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Abstract: A multiscale method is presented to develop a constitutive model for anisotropic soils in
a three-dimensional (3D) stress state. A fabric tensor and its evolution, which quantify the particle
arrangement at the microscale, are adopted to describe the effects of the inherent and induced
anisotropy on the mechanical behaviors at the macroscale. Using two steps of stress mapping,
the deformation and failure of anisotropic soil under the 3D stress state are equivalent to those of
isotropic soil under the triaxial compression stress state. A series of discrete element method (DEM)
simulations are conducted to preliminarily verify this equivalence. Based on the above method,
the obtained anisotropic yield surface is continuous and smooth. Then, a fabric evolution law is
established according to the DEM simulation results. Compared with the rotational hardening law,
the fabric evolution law can also make the yield surface rotate during the loading process, and it
can grasp the microscopic mechanism of soil deformation. As an example, an anisotropic modified
Cam-clay model is developed, and its performance validates the ability of the proposed method to
account for the effect of soil anisotropy.

Keywords: soil; anisotropy; modified stress; fabric tensor; constitutive model

1. Introduction

A reasonable consideration of soil anisotropy in the constitutive model can improve
the solution accuracy of many boundary value problems in geotechnical engineering [1–3].
There are two kinds of anisotropy for soils: inherent and induced anisotropy. Inherent
anisotropy is produced in the process of deposition and consolidation, while induced
anisotropy is formed during the loading process. In essence, these two kinds of anisotropy
are all attributed to the preferred orientation of the particle arrangement (i.e., fabric),
showing a close connection between the macroscopic and microscopic behaviors of soils.

In order to develop a constitutive model for anisotropic soils, Sekiguchi and Ohta [4]
first adopted a rotated yield surface on the meridian plane to describe the influence of
the inherent anisotropy. Because the yield surface is inclined, the yield strengths are
different along different directions, and the deviatoric strain increment under the isotropic
compression can be calculated. Along this line, many anisotropic constitutive models
were developed, such as the MIT-S1 model (Pestana and Whittle [5]), S-CLAY1 model
(Wheeler et al. [6]; Niu et al. [7]), and bounding surface model (Shi et al. [8]; Zhao et al. [9];
Zhang et al. [10]). Table 1 lists the yield functions of some representative models. These
anisotropic yield functions have something in common from the mathematical point of
view: the rotation of the yield surface is achieved by subtracting a second-order tensor
αij (or invariant of αij) from the stress tensor σij (or stress invariants). For an isotropic
yield function f

(
σij
)
= 0, the anisotropic function is developed as f

(
σij − αij

)
= 0. The

initial value of αij controls the rotation angle of the yield surface at the beginning of the
loading process, demonstrating the degree of inherent anisotropy. Furthermore, if αij

Buildings 2024, 14, 307. https://doi.org/10.3390/buildings14020307 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings14020307
https://doi.org/10.3390/buildings14020307
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://doi.org/10.3390/buildings14020307
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings14020307?type=check_update&version=1


Buildings 2024, 14, 307 2 of 17

evolves during the loading process, the yield surface continues rotating so that the induced
anisotropy can be simulated. The evolution of αij is called the rotational hardening law, as
shown in Table 1. Take the formula proposed by Dafalias and Manzari [11] as an example.

Table 1. Examples of the anisotropic constitutive models with rotated yield surface.

Reference Anisotropic Yield Function Rotational Hardening Law

Sekiguchi and
Ohta [4] ln p

p0
+ 1

M

√
3
2 (ηij − ηij0)(ηij − ηij0)− ε

p
v

cp
= 0 /

Wheeler et al. [6] (q − αp′)2 −
(

M2 − α2)(p′m − p′)p′ = 0 dα = µ
{
[χv(η)− α]

〈
dε

p
v

〉
+ β[χd(η)− α]

∣∣∣dε
p
d

∣∣∣}
Dafalias and
Manzari [11]

√
(sij − pαij)(sij − pαij)−

√
2/3pm = 0 dαij =

2
3 ⟨L⟩h

[
αb

ij(θ)− αij

]

Zhang et al. [12]
ln p

p∗0
+ ln M2−ς2+η∗2

M2−ς2 + ln R∗

R − ε
p
v

cp
= 0

where η∗ =
√

3
2 (ηij − βij)(ηij − βij)

dβij =
M
cp

br(bl M − ς)
ηij−βij

∥ηij−βij∥dε
p
d

Anastasopoulos
et al. [13]

√
3
2 (sij − αij)(sij − αij)− σo = 0 dαij = C 1

σo
(σij − αij)dεpl − γαijdεpl

Seidalinov and
Taiebat [14] (q − pα)2 −

(
N2 − α2)p(p0 − p) = 0 dα = ⟨L⟩ 1+e

λ−κ C
(

p
p∗0

)2∣∣∣ ∂g
∂p

∣∣∣|η − xα|
(

αb − α
)

Hong et al. [15]


(

p′ − αp
)2

+
(q−αq)

2

M2
f

− (Rp′c) = 0, p′ ≤ αp(
p′ − αp

)2
+

(1−b)2(q−αq)
2

b2 M2
f

− (Rp′c) = 0, p′ > αp

dαij =
υ0

λ−κ

(
srdε

p
d − dε

p
v

)(
σ′

ij − σ′
ij

)
+ (1−R)dp′c

Rp′c

(
σ′

ij − αij

)
+ dαij

Shirmohammadi and
Hajialilue-Bonab [16]

3
2 (sij − pαij)(sij − pαij)−[
S2

f N(θ)2 − 3
2 αijαij

]
p(Si p0 − p) = 0 dαij = ⟨L⟩Cpatm

(
p

Si p0

)(
αb

ij − αij

)
+
(

dS f
S f

)
αij

Dejaloud and
Rezania [17] (q − αp)2 −

(
N2 − α2)p2

(
Cy ln p0

0
ln ry

) 2
ny

= 0 dα = µ
p
p0
(αc − α)dε

p
g

Macias and Rotta
Loria [18] (q − p∗α)2 − m∗2 p∗2

[
1 −

(
p∗
p∗0

)]
= 0 dα = ⟨L⟩h

(
αb − α

)
re f

The rotation speed of the yield surface dαij is proportional to the loading index L,
which determines the magnitude of the plastic strain increment. A limit value, i.e., αb

ij, is
introduced to stop the yield surface rotation at a given state. The rotational hardening law
enables the constitutive model to simulate some special phenomena related to the induced
anisotropy, such as the cyclic mobility and liquefaction (Zhang et al. [12]; Corti et al. [19];
Zhang and Wang [20]). The above method is supported by thermodynamic principles,
given that αij, which is known as ‘the back stress tensor’, reflects the coupling effect of
the plastic volumetric and deviatoric strain increments on the plastic work increment.
Moreover, this method is quite flexible in modelling the stress–strain relation of anisotropic
soils at complex loading conditions, because different types of rotational hardening laws can
be introduced. However, it is widely believed that the microscopic fabric is the fundamental
reason that leads to the anisotropy of the macroscopic behaviors of soils, while in the above
method, the yield surface rotation is usually obtained by fitting the experimental results.
The initial value of αij is determined by the consolidation pressure, and its evolution is
assumed to be related to the loading index, plastic strain increment, or stress increment.
This method does not grasp the deformation mechanism of anisotropic soils, so it belongs
to a phenomenological method. On the other hand, as pointed out by Wheeler et al. [6],
when the rotated yield surface is generalized from the triaxial meridian plane to the three-
dimensional (3D) stress space, the obtained yield surface could be concave or not smooth,
which brings some trouble to the numerical calculation.
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In this paper, the fabric tensor and its evolution, which explain the microscopic
mechanism of the inherent and induced anisotropy of granular materials, respectively,
are introduced into the existing constitutive model framework through a new method.
The obtained anisotropic model can reasonably describe the macroscopic deformation
and failure of soils in a 3D stress state. Therefore, the proposed method can connect
different scales.

2. Inherent Anisotropy

To consider the effect of inherent anisotropy, this paper resorts to the idea of ‘map-
ping’ in mathematics. Through two steps of stress mapping, the deformation and failure
properties of anisotropic soil under real stress are equivalent to those of isotropic soil under
virtual stress. What follows is the stress mapping process.

2.1. Modified Stress Tensor
2.1.1. Basic Idea

Many experiments show a considerable dependence of the soil stiffness and strength
on the loading direction under identical stress states [21–23]. Specifically, in the case of
triaxial compression, horizontally deposited soil often exhibits a greater yield strength
when the major principal stress is vertical (σz > σx = σy, where the z-axis is along the
vertical direction, while the x- and y-axes are horizontal in the physical space) than when
the major principal stress is horizontal (σz = σx < σy). The yield functions f

(
σV

ij

)
= 0

and f
(

σH
ij

)
= 0 do not hold true simultaneously. As shown in Figure 1, the stress states

corresponding to these two cases are denoted by point V and point H on the deviatoric
plane. Because |OV| is larger than |OH|, we cannot draw an isotropic yield surface that
passes through both point V and point H. However, if the stress states were mapped to
point V and point H, which are located on the same isotropic yield surface (see the broken
line in Figure 1), we could say that the anisotropic soil is equivalent to the isotropic soil. The
stress mapping on the deviatoric plane implies a modification of the relative magnitude of
σz, σx and σy while the mean stress is kept unchanged. To achieve this goal, the stress states
after the mapping should meet the following requirements: p = p

f
(

σV
ij

)
= f

(
σH

ij

)
= 0

(1)

where p is the mean stress of the real stress tensor σij; p is the mean stress of the modified
stress tensor σij; and f can be any isotropic yield/failure function for soils, such as the
Mohr–Coulomb criterion, Matsuoka–Nakai criterion, Lade–Duncan criterion, and so on.
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2.1.2. Formula

Now the work is to find a stress mapping formula satisfying Equation (1). Based on
the works of Tobita and Yanagisawa [24] and Yao et al. [25], a new formula is proposed for
the modified stress tensor:

σij =
3
2
(σikFkj + Fikσkj)− smnFnmδij (2)

where Fij is the fabric tensor; sij (= σij − pδij) is the deviatoric stress tensor; and δij is the
Kronecker delta. Fij is a well-known quantity that describes the microstructure of granular
materials, and it can be defined by the spatial distribution of the particle long axis, contact
normal, and void long axis. In this paper, a simple definition is adopted as follows:

Fij =
1
N

N

∑
k=1

nk
i nk

j (3)

where N is the total number of soil particles in the specimen; superscript k is the particle ID;
and

(
nz, nx, ny

)
is the unit vector along the long axis of the k-th particle. It can be derived

from Equation (3) that Fij is a symmetric second-order tensor, with its trace being equal to
1. The value of any given element in Fij represents the concentrated degree of particle long
axes towards the corresponding direction. For the horizontally deposited soil, Fij can be
expressed into

Fij =

∆ 0 0
0 1−∆

2 0
0 0 1−∆

2

 (4)

where ∆ is a material parameter quantifying the anisotropic degree. Because the particle
long axis tends to lie down on the horizontal plane, ∆ is usually less than 1/3. If ∆ = 1/3,
the soil is isotropic.

Based on Equations (2) and (4), σz decreases after the stress modification, while σx
and σy increases, because ∆ < 1/3. Points V and H are mapped downwards to points V
and H, respectively, as shown in Figure 1. Therefore, the difference in yield strength along
vertical and horizontal directions is narrowed, and the soil could be treated to be isotropic
in the modified stress space. Compared with the formula in the works of Tobita and Yanagi-
sawa [24] and Yao et al. [25], Equation (2) can ensure p = p for any σij and Fij. It is necessary
to note that keeping the mean stress unchanged is very important for the development of
the soil constitutive model, because soil is a non-linear and pressure-dependent material.
If the mean stress varies, the stiffness, strength, and many other properties of the soil are
changed. We cannot distinguish whether the difference in the prediction results obtained
using the constitutive model is caused by the variation of the loading direction or by that
of the mean stress. What is more, there are some constitutive ingredients that are only
related to p, but independent of the loading direction and soil fabric, such as the critical
state stress ratio and void ratio (Li and Dafalias [26]; Wang et al. [27]; Deng et al. [28]). A
varying p cannot guarantee the uniqueness of the critical state line. Equation (2) can avoid
this problem without much revision to the modified stress method.

2.1.3. A Simple DEM Verification

A series of biaxial loading tests are conducted using discrete element method (DEM)
software PFC2D 5.0 to preliminarily verify Equation (2). The size of the specimen is
35 mm × 35 mm and consists of more than 9000 elliptical particles. These particles are
rigid aggregates of five circular particles, with the ratio of the long axis and short axis being
1.52, so that obvious anisotropy can be produced. The simplest model, i.e., the linear elastic
perfectly plastic model, is adopted as the contact law. The model parameters are as follows:
the normal contact stiffness between particles is 6.0 × 108 N/m, the tangential stiffness
is 4.0 × 108 N/m, and the friction angle is 30◦. The specimen is first generated under an
isotropic pressure of 100 kPa, and then loaded in the case of a constant stress ratio, i.e., σz
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and σx increases proportionally while σz/σx is kept unchanged. The reason why this kind
of test is chosen is that the stress level is certain, and we just need to focus on the fabric
evolution, which reduces the degree of freedom when a quantitative relation between σij
and Fij is established.

Figure 2 shows the evolution of the second partial invariant of Fij, i.e.,
J2 =

(
Fij − δij/2

)(
Fij − δij/2

)
/2, during the loading process. Because a 2D simulation

is performed, the specimen is isotropic when Fij = δij/2 or J2 = 0, which is the case at the
beginning of the test. As σz increases, the anisotropy degree is enhanced, since more and
more particle long axes turn to be horizontal. Finally, when the external loading is large
enough, J2 converges to a limit value. That is to say, there is a state for the microstructure
that can well adapt to the current stress level. The larger the stress ratio is, the heavier
the fabric anisotropy is. The relation between σz/σx and the limit value of J2 is drawn
in Figure 3, where the vertical coordinates are normalized by the limit value of J2 when
σz/σx = 1.1. A parabolic curve can be observed when Fij is analyzed. However, if Fij
and σij are combined through Equation (2), the modified stress ratio tensor ηij (= σij/p)
has a normalized second partial invariant whose limit value is basically independent of
σz/σx. Given that the second partial invariant corresponding to σz/σx = 1.1 is very small,
we can conclude that from the view of σij, the soil fabric can be approximately treated to
be isotropic. It must be admitted that this conclusion is obtained under a very specific
condition (we use oval-shaped particles, 2D simulation, and the constant stress ratio test,
and the limit value must be reached), so that the above verification of Equation (2) is very
preliminary. However, it provides a potential way to develop a multiscale constitutive
model. Further verification is performed by comparisons with the experimental data in a
later section.
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2.2. Transformed Stress Tensor

The first step of stress mapping simplifies the soil property to be isotropic, but it
complicates the stress state because Fij is integrated into σij. Take the triaxial compression
stress state, with σy being the major principal stress, as an example. Due to the different
fabric along the z- and x-axes, σz and σx are not equal, so the modified stress state is a true
triaxial stress state (observe from Figure 1 that point H is not located on the coordinate
axis in the modified stress space). Such a complex σij cannot be introduced directly into
the existing constitutive models, which are established based on the triaxial compression
behaviors of soil. Therefore, to develop an anisotropic model using σij, further steps must
be taken to consider the effect of the intermediate principal stress.

2.2.1. Basic Idea

Another step of stress mapping is used to generalize the constitutive model from
triaxial compression to true triaxial stress state (Yao and Wang [29]). As shown in Figure 4,
the yield/failure surface in the modified stress space is non-circular according to the
Matsuoka–Nakai criterion, demonstrating the effect of the intermediate principal stress.
After the stress mapping, it turns into the circumcircle of the original surface on the same
deviatoric plane. Thus, in the new stress space, namely, the space of transformed stress σ̃ij,
the yield strength and critical state stress ratio under any 3D stress state are identical to
those under triaxial compression. The above goal of this mapping is formulated as

p̃ = p
θ̃ = θ
q̃ = qc

(5)

where θ is the Lode’s angle; q is the deviatoric stress; signs ‘-’ and ‘~’ denote that the
entity is related to the modified and transformed stress tensors, respectively; and qc is the
deviatoric stress at the triaxial compression state point on the yield surface (see point V
in Figure 4). Using σ̃ij, the existing constitutive models for the triaxial compression stress
state are also available for the true triaxial stress state.
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2.2.2. Formula

According to the stress theory, the relation between the principal stresses and stress
invariants is 

σz = p + 2
3 q cos θ

σx = p + 2
3 q cos

(
θ + 2π

3
)

σy = p + 2
3 q cos

(
θ − 2π

3
) (6)
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
σ̃z = p̃ + 2

3 q̃ cos θ̃

σ̃x = p̃ + 2
3 q̃ cos

(
θ̃ + 2π

3

)
σ̃y = p̃ + 2

3 q̃ cos
(

θ̃ − 2π
3

) (7)

By substituting Equation (5) into Equation (6) and comparing the results with Equation (7),
we can obtain

σ̃i = p +
qc
q
(σi − p) (8)

where i = x, y, z. Equation (8) provides a mapping between principal stress values, which
can be directly extended to the tensor form

σ̃ij = pδij +
qc
q
(
σij − pδij

)
(9)

According to Yao and Wang [29], qc can be derived from the Matsuoka–Nakai criterion
as follows:

qc =
I1 I2 − 9I3 + 3

√(
I1 I2 − 9I3

)(
I1 I2 − I3

)
4I2

(10)

where I1, I2, and I3 are invariants of σij.

2.3. Brief Summary

The modified stress and transformed stress have some similarities. From the view of
mathematics, both of them adjust the relative magnitude of different stress components
using a mapping for the stress tensor, so that the problem is simplified in the new stress
space. In terms of physical meaning, the modified stress establishes an equivalence between
the isotropic and anisotropic soils, while the transformed stress establishes an equivalence
between the soil behaviors under a triaxial compression stress state and those under a true
triaxial stress state. These two steps can be used successively, so that the deformation and
failure of anisotropic soils in a 3D stress space can be described. Note that the effect of
soil anisotropy can also be reflected by modifying the material parameters in the isotropic
model. For example, the internal friction angle, cohesion, modulus, and location of the
critical state line can be assumed to be direction-dependent variables (Zhou et al. [30]; Gao
and Zhao [31]; Yuan et al. [32]; Xie et al. [33]). Therefore, the calculated deformation and
strength along different directions will certainly be different. The effect of the intermediate
principal stress is usually considered by introducing a shape function, i.e., g(θ), into the
2D yield function. The critical state stress ratio becomes a function of the Lode’s angle
(Tian and Zheng [34]; Du et al. [35]; Xue et al. [36]). By using different equations to modify
the model parameters, this kind of method can provide an accurate prediction for the
experimental results. However, this method makes the elastoplastic stiffness matrix very
complex, because we have to compute the partial derivatives of these parameters with
respect to the stress. On the other hand, the anisotropic constitutive model developed using
the proposed method has a concise stiffness matrix (see Section 5.4), which brings much
convenience for its numerical application.

3. Anisotropic Yield Surface

Because the inherent anisotropy is equivalent to isotropy, the existing isotropic consti-
tutive model is available for anisotropic soils by replacing σij with σ̃ij directly. For example,
based on the modified Cam-clay (MCC) model, the anisotropic yield function can be written as

f = q̃2 + M̃2 p̃( p̃ − p̃x) = 0 (11)

where M̃ is the critical state stress ratio in the transformed stress space, and its relation to the
original critical state stress ratio M is shown later; p̃x controls the size of the yield surface.
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By substituting Equations (2) and (9) into Equation (11), we can obtain an anisotropic
yield surface in the real stress space. Characteristics of this yield surface is analyzed in the
next section.

3.1. In 3D Stress Space

The anisotropic yield surface in a 3D stress space is shown in Figure 5. It can be seen
that the yield surface rotates towards the σz-axis, indicating a greater yield strength along
this direction. The hydrostatic axis where σz = σx = σy does not pass through the vertex of
the yield surface. The yield surface is not an ellipsoid, because it has different intercepts for
different Lode’s angles, especially when p is relatively smaller. Wheeler et al. [6] pointed
out that if the g(θ) method is adopted to generalize the rotated yield surface to a 3D stress
space, a singularity appears. Based on the proposed method, the 3D anisotropic yield
surface is continuous and smooth, showing its good performance in describing the yield
property of the anisotropic soil in a complex stress state. Moreover, the proposed method is
also capable of generalizing other kinds of yield surfaces or bounding surfaces, other than
the elliptical yield surface of the MCC model.
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3.2. On the Triaxial Meridian Plane

To illustrate the anisotropic yield surface more clearly, its section on the triaxial
meridian plane ( θ = 0◦ ∼ 180◦) is drawn in Figure 6. The vertical coordinate is σz − σx,
rather than q, because q is non-negative. The upper part of this figure denotes the triaxial
compression stress state (σz > σx = σy), while the lower part is the triaxial extension
(σz < σx = σy). Observe that the 2D yield surface rotates upwards to an axis with a slope of
3(1 − 3∆)/(1 + 3∆). For a heavier degree of fabric anisotropy, i.e., a smaller ∆, the rotation
angle becomes larger. At the intersection of the yield surface with the p-axis, the outer
normal vector is marked in Figure 6. This vector points downwards, which means the
vertical plastic strain increment dε

p
z is smaller than the horizontal plastic strain increment

dε
p
x if an associated flow rule is adopted. This characteristic conforms to the results of

the isotropic compression tests on anisotropic sand (Lade and Abelev [37]). Figure 6 also
shows the anisotropic yield surface obtained by Wheeler et al. [6] (see the broken line),
which is obtained by rotating the isotropic yield surface (the yield function is listed in
Table 1). Compared with it, the anisotropic yield surface shown in this paper is much
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flatter, especially on the triaxial extension side. This is because the effect of the intermediate
principal stress is taken into consideration by the transformed stress.
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In fact, the anisotropic MCC model developed using the proposed method adopts a
virtual plastic work increment as follows:

dW̃p = p̃ · dε
p
v + q̃ · dε

p
d = p̃

√(
dε

p
v

)2
+
(

M̃ · dε
p
d

)2
(12)

where dε
p
v is the plastic volumetric strain increment, and dε

p
d is the plastic deviatoric strain

increment. This plastic work increment has a similar form to that of the isotropic MCC
model, except for the substitution of stress. The anisotropic yield function (i.e., Equation (11))
can be derived from Equation (12) using an associated flow rule. For the stress state at point
V in Figure 1, by substituting Equations (2) and (9) into Equation (12), we can determine
the real plastic work increment as follows:

dWp = p · dε
p
v + q · dε

p
d = p

√(
dε

p
v

)2
+
(

M̃ · dε
p
d

)2
+ α′ · dε

p
v · dε

p
d (13)

where

α′ =
1 − 3∆
1 + 3∆

· 2(η̃ + 3)
M̃2 − η̃2

[
M̃2 +

2η̃2 + 3(1 − 3∆)η̃
1 + 3∆

]
(14)

where η̃ = q̃/ p̃. α′ is just the back stress that works as an anisotropic variable to rotate
the yield surface in the references. When the soil is isotropic (∆ = 1/3), α′ = 0, so
that the anisotropic yield function degrades into the isotropic yield function. Therefore,
Equation (14) provides a microscopic interpretation for the back stress in thermodynamics.

3.3. On the Deviatoric Plane

Figure 7 integrates the cross sections of the 3D anisotropic yield surface on different
deviatoric planes. When p = 99 kPa, the yield surface is very small and close to a circle
whose center is located on the positive axis of σz. As p decreases (i.e., the stress ratio q/p
increases), the yield surface becomes bigger, and its shape tends to be triangular. The
intercept of the yield surface on the σz-axis is larger than that on the σx- and σy-axes, while
the triaxial extension stress state with σz < σx = σy has the lowest yield strength. Therefore,
the proposed method can reflect the complex coupling effect of the inherent anisotropy and
intermediate principal stress.
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4. Induced Anisotropy

During the loading process, the applied stress causes a redistribution of soil parti-
cles, and hence, changes the anisotropic degree of stiffness and strength along different
directions. This induced anisotropy is often described by a rotational hardening law in the
references (see Table 1). Because the rotation angle of the anisotropic yield surface in this
paper is controlled by the fabric tensor, a fabric evolution law can play the same role as the
rotational hardening law in the constitutive model (Zhao and Kruyt [38]). According to
many DEM simulations (Wen and Zhang [39]; Wang et al. [40]; Sufian et al. [41]), particle
long axes are reoriented towards the principal stress direction, although their rotation
is much slower than that of contact normals. At the critical state, the preferred particle
orientation is perpendicular to the major principal stress, while the anisotropic degree
reaches a stable value that is only determined by the stress state. Similar results can also be
observed from the constant stress ratio tests in Section 2.1.3. Based on these microscopic
statistics and by imitating the form of the rotational hardening law, we hereby propose the
following fabric evolution law:

dFij = C
1 + e0

λ − κ

dε
p
v

M̃ − η̃

(
δij

3
− βηij − Fij

)
(15)

where C is a new parameter controlling the fabric evolution rate; e0 is the initial void ratio;
λ and κ are the compression and swelling indexes of the MCC model, respectively; and
β is another parameter defining the final state of the fabric evolution. The increment of
Fij is assumed to be proportional to that of ε

p
v, just like the equations of dα in the works

of Wheeler et al. [6] and Seidalinov and Taiebat [14]. The term M̃ − η̃ is introduced to
slow down the fabric evolution rate at the beginning of the loading process. According to
the dilatancy function of the anisotropic MCC model (which can be easily derived from
Equation (12)), dε

p
v/
(

M̃ − η̃
)

is equal to a function of dε
p
d, which is not zero at the critical

state. Therefore, the introduction of M̃ − η̃ makes the anisotropy stop evolving only when
Fij reaches its own critical state value. In the last term, δij/3 − βηij works as an ‘attractor’
for Fij, in the sense that the principal axes of Fij are forced to rotate towards the principal
stress axes, while the value of Fij converges to δij/3 − βηij at the critical state. Substituting
Fij = δij/3 − βηij into Equations (2) and (9) gives the relation between M̃ and M:

M̃ = M − βM(M + 3) (16)

The fabric evolution law in Equation (15) links the microscopic particle arrangement
(denoted by dFij) to the macroscopic soil deformation (denoted by dε

p
v). Compared with the
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rotational hardening law, the proposed fabric evolution law can grasp the discrete feature
of soil as a granular material.

5. Anisotropic MCC Model

Using σ̃ij, the existing 2D isotropic constitutive model can be generalized into a
3D anisotropic model. In this paper, the MCC model is adopted as an example for the
generalization. Its yield function is established and analyzed in Section 3. What follows
introduces the plastic flow rule and hardening law of the anisotropic MCC model, and
derives the elastoplastic stiffness matrix for the numerical application.

5.1. Plastic Flow Rule

Similar to the anisotropic yield function (Equation (11)), the plastic flow rule can be
directly generalized to be anisotropic by replacing σij with σ̃ij

dε
p
ij = Λ

∂ f
∂σ̃ij

(17)

where Λ is the plastic multiplier that can be derived from the consistency condition d f = 0.
It is necessary to emphasize that the plastic flow direction is assumed to be normal to the
yield surface in the transformed stress space, rather than the yield surface in the real stress
space. This is because the intersection of the rotated yield surface with the critical state
line is not the peak point (see Figure 6), which leads to a non-zero dε

p
v at the critical state if

normality holds in the real stress space. Therefore, strictly speaking, the plastic flow rule is
non-associated.

5.2. Hardening Law

The hardening law of the anisotropic MCC model can be expressed as follows:

dp̃x =
1 + e0

λ − κ
p̃xdε

p
v (18)

This equation determines the size change of the yield surface during the strain harden-
ing process, while Equation (15) makes the yield surface rotate until the critical state of the
fabric tensor is reached.

5.3. Elastic Stiffness Matrix

For simplicity, the elasticity anisotropy is ignored so that the elastic stress–strain
relation is calculated by the isotropic Hooke’s law:

dσij = De
ijkldεe

kl = De
ijkl

(
dεkl − dε

p
kl

)
(19)

where dεkl is the total strain increment tensor; dεe
kl is the elastic strain increment tensor;

and De
ijkl is the elastic stiffness matrix as follows:

De
ijkl =

(
K − 2

3
G
)

δijδkl + G
(

δikδjl + δilδjk

)
(20)

where the bulk modulus K and shear modulus G are pressure dependent:

K =
1 + e0

κ
p (21)

G =
3(1 − 2ν)(1 + e0)

2(1 + ν)κ
p (22)

where ν is Poisson’s ratio.
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5.4. Elastoplastic Stiffness Matrix

If the elastic trial stress state point comes out of the yield surface, the stress–strain
relation should be recalculated using the elastoplastic stiffness matrix. According to the
consistency condition,

d f =
∂ f
∂σij

dσij +
∂ f

∂Fst
dFst +

∂ f
∂ p̃x

dp̃x = 0 (23)

Note that ∂ f /∂σij, rather than ∂ f /∂σ̃ij or ∂ f /∂σij, should be introduced because we
have to determine the relation between dσij and dεkl . By substituting the fabric evolution
law (Equation (15)), the hardening law (Equation (18)), and the elastic stress–strain relation
(Equation (19)) into Equation (23), we can obtain

∂ f
∂σij

De
ijkl

(
dεkl − dε

p
kl

)
+

∂ f
∂Fst

∂Fst

∂ε
p
v

dε
p
v +

∂ f
∂ p̃x

∂ p̃x

∂ε
p
v

dε
p
v = 0 (24)

Then, Λ is worked out by combining Equations (17) and (24):

Λ =

∂ f
∂σij

De
ijkldεkl

∂ f
∂σij

De
ijkl

∂ f
∂σ̃kl

−
(

∂ f
∂Fst

∂Fst
∂ε

p
v
+ ∂ f

∂ p̃x

∂ p̃x

∂ε
p
v

)
∂ f
∂ p̃

(25)

Finally, if Equations (17) and (25) are substituted back into Equation (19), the elasto-
plastic stiffness matrix can be determined as follows:

Dep
ijkl = De

ijkl −
De

ijmn
∂ f

∂σ̃mn

∂ f
∂σpq

De
pqkl

∂ f
∂σpq

De
pqmn

∂ f
∂σ̃mn

−
(

∂ f
∂Fst

∂Fst
∂ε

p
v
+ ∂ f

∂ p̃x

∂ p̃x

∂ε
p
v

)
∂ f
∂ p̃

(26)

where some repeated subscripts are replaced to avoid misunderstanding. In Equation (26),
partial derivatives ∂ f

∂σ̃mn
, ∂ f

∂ p̃x
, and ∂ p̃x

∂ε
p
v

can be easily obtained from the anisotropic yield
function (i.e., Equation (11)) and hardening law (i.e., Equation (18)). Compared with the
corresponding partial derivatives of the isotropic MCC model, they have similar forms,
except that σij is replaced by σ̃ij. Moreover, based on the chain rule, partial derivatives ∂ f

∂σpq

and ∂ f
∂Fst

are calculated as follows:

∂ f
∂σpq

=
∂ f

∂σij

∂σij

∂σpq
=

(
∂ f
∂ p̃

∂ p̃
∂σij

+
∂ f
∂q̃

∂q̃
∂σij

)[
3
2
(
δipFqj + Fipδqj

)
−
(

Fqp −
1
3

δqp

)
δij

]
(27)

∂ f
∂Fst

=
∂ f

∂σij

∂σij

∂Fst
=

(
∂ f
∂ p̃

∂ p̃
∂σij

+
∂ f
∂q̃

∂q̃
∂σij

)[
3
2
(
σisδtj + δisσtj

)
− stsδij

]
(28)

According to Equation (5), partial derivatives ∂ p̃
∂σij

and ∂q̃
∂σij

in the above equations are
equal to

∂ p̃
∂σij

=
∂p

∂σij
=

1
3

δij (29)

∂q̃
∂σij

=
∂qc
∂σij

=
∂qc

∂I1

∂I1

∂σij
+

∂qc

∂I2

∂I2

∂σij
+

∂qc

∂I3

∂I3

∂σij
(30)

It can be seen from Equation (26) that the elastoplastic stiffness matrix of the anisotropic
MCC model is in a similar form as its general formula, which should be attributed to the
proposed method to consider the effect of the inherent and induced anisotropy. When the
anisotropic MCC model is applied to calculating the stress–strain relation, De

ijkl or Dep
ijkl can

be first determined by the values of σij and Fij at the beginning of the incremental step,
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according to Equation (20) or Equation (26). Then, by substituting the boundary conditions
into the stress–strain relation functions, we can work out dσij and dεij for this incremental
step. The variation of the soil fabric, i.e., dFij, can also be obtained by Equation (15). As a
result, the values of σij, εij, and Fij are updated for the calculation of the next incremental
step. Note that σij and σ̃ij just provide a mathematical tool for considering the effects of the
soil anisotropy and intermediate principal stress. The obtained stress–strain relation still
refers to the relation between dσij and dεij, rather than dσij or dσ̃ij and dεij.

5.5. Comparison between the Isotropic and Anisotropic MCC Models

Table 2 summarizes the governing equations of the isotropic and anisotropic MCC
models. We can find that, compared with the isotropic model, the anisotropic MCC model
just replaces σij with σ̃ij and preserves the original form of the model framework. This
method is also capable of developing other isotropic models. According to the summary
in the introduction, if the governing equations of the isotropic model are expressed as
f
(
σij
)
= 0, an anisotropic model can be directly developed as f

(
σ̃ij
)
= 0.

Table 2. Governing equations of the isotropic and anisotropic MCC models.

Isotropic MCC Model Anisotropic MCC Model

Stress tensor σij
σ̃ij = pδij +

qc
q (σij − pδij)

where σij =
3
2 (σikFkj + Fikσkj)− smnFnmδij

Yield function f = q2 + M2 p(p − px) = 0 f = q̃2 + M̃2 p̃( p̃ − p̃x) = 0

Plastic flow rule dε
p
ij = Λ ∂ f

∂σij
dε

p
ij = Λ ∂ f

∂σ̃ij

Hardening law dpx = 1+e0
λ−κ pxdε

p
v

dp̃x = 1+e0
λ−κ p̃xdε

p
v

and dFij = C 1+e0
λ−κ

dε
p
v

M̃−η̃

(
δij
3 − βηij − Fij

)
Elastic stiffness matrix De

ijkl =
(

K − 2
3 G
)

δijδkl + G
(

δikδjl + δilδjk

)
, where K = 1+e0

κ p and G =
3(1−2ν)(1+e0)

2(1+ν)κ
p

Elastoplastic stiffness matrix Dep
ijkl = De

ijkl −
De

ijmn
∂ f

∂σmn
∂ f

∂σpq
De

pqkl
∂ f

∂σpq
De

pqmn
∂ f

∂σmn
− ∂ f

∂px
∂px
∂ε

p
v

∂ f
∂p

Dep
ijkl = De

ijkl −
De

ijmn
∂ f

∂σ̃mn
∂ f

∂σpq
De

pqkl

∂ f
∂σpq

De
pqmn

∂ f
∂σ̃mn

−
(

∂ f
∂Fst

∂Fst
∂ε

p
v
+ ∂ f

∂ p̃x
∂ p̃x
∂ε

p
v

)
∂ f
∂ p̃

Parameters M, λ, κ, and ν M, λ, κ, ν, ∆, C, and β

6. Verification of the Proposed Method

There are seven parameters in the anisotropic MCC model: M, λ, κ, ν, ∆, C, and
β. The first four parameters are inherited from the isotropic MCC model and can be
calibrated using the same method as before. The last three parameters reflect the initial
value, evolution rate, and final value of the fabric tensor, respectively. Theoretically, they
should be determined through microscopic statistics about the particle arrangement. In
practice, their values can also be calibrated according to the soil stiffness along different
directions. For example, during the isotropic compression test (which is used to determine
λ and κ), strain increments perpendicular and parallel to the bedding plane, i.e., dεz and
dεx, can be measured during the loading process. The initial value of dεz/dεx is dependent
on the initial degree of the fabric anisotropy, while its variation is related to the fabric
evolution. Based on this, the values of ∆ and C can be determined by fitting the measured
curve of dεz/dεx. Similarly, we can determine β using the stable value of dεz/dεx during a
constant stress ratio test.

The anisotropic MCC model is used to predict the stress ratio σ1/σ3 and pore pressure
u (normalized by the consolidation pressure σc) of the horizontally deposited San Francisco
Bay mud from true triaxial tests (Kirkgard and Lade [42]). This soil is normally consolidated.
Under the same intermediate principal stress coefficient b, the Lode’s angle θ can be
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different when the principal stresses are along different directions: if 0◦ ≤ θ < 60◦, σz is
the major principal stress; if 60◦ < θ < 120◦, σz is the intermediate principal stress; and
if 120◦ < θ < 240◦, σz is the minor principal stress. The model parameters are M = 1.54,
λ = 0.80, κ = 0.13, ν = 0.30, ∆ = 0.31, C = 0.60, and β = 0.025. Comparisons between
the experimental data and model predictions are shown in Figure 8. It can be concluded
that the proposed method can reasonably simulate soil behaviors under different loading
directions and intermediate principal stress coefficients. What is more, if the vertical strain
εz continues increasing, σ1/σ3 and u (as well as Fij) finally converge to a stable value
independent of the loading direction, which means the proposed method can guarantee
the uniqueness of the critical state line. When b = 0.96, the model predictions slightly
deviate from the experimental data and cannot reproduce the decrease in σ1/σ3 with εz.
This is probably due to the strain localization of the soil specimen under the condition of
extension, which cannot be simulated using the MCC model.
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7. Conclusions

In this paper, a multiscale method is proposed to develop an anisotropic constitutive
model for soils by introducing the fabric tensor and its evolution. This method has the
following characteristics:

1. The inherent anisotropy is considered using two steps of stress mapping. From σij
to σij, anisotropic soil is equivalent to isotropic soil; from σij to σ̃ij, the true triaxial
yield/failure behaviors are similar to those of triaxial compression.

2. The induced anisotropy is represented by a fabric evolution law, which plays the
same role as the rotational hardening law but can capture the microscopic mechanism
behind soil deformation.

3. Based on an isotropic constitutive model, f
(
σij
)
= 0, the anisotropic model f

(
σ̃ij
)
= 0

can be easily developed to predict the stress–strain relation of anisotropic soil in a
three-dimensional stress state.

It is necessary to indicate that the modified stress equation, i.e., Equation (2), is
proposed according to the observed deformation and failure properties of anisotropic
soils, and its verification in Section 2.1.3 is very preliminary. The fabric evolution law,
i.e., Equation (15), is established by imitating the form of the rotational hardening law. We
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need to do further research, such as DEM simulations under complex loading conditions,
to find a more precise expression for σij that can realize the equivalence between the
anisotropic and isotropic soils. A bridge should be built to truly connect the macroscopic
and microscopic mechanical behaviors of soils.
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