons of different renewable energy resources. Other applications of
NLP to renewable energy topics can be found in feature comparisons of two countries using
term extraction [131] and techniques categorization of hydrothermal biomass conversion
using word-code matrices [132].

4.2.4. Sustainability and Environment

PEDs have been a key strategy for achieving sustainable urban development. In
sustainable energy systems, PEDS are seen to reduce carbon emissions and improve energy
security and resilience. Saheb et al. conducted a study that combined topic modeling,
BERT, and clustering to understand the research focus in AI-based sustainable energy
by concatenating the vectors from LDA and BERT [112]. The modeling results revealed
that significant attention has been given to sustainable building design and the use of AI
to minimize energy usage. On a sentence level, the BERT model showed that it could
be fine-tuned for identifying sustainable development goals (SDGs) from multi-source
documents [134]. The predicted relational co-occurrence map of the SDGs can support
matchmaking, where stakeholders can pinpoint matchmaking candidates and bridge
specific needs and proposed solutions. Green buildings are resource-efficient and reduce
environmental impact to support sustainability. Current research is focusing on topics such
as design, energy saving, rating systems, and life cycle evaluation [113].

4.2.5. Context and Market

Context factors ensure that the design of PEDs is optimized for local resources, poli-
cies, and constraints. Topic modeling has been the first choice for capturing these local
features [135,136]. In [135], for example, report data on low-carbon transition were used
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to understand how local governments interpret the low-carbon transition in China. In
general, the three main topics are found to be green industries, decarbonizing the energy
sector, and economic growth. By applying a text difference algorithm on the keywords
for each pilot, innovative interpretations are outlined to form local contextual conditions,
for example, unique resources and infrastructures. In [136], topic modeling was used for
disambiguating the objectives of smart city projects between the urban leaders and citizens’
needs. By utilizing topic modeling, city officials could effectively engage residents in the
development of smart city projects, while establishing a baseline for communication that
considers the varying cultural, demographic, geographic, and economic factors within
the community. By establishing the necessary infrastructure for managing the supply and
demand of renewable energy sources in PEDs, the energy market enables the integration of
various energy technologies. By using about 100 thousand website comments data, a con-
catenation of BERT and bidirectional LSTM could be trained to model public sentiment and
thus enable stakeholders to provide accurate technical support in the energy market [137].

4.2.6. Land Use

Efficient planning and land use can promote the development of PEDs. For example,
a compact district structure can reduce energy transport and waste. The concept of points
of interest (POIs) and the use of GIS data are effective ways to identify land use by ana-
lyzing the types and locations of facilities within a particular geographic area. Although
quantifying the relationship between spatial distributions of POIs and land use types
remains challenging, Yao et al. have developed a shortest path connection to represent
sequential POIs for word embedding [138]. While each POI can be seen as a word, each
traffic analysis zone is viewed as a document in this study. Zhai et al. have argued that
there are limitations to explaining all spatial interaction features of POIs by converting
spatial data into sequential document data due to the 2D distribution of POIs [139]. In-
stead, they considered word frequency to represent POI-type distribution, which shows
high performance in clustering functional regions. In another work, cosine distance based
on word2vec was used to map POI categories and land use categories, allowing for the
quantitative evaluation of the relationship between land use type and its description [140].
As an influential factor, mobility patterns were also used as words in a topic modeling of
regional functions to account for the impact of metadata in a region [141].

5. Discussions

The findings identified from this literature review have highlighted the crucial aspects
of ML and NLP that can be employed to characterize and reproduce PEDs. As indicated in
Figure 9, some key methods, as well as their functions or data requirement for some of the
elements, can be identified in this process. According to the number of papers reviewed, it
implies that ANN, SVM, and tree-based approaches are three representative ML models,
and topic modeling, word embedding, and large language model-based semantic modeling
are three primary NLP tasks. For example, the large language mode BERT can be quickly
deployed to create a comprehensive picture of a PED and increase semantic interoperabil-
ity between buildings by analyzing building metadata. This modeling framework can
directly enable the effective monitoring and optimization of a buildings’ energy use and
thus improve energy efficiency. This can be achieved by analyzing building occupancy
information, user feedback, and real-time sensor data. Word embedding, through its ability
to capture semantic relationships between sequential objects, such as words and geographi-
cal positions, can enhance the efficiency of information representation. By mapping out
the semantic space of discussions and textual information, stakeholders can gain deeper
insights into public opinions, concerns, and expectations regarding PED projects. An-
other example is the way that deep ANN can facilitate the achievement of indoor comfort
through system control in a highly intricate environment. By incorporating an ample
supply of data, this sophisticated model structure can effectively capture the nonlinearity
of a system, thereby enabling smart control actions to be taken. SVMs, renowned for their
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classification capabilities, offer a powerful tool for categorizing energy sources and loads
in PEDs. Their effectiveness in high-dimensional spaces makes them indispensable in
handling multiple parameters.
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The consideration of these AI paradigms, either jointly or separately, should be de-
pendent on the phase that a particular PED is currently in. For example, during the design
phase, stakeholder matching could be used to identify the most effective sustainable design
strategies, while evolutionary algorithms could be used to optimize the placement and
sizing of renewable energy systems in the implementation phase.

Several gaps can be found in the literature seeking to characterize PEDs. Firstly, there
are still a number of elements that have not been considered from the perspective of ML
or NLP, such as renewable energy carriers, integration with the grid, energy balance, or
justice. One of the reasons for this is that there has been an insufficient amount of data to
quantify them. Decision making is thus based on qualitative information. Another reason
is the absence of a shared standard for these elements and a limited practical experience
in defining them. Thus, additional efforts are required to develop unified methods for
defining and quantifying these elements in a PED ecosystem, as well as for disambiguating
the concepts in PED replication. Consequently, to facilitate the characterization of PED
elements, it is essential to not only invest in collecting higher-quality data but also to focus
on efficiently pre-processing these data, which is still a limitation of AI methods.

Secondly, since PEDs involve various spatial and temporal resolutions, as well as
the relationships between buildings/urban infrastructure and energy systems at a district
level, urban-scale modeling approaches should be considered within the scope of PED
research. One of the goals of urban energy modeling is to optimize energy systems, while
promoting sustainability and resilience. The modeling experience of ML-based predictive
analytics and energy system optimization and NLP-based regulatory analysis and senti-
ment analysis can be seamlessly utilized for designing energy-efficient PEDs, developing
local renewable energy strategies, and evaluating the impact of PED development on
carbon emissions [153].

Thirdly, as another limitation, there is no direct connection between the modeling
results generated by ML or NLP and the real functioning of a PED. Also, the characterization
of a PED is still often based on only a single element. However, factors such as policy, social
acceptance, and economic viability also play a crucial role in the success of PEDs. A holistic
approach to evaluating PEDs, where ML and NLP can be assessed and integrated alongside



Buildings 2024, 14, 371 22 of 28

other aspects of PED planning and implementation, is necessary if the desired outcomes
are to be achieved. This holistic approach will require a multidisciplinary knowledge that
considers the multiple aspects of PEDs, as well as an awareness of the technological and
computational requirements. The integration of more transparent model architectures
and the development of user-friendly interfaces that can present model insights in an
understandable manner need to be considered. The process will also involve engaging
with stakeholders and policymakers to ensure that the outcomes of ML and NLP models
align with the broader goals and objectives of PEDs.

Lastly, there is a real shortage of widely applicable conclusions to be drawn from the
ML and NLP analysis of PED elements to date. Right now, it is very difficult to compare
PED studies with each other because of the widely different factors affecting each one,
such as input data, output data, time and space resolution, and location. This makes it
hard to draw firm conclusions about the generalizability of AI techniques. It also limits the
generalizability of PED characterizations that can be drawn from these models. In the future,
these well-tuned models could benefit from a greater focus on feature selection if more
general frameworks for PEDs are to be developed and utilized. It also involves synthesizing
the insights gained from these models with other relevant information to inform decision-
making processes. For example, generalizing ML and NLP findings by using geographic
information systems (GIS) and demographic data ensures that the energy solutions are
tailored to the specific characteristics of the district. Existing urban infrastructure data can
also be integrated to identify areas that need upgrades. Successful implementation of these
initiatives necessitates collaborative efforts and a shared understanding between districts
and local governments to ensure alignment with PED plans.

6. Conclusions

This paper reviews machine learning and natural language processing methods for
characterizing PEDs. Nineteen elements representing both energy and non-energy aspects
of PEDs were identified from the literature. Approximately seventy research papers were
reviewed to gain a deeper understanding of how ML and NLP methods could be used
to model these elements. The most important models for ML are ANN, SVM, and tree-
based approaches that can be used for prediction and classification at different phases.
For NLP, tasks like topic modeling, word embedding, and semantic modeling using large
language models like BERT have been found to be effective for stakeholder matching,
sentiment analysis, and metadata analysis. However, a number of elements of a PED,
such as energy flexibility, the energy carrier, interaction with the grid, governance, spatial
resolution, and justice, have not shown any potential to be modeled by ML or NLP. This
gap pinpoints the need for research to explore and develop methodologies capable of
addressing these aspects.

By adding the results that ML and NLP models are able to achieve to a more holistic
analysis of the comparative performance of PEDs using other possible measures, this
approach ensures that the vision of creating sustainable and resilient urban environments
is much closer to being realized. This includes comparing their performance against other
measures, defining and quantifying the PED elements, utilizing techniques in urban-scale
energy modeling, and assessing their effectiveness and transparency in a broader and user-
friendly context. Future studies should focus on continuously validating these methods,
not only to establish their reliability but also to enhance their capability in the intricate AI
tasks associated with PEDs.
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