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Abstract: Deformation is a critical indicator of structural integrity, and monitoring deformation
is essential for ensuring the long-term safety of dams. However, characterizing the spatial corre-
lations among dam deformation sequences and the similarity between displacements at various
measurement points poses significant challenges when using single-point measurement models.
Considering the limitations inherent in conventional models for processing spatiotemporal data, this
paper introduces a novel model for predicting and imputing multi-point displacement monitoring
data from earth-rock dams. The model integrates a convolutional neural network (CNN) with a
bidirectional long short-term memory neural network (BiLSTM) while also incorporating an attention
mechanism (AM). The CNN captures the spatial features of the displacement data, while the BiLSTM
extracts temporal features. The AM assigns varying weights to input features, thereby enhancing the
predictive accuracy of the model. The proposed model was experimentally validated, demonstrating
its robust capabilities in data prediction and the imputation of missing data. The model provides a
new strategy for forecasting dam deformation and addressing issues related to incomplete data.

Keywords: dam deformation prediction; data filling; CNN; BiLSTM; attention mechanism

1. Introduction

Dams, as structures designed to retain water, play a crucial role in various applications
including flood control, power generation, and irrigation. However, dam failure can lead
to catastrophic consequences. To ensure safety and facilitate the real-time monitoring of
dams, appropriate monitoring instruments are integrated during the construction phase to
monitor a series of established safety parameters. Deformation monitoring is particularly
significant due to its intuitive and reliable nature, leading to its widespread adoption as
a primary variable in dam safety evaluations worldwide. The data obtained from dam
deformation monitoring reflect the alterations in dam structure resulting from loads and
environmental influences, thereby providing critical insights into the condition of the
dam [1]. Using these monitoring data to develop high-precision monitoring models allows
the evaluation of the current stability and structural integrity of the dam. Furthermore,
predicting dam deformation is vital for estimating the dam’s response to various exter-
nal factors and loads. Consequently, the prediction of dam deformation is essential for
conducting accurate assessments of dam safety [2,3].

Due to the limitations in instrument accuracy, a certain amount of noise is present in
dam deformation monitoring data. In addition, factors such as component aging intro-
duce noticeable randomness and non-stationarity into the data [4,5], making it difficult
for traditional prediction models to meet the required prediction accuracy. Therefore, a
robust and accurate dam safety monitoring and prediction model is needed. Existing dam
deformation monitoring models can be divided into three categories: statistical models,
deterministic models, and hybrid models [6,7]. Statistical models, which include multiple
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regression analysis, stepwise regression analysis, weighted regression, orthogonal poly-
nomial regression, and difference regression models, are simple, easy to implement, and
widely used [8]. Statistical models are based on statistical mathematics and have good
interpretability. However, for long monitoring sequences and data with strong nonlinearity,
deformation prediction models based on statistical methods tend to have large prediction
errors. By contrast, deterministic models are related to the actual structural properties
of the dam’s body and foundation. For deterministic models, the finite element method
is used to establish a calculation model, while numerical simulation techniques are ap-
plied to compute the effect of loads such as water pressure and temperature on the dam’s
structure, thereby determining its deformation [9]. Although deterministic models offer
high accuracy, they have some limitations in practical application. The correlation between
environmental variables significantly affects the performance of a deterministic model, and
the inclusion of factors with low correlation can reduce the prediction accuracy [10]. In
addition, deterministic models require considerable time for grid-based training, leading to
inefficiencies in their real-world use [11]. In hybrid models, the load is concentrated, and
the hydraulic component is calculated using finite elements; meanwhile, the temperature
and aging factors are calculated using a statistical model [12,13]. The measured values are
then optimally fitted, and the statistical equation is solved through stepwise regression [14].
Regardless of the model type, the performance is easily affected by uncertainty when
complex nonlinear relationships exist between the influencing factors and the amount of
deformation, resulting in reduced accuracy [15].

In recent years, with the rapid advances in computer and artificial intelligence, re-
searchers have increasingly applied intelligent prediction and machine learning models to
analyze and process dam safety monitoring data. For instance, Liu et al. [16] integrated
a grey model with a backpropagation neural network to predict dam monitoring data,
resulting in reduced prediction uncertainty and improved prediction accuracy compared
with traditional models. Similarly, Ren et al. [17] employed a support vector machine to
predict dam displacement in landslides and validated the model through case studies. Liu
et al. [18] introduced a long short-term memory neural network (LSTM) based on the time-
series characteristics of dam deformation monitoring data and used the LSTM to construct
a prediction model for long-term arch dam deformation. The model demonstrated superior
predictive performance compared with traditional models, including a hydrostatic seasonal
time model and multilayer perceptron model, particularly for long-sequence deformation
data. The LSTM effectively mitigated the issue of gradient vanishing and was able to
capture the nonlinear trends, correlations, and temporal characteristics of the data.

Consequently, numerous researchers have applied LSTM, improved LSTM, and hybrid
LSTM models to the prediction of dam deformation, yielding promising results [18–20].
The development of deep learning has significantly addressed the limitations of traditional
machine learning. Compared with machine learning models, deep learning models, which
have multiple network layers, more effectively uncover the hidden relationships between
input parameters, more effectively extract the temporal correlations of data features, and
more accurately capture the fluctuation characteristics of the data, thereby improving
prediction performance.

Dam safety monitoring projects often involve numerous measurement points, each
providing abundant monitoring data. The displacements at different locations in the same
direction exhibit certain correlations. Therefore, data from a single monitoring point are
insufficient to evaluate the safety and stability of the dam. However, the most commonly
used dam safety monitoring models primarily analyze data sequences from individual
measurement points. These single-point models have high stability requirements for the
data and tend to overlook the spatial relationships between monitoring points, resulting in
the incomplete extraction of hidden features within the data. This limitation introduces bias:
the overall condition of the dam cannot be reliably assessed if the data from one or several
observation points show abnormal fluctuations [21]. Consequently, the development of
multi-point monitoring models has become a popular direction of research [22,23].
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In this paper, we propose a multi-point model for dam deformation prediction and
data imputation based on the combination of a convolutional neural network (CNN), bidi-
rectional long short-term memory neural network (BiLSTM), and attention mechanism
(AM). The CNN–BiLSTM–AM model combines the strengths of CNN in extracting spatial
features from data with the advantages of BiLSTM in capturing temporal features, while the
AM assigns weights to the input features. The main steps in predicting dam deformation
using this model are as follows: First, the displacement values of some measurement
points are predicted through model fitting, a process used to train the model and select
appropriate parameters. Second, the trained model is applied to estimate the co-directional
displacement values of the remaining measurement points. This new model offers a com-
prehensive understanding of the overall displacement behavior of the dam and provides a
method for addressing missing data in the monitoring system.

2. Theory and Methodology
2.1. Convolutional Neural Network (CNN)

CNNs are a type of feedforward neural network characterized by a deep structure
incorporating convolutional operations. Initially proposed by LeCun et al. [24], CNNs have
become foundational algorithms in deep learning. A typical CNN architecture comprises
three main components: convolutional layers, pooling layers, and fully connected layers.
The structural layout of a CNN is illustrated in Figure 1.
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Figure 1. Structural diagram of a CNN.

In CNNs, pooling layers and convolutional layers alternate to facilitate feature ex-
traction and dimensionality reduction. During the convolution process, CNNs adaptively
capture implicit features from the data while simultaneously reducing data redundancy
and complexity [25]. The extracted features are subsequently fused and passed into the
fully connected layer. Non-linearity is introduced into the neuron outputs via activation
functions at this stage. Each convolutional layer consists of multiple convolutional ker-
nels that perform convolutions on the input data to extract hidden features, generating
feature maps in the process. These feature maps are then processed by nonlinear activation
functions to produce the output of the convolutional layer. The convolution process is
mathematically described by Equations (1)–(4):

ci = f (wi ∗ xi + bi) (1)

where ci represents the i-th feature map, wi denotes the weight matrix, xi is the input to the
convolutional layer, ∗ denotes the dot product operation, bi represents the bias vector, and
f (·) refers to the activation function.

The pooling operation reduces the dimensionality of the feature map and decreases the
computational complexity. Commonly used pooling methods include average pooling and
max pooling. In our model, max pooling is applied to the dam deformation monitoring data
to retain the most relevant information. The max pooling process is conducted according to
Equations (2) and (3):

γ(ci, ci−1) = max(ci, ci−1) (2)

pi = γ(ci, ci−1) + βi (3)
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where γ(·) indicates the maximum pooling downsampling function, βi represents the
deviation, and pi represents the output of the maximum pooling layer.

Finally, the feature maps obtained from the convolution and pooling operations are
passed to the fully connected layer, where the final output vector is computed. The fully
connected layer calculates the output as follows:

yi = f (ti pi + δi) (4)

where yi represents the final output vector, δi represents the deviation, and ti represents the
weight matrix.

2.2. Bidirectional LSTM Network (BiLSTM)

In 1982, John Hopfield, a physicist at the California Institute of Technology, intro-
duced the Hopfield network, a single-layer feedback neural network designed to solve
combinatorial optimization problems. This network served as the prototype for the earliest
recurrent neural networks (RNNs). A standard RNN is a neural network that includes a
self-connected hidden layer. The primary advantage of this network is its ability to “remem-
ber” and use past contextual information. However, extensive studies have demonstrated
that standard RNNs struggle to retain information over long periods due to limitations
in memory and information storage. Bengio et al. [26] found that standard RNNs suffer
from gradient vanishing and gradient explosion during the iterative training process. To
address these issues, in 1997, Jürgen Schmidhuber proposed the LSTM network, which
overcomes the long-term dependency problem in RNNs by introducing memory cells and
gating mechanisms. Building on the LSTM, the BiLSTM was introduced by Graves and
Schmidhuber [27]. This model extends the LSTM structure by unfolding it bidirectionally
along the time axis, allowing the network to capture temporal information in both the for-
ward and backward directions simultaneously. The bidirectional architecture leverages the
forward and backward hidden layers to extract context from both directions. A schematic
diagram of the BiLSTM structure is shown in Figure 2.

Buildings 2024, 14, x FOR PEER REVIEW 4 of 17 
 

The pooling operation reduces the dimensionality of the feature map and decreases 
the computational complexity. Commonly used pooling methods include average pooling 
and max pooling. In our model, max pooling is applied to the dam deformation monitor-
ing data to retain the most relevant information. The max pooling process is conducted 
according to Equations (2) and (3): 

maxγ
− −

=
1 1

( , ) ( , )
i i i i

c c c c  (2) 

γ β
−

= +( , )
i i i i

p c c
1

 (3) 

where γ ⋅( )  indicates the maximum pooling downsampling function, β
i
 represents the 

deviation, and 
i

p  represents the output of the maximum pooling layer. 
Finally, the feature maps obtained from the convolution and pooling operations are 

passed to the fully connected layer, where the final output vector is computed. The fully 
connected layer calculates the output as follows: 

δ= +( )
i i i i

y f t p  (4) 

where i
y  represents the final output vector, δ

i  represents the deviation, and i
t  repre-

sents the weight matrix. 

2.2. Bidirectional LSTM Network (BiLSTM) 
In 1982, John Hopfield, a physicist at the California Institute of Technology, intro-

duced the Hopfield network, a single-layer feedback neural network designed to solve 
combinatorial optimization problems. This network served as the prototype for the earli-
est recurrent neural networks (RNNs). A standard RNN is a neural network that includes 
a self-connected hidden layer. The primary advantage of this network is its ability to “re-
member” and use past contextual information. However, extensive studies have demon-
strated that standard RNNs struggle to retain information over long periods due to limi-
tations in memory and information storage. Bengio et al. [26] found that standard RNNs 
suffer from gradient vanishing and gradient explosion during the iterative training pro-
cess. To address these issues, in 1997, Jürgen Schmidhuber proposed the LSTM network, 
which overcomes the long-term dependency problem in RNNs by introducing memory 
cells and gating mechanisms. Building on the LSTM, the BiLSTM was introduced by 
Graves and Schmidhuber [27]. This model extends the LSTM structure by unfolding it 
bidirectionally along the time axis, allowing the network to capture temporal information 
in both the forward and backward directions simultaneously. The bidirectional architec-
ture leverages the forward and backward hidden layers to extract context from both di-
rections. A schematic diagram of the BiLSTM structure is shown in Figure 2. 

 
Figure 2. Diagram of the BiLSTM structure. Figure 2. Diagram of the BiLSTM structure.

The forward and backward inputs and outputs of the BiLSTM model can be repre-
sented by Equations (5)–(7):

→
ht = σ(

→
ω · xt +

→
v · ht−1 +

→
b ) (5)

←
ht = σ(

←
ω · xt +

←
v · ht−1 +

←
b ) (6)

yt = σ([
→
ht,
←
ht] + b) (7)

where xt is the input at time t;
→
ht represents the outputs of the forward layer;

←
ht represents

the outputs of the backward layer; yt represents the outputs of the hidden layer at time
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t; σ is the LSTM unit function;
→
ω,
→
v ,
←
ω and

←
v are weight coefficients;

→
b ,
←
b and b are

bias vectors.

2.3. Attention Mechanism (AM)

Inspired by the human visual system, Treisman and Gelade first applied an AM in
the field of visual image processing to simulate the attention mechanism of the human
brain [28]. The core idea of the AM can be summarized as weighted averaging with
dynamic weighting. In our model, the AM incorporated in the BiLSTM network uses the
last cell state of the BiLSTM or aligns the implicit state of the BiLSTM with the unit state of
the current input step. Subsequently, the correlation between the output states and these
candidate intermediate states is calculated. During the learning process, the AM allocates
weights; higher weights are assigned to the most relevant information, while irrelevant data
are suppressed, thereby enhancing the accuracy and efficiency of the model’s predictions.
The output A of the attention layer is determined according to Equations (8)–(10):

M = tanh(Y) (8)

α = so f tmax(wT
a M) (9)

A = YαT (10)

where Y is a matrix representing the features captured by the BiLSTM model, α denotes the
attention weights of the features, wa represents the weight coefficient of the attention layer,
and T indicates the transpose operation.

3. Proposed CNN–BiLSTM–AM Hybrid Model and Evaluation Metrics
3.1. Framework of the CNN–BiLSTM–AM Hybrid Model

This section introduces the proposed CNN–BiLSTM–AM hybrid model structure and
its components. To enhance feature extraction from the deformation monitoring sequences
and improve the predictive capabilities, we integrated a CNN, BiLSTM, and AM into
a single framework, resulting in a novel CNN–BiLSTM–AM model for predicting dam
deformation. As illustrated in Figure 3, the model consists of five fundamental modules: the
input module, feature extraction module, sequence learning module, attention module, and
prediction module. In the feature extraction module, CNNs are employed to extract spatial
features from the input data, which are then fed into the BiLSTM network for sequence
learning. The sequence learning module utilizes BiLSTM to capture long-term temporal
information, and the resulting outputs serve as inputs to the attention module. Within the
attention module, the AM assigns varying weights based on the model’s input features,
thereby enhancing prediction accuracy. Finally, the prediction module comprises a fully
connected layer followed by an output layer, culminating in the model’s final prediction.
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3.2. Multi-Point Modeling of Dam Displacement Based on the CNN–BiLSTM–AM Model
3.2.1. Basic Idea of Multi-Point Displacement Modeling

The dam as an integral structure, the displacement values of two points in close
proximity did not exhibit sudden changes (in the absence of structural cracks), indicating
a certain degree of correlation between the displacements at various points in the same
section. However, this correlation diminished as the distance between the points increased.
As illustrated in Figure 4, points T1 to T10 represent deformation monitoring instruments.
Each point (T1 to T10) in the figure indicates where the monitoring points were deployed
at different positions within the dam. In the schematic diagram: T1–T4 are at the same ele-
vation, and T5–T10 are at the same elevation. Even at the same elevation, each monitoring
point is also arranged at different positions. The main reason for such an arrangement of
monitoring instruments is to capture the deformation information of the dam at different
heights and locations. These deformation data imply the spatial characteristic relationships
between data at different spatial positions. Moreover, these deformation monitoring data
provide a basis for establishing multi-point models for displacement data prediction and
filling. Based on the correlation between deformation at different points, a displacement
model for multiple measurement points was established. At the same elevation, the actual
displacement values of several measurement points were treated as independent variables,
while the displacement values of other points were considered dependent variables. A
multi-measurement-point model for predicting dam deformation was constructed based
on the CNN–BiLSTM–AM model to predict the unknown displacement data at the same
elevation. For illustration, we consider four adjacent measurement points: T1, T2, T3, and
T4. The displacement values of T3 are predicted using the data from T1, T2, and T4. A
model is developed, and part of the actual observation data for T3 is used in the training
process of the deformation prediction model for T1, T2, and T4. The trained model is then
employed to predict the deformation of T3 for the remaining time periods, leveraging
the correlation among the homologous measurement point data. Thus, the displacement
values of the dam at the same elevation can be generalized from individual points to the
entire surface.
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3.2.2. Technical Roadmap for the Multi-Point Displacement Model Proposed in This Paper

Based on the above-mentioned methods, a hybrid model for predicting deformation
during the operation and management of earth-rock dams was developed. The flowchart
of the model is shown in Figure 5. The implementation process of the model is divided
into three main stages: data preparation and preprocessing; model training; and evaluation
of prediction results.

The first step in data preparation and preprocessing is to collect the monitoring
data from homologous deformation measurement points. The collected data are then
preprocessed through the following processes, which are crucial for enhancing the accuracy
of data prediction:
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1. Data cleaning: The goal of data cleaning is to improve the quality of the deformation
monitoring data by eliminating outliers and noise. Data cleaning is typically achieved
using scatter plots.

2. Data standardization: Standardization reduces systematic error caused by data being
collected at different monitoring points over different time periods. In addition,
standardization helps mitigate discrepancies between datasets.

3. Normalization: Normalization plays a significant role in accelerating the training
process of neural networks and preventing issues such as gradient explosion [29].
Normalization ensures that the original characteristics of the data are preserved while
improving the convergence speed of computations. In our model, input variables are
normalized to the [0,1] range, as shown in Equation (11):

xi =
xo − xmin

xmax − xmin
(11)

where xi is the normalized value of the variable, xo is the original value of the variable,
xmax is the maximum value of the variable, and xmin is the minimum value of the variable.
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The second step is model training. First, the initial parameters of the model are
determined. Next, the spatial features of the input data are extracted through the feature
extraction module and passed to the sequence learning layer, where temporal features
are captured. The AM emphasizes features that have greater influence on the prediction
results. The training process is terminated once the predefined maximum training period
is reached.

3.3. Evaluation Metrics

The prediction model was evaluated based on root-mean-square error (RMSE), mean
absolute percentage error (MAPE), and mean absolute error (MAE):

RMSE =

√
1
n

n

∑
i=1

(yi − yp)
2 (12)

MAPE =
1
n

n

∑
i=1

∣∣yi − yp
∣∣

|yi|
× 100% (13)

MAE =
1
n

n

∑
i=1

∣∣yi − yp
∣∣ (14)
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where yi and yp represent the observed and predicted values, respectively. Larger RMSE
and MAE values indicate greater prediction errors, while lower MAPE values indicate
more accurate predictions.

4. Experimental Study
4.1. Study Area

To evaluate the effectiveness of the proposed method for predicting dam deformation,
the Uluwati Water Conservancy Project in Xinjiang was selected as a case study. This
project is situated in the middle reaches of the Karakashi River, in the Hotan District, and
serves as a control project for the river. The dam site is located 71 km from Hotan City. The
total reservoir capacity is 347 million m3. The maximum dam height is 133.0 m, and the
elevation, length, and width of the dam crest are 1965.80, 365.0, and 8.9 m, respectively. The
project provides comprehensive benefits, including irrigation, power generation, ecological
preservation, and flood control.

4.2. Dataset

Deformation monitoring data collected from 2015 to 2017 at points H1-3, H1-4, H1-5, and
H1-6 on the typical 0 + 190 section of the dam were selected for analysis using the method
proposed in this paper. The horizontal deformation data of the dam were analyzed. Figure 6
shows the layout of measurement points on the 0 + 190 section of the dam. The original data
were recorded at 7-day intervals, resulting in 100 sets of horizontal deformation time-series
data for each monitoring point after preprocessing. The original data series is displayed in
Figure 7.
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As shown in Figure 7, the variations in deformation data at monitoring points along
the same stretch exhibit a certain degree of correlation. For instance, the curves representing
data from the adjacent measurement points H1-3 and H1-4 as well as H1-5 and H1-6 display
similar trends over specific time periods. These similarities can also be observed during
rapid increases or decreases in deformation over certain time intervals.

4.3. Model Experiments

The model experiments were divided into two parts: first, the CNN–BiLSTM–AM
model was applied to predict deformation; second, the prediction model was used to fill
in missing time-series data. The performance of the model was evaluated through these
experiments. All model codes were written in Matlab language.

For comparison with the CNN–BiLSTM–AM model, four deep learning models (BiL-
STM, LSTM, CNN, and BiLSTM-AM) and one machine learning model (multilayer per-
ceptron, MLP) were used to predict the radial displacement of the H1-3 measurement
point in the 0 + 190 section. By ensuring consistent conditions, equitable comparisons
can be conducted, thereby facilitating a precise assessment of the performance of each
model [30,31]. Table 1 presents the hyperparameters for all deep learning and machine
learning models. Epoch represents the number of training epochs; Batch size indicates
the batch size; Lr denotes the learning rate; Nh denotes the number of neurons in the
hidden layer, while Ni denotes the number of hidden layers; Head represents different
attention heads in the multi-head attention mechanism; Keys are vectors associated with
each position in the input sequence; and Convolution kernel size refers to the size of the
convolutional kernel in a convolutional neural network.

Table 1. Hyperparameters of the six models.

Model Type Model Name Parameters

Deep learning

CNN–BiLSTM–AM Epoch = 70, batch size = 7, lr = 0.001, head = 1,
keys = 2, convolution kernel size = 64, Nh = 64

BiLSTM–AM Epoch = 70, batch size = 7, lr = 0.001, head = 1,
keys = 2, Nh = 64

BiLSTM Epoch = 70, batch size = 7, lr = 0.001, Nh = 64

LSTM Epoch = 70, batch size = 7, lr = 0.001, Nh = 64

CNN Epoch = 70, batch size = 7, lr = 0.001, convolution
kernel size = 64

Machine learning MLP NI = 1, Nh = 64

In this study, the selection of hyperparameters was based on a balance between model
performance and computational efficiency. The convolution kernel size was set to 64,
determined by balancing model fitting accuracy and computational time. The number
of hidden units was configured as 64 to capture temporal dependencies while avoiding
insufficient information with fewer units, or overfitting with more. The multi-head attention
mechanism employed a single head with two key vectors to strike a balance between feature
representation capability and computational cost. The initial learning rate was set to 0.001
to ensure a stable exploration of the loss function space and prevent local oscillations. For
the relatively small dataset, a “small batch size + multiple training rounds” strategy was
adopted, with the maximum number of training epochs set to 70 and the batch size defined
as one-tenth of the epoch size, ensuring an optimal trade-off between model performance
and training efficiency. All hyperparameter configurations were experimentally validated
to meet the objectives of this study.

4.3.1. Deformation Prediction Experiments

When applying our proposed model to deformation prediction, the feature data
corresponding to the predicted data were not used as input during model training. A
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schematic diagram showing the selection of the deformation prediction dataset is shown in
Figure 8.
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For the experiment, deformation monitoring data from points H1-3, H1-4, H1-5, and
H1-6 on the typical 0 + 190, collected from 2015 to 2017, were selected as the study objects.
The proposed multi-measurement-point model for predicting earth-rock dam displacement
was used to predict the deformation at measurement point H1-3. The dataset consisted
of monitoring data from 100 time periods, collected from four homologous measurement
points (H1-3, H1-4, H1-5, and H1-6). The dataset was divided into training, validation,
and test sets in a ratio of 8:1:1. Specifically, the first 80 datasets were used for training, the
next 10 sets were used for validation, and the final 10 sets were used for testing. During
deformation prediction, the data from H1-4, H1-5, and H1-6 were used as the feature
data to predict future sequences at H1-3. Importantly, some features corresponding to the
predicted sequence were not used in model training.

4.3.2. Data Filling Experiment

When the proposed model was applied for data imputation, feature data correspond-
ing to the missing data were used as the input for model training. A schematic diagram
showing the process for selecting the imputation dataset is shown in Figure 9.



Buildings 2024, 14, 3780 11 of 16Buildings 2024, 14, x FOR PEER REVIEW 12 of 17 
 

 
Figure 9. Schematic diagram showing the selection of the filling datasets. 

5. Results and Analyses 
To assess the effectiveness of the proposed CNN–BiLSTM–AM multi-point model for 

earth-rock dam displacement monitoring, a series of control experiments were designed 
to verify the model from two perspectives: data prediction and data imputation. The re-
sults are presented below. 

5.1. Analysis of the Deformation Experiment Results 
In this experiment, six models—CNN–BiLSTM–AM, BiLSTM–AM, BiLSTM, LSTM, 

CNN, and MLP—were trained to predict deformation data at different monitoring points. 
As shown in Figure 10a–f, which show the prediction results for each model on the test 
set, none of the prediction curves fully capture the fluctuations of the measured data. This 
discrepancy is mainly attributed to the large fluctuations and strong nonlinearity inherent 
in the dam monitoring data. For the prediction of dam deformation, the model must ef-
fectively reflect the changes in deformation at different monitoring points over specific 
time periods. This ability allows for a deeper understanding of the internal patterns within 

Figure 9. Schematic diagram showing the selection of the filling datasets.

The division of data for the imputation experiment into the training set, validation set,
and test set followed the process used for the deformation prediction experiment. However,
when the proposed multi-point displacement model was used to impute missing data, the
feature data from measurement points H1-4, H1-5, and H1-6, along with the feature data
corresponding to the missing segments of the H1-3 sequence, were incorporated into the
model for training and data construction. The missing values in the H1-3 sequence were
treated as the target data for prediction. Subsequently, the model was used to predict the
missing segments, and the predicted values were used to fill in the missing data.

5. Results and Analyses

To assess the effectiveness of the proposed CNN–BiLSTM–AM multi-point model for
earth-rock dam displacement monitoring, a series of control experiments were designed to
verify the model from two perspectives: data prediction and data imputation. The results
are presented below.

5.1. Analysis of the Deformation Experiment Results

In this experiment, six models—CNN–BiLSTM–AM, BiLSTM–AM, BiLSTM, LSTM,
CNN, and MLP—were trained to predict deformation data at different monitoring points.
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As shown in Figure 10a–f, which show the prediction results for each model on the test
set, none of the prediction curves fully capture the fluctuations of the measured data. This
discrepancy is mainly attributed to the large fluctuations and strong nonlinearity inherent
in the dam monitoring data. For the prediction of dam deformation, the model must
effectively reflect the changes in deformation at different monitoring points over specific
time periods. This ability allows for a deeper understanding of the internal patterns within
the data. Among the tested models, the predictions of the proposed CNN–BiLSTM–AM
model were closest to the measured values in the test set. Nevertheless, some discrepancies
were observed in the prediction results, particularly at peak points.
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The performance of the proposed CNN–BiLSTM–AM model was evaluated using
several metrics, as shown in Figure 10g–i. The CNN–BiLSTM–AM model performed
better on small datasets than the other models, with lower RMSE, MAE, and MAPE values
compared with the other five models. Specifically, the RMSE, MAE, and MAPE values
for the CNN–BiLSTM–AM model were 0.1702, 0.0122, and 0.2265, respectively, indicating
high computational accuracy. By contrast, Figure 10g–i shows that the MLP model had
the highest MAP, MAPE, and RMSE values; although MLP can handle nonlinearities, it
struggles to capture long-term correlations within the data series. Furthermore, since
the BiLSTM and LSTM models account for temporal dependencies, they improve the
data prediction accuracy more effectively than the CNN model. Overall, the prediction
performance of the models decreased in the following order: CNN–BiLSTM–AM > BiLSTM
> LSTM > BiLSTM–AM > CNN > MLP.
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5.2. Analysis of Data Filling Experimental Results

Unlike with data prediction, in the data filling process, the data features corresponding
to the test set are included in the model training. The performance of each model on
the test set is shown in Figure 11a–f. When the relevant data features of the test set
were incorporated into model training, the stability of the models improved, allowing
them to better capture the trends in the data. Figure 11g–i shows the evaluation metrics
(MAE, MAPE, and RMSE) for each model during the data filling process. The values of
these metrics were lower than those for data prediction, suggesting an improvement in
prediction accuracy after adding the feature dataset. This highlights the feasibility of using
the predicted values to fill in for missing data points. As in the prediction experiment,
the CNN–BiLSTM–AM model outperformed the other five models in the data filling
experiments, resulting in the smallest MAE, MAPE, and RMSE values (0.1465, 0.0105,
and 0.1897, respectively). These MAE, MAPE, and RMSE values represent improvements
of 13.92%, 6.25%, and 16.65% compared with the MLP model, respectively. The results
demonstrate the effectiveness of deep learning models for filling in missing data based on
the correlation characteristics between homologous measurement points.
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5.3. The Limitations of the Model and Considerations in Practical Applications
5.3.1. The Constraints of Model Experiments

From the horizontal comparison of the model results shown in Figures 10 and 11,
it can be observed that the error evaluation metrics for all models are lower in the data
imputation experiments. This indicates that the models exhibit better performance and
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higher predictive accuracy in these experiments. This also suggests that the distribution
of the data significantly impacts the model’s predictive performance—namely, the more
comprehensive the training feature dataset, the better the robustness of the model. However,
it should be noted that both the data prediction and data imputation experiments were
conducted on datasets with small sample sizes, where predictions or imputations were
performed for the last 10 monitoring periods. From the perspective of the curve shapes, all
models demonstrated better short-term predictive performance (e.g., for weeks 91–95), with
predicted values closely matching the actual values. However, during periods of dramatic
temporal changes (e.g., weeks 96–100), all models exhibited certain degrees of deviation
and reduced data fitting accuracy. This indicates that there is still room for improvement in
the long-term predictive performance of the models.

5.3.2. Considerations for Practical Applications of the Model

Although the CNN–BiLSTM–AM model demonstrates excellent performance in dam
deformation monitoring for both data prediction and imputation, it still faces certain
limitations and computational challenges. Firstly, the model heavily relies on high-quality
and complete monitoring data. Noise or missing data can significantly affect prediction
accuracy, particularly when the number of monitoring points is limited. Secondly, the
model exhibits limited generalization capability across different scenarios; applying it
directly to other structures or regions may require retraining. Additionally, while the
model is well-suited for short-term predictions, its performance may degrade in long-term
predictions due to error accumulation. Moreover, the model’s “black-box” nature poses
challenges to its interpretability in engineering applications. This study primarily focuses
on short- or medium-term predictions (e.g., deformation trends over a few time steps), but
for long-term predictions (e.g., deformation trends spanning years), error accumulation
may become a significant issue. Future work could integrate physics-driven models
(e.g., finite element analysis) with data-driven models to achieve synergistic optimization
for both short- and long-term predictions.

While enhancing prediction performance, the CNN–BiLSTM–AM model also imposes
higher demands on computational resources and deployment conditions. The combina-
tion of CNN, BiLSTM, and the attention mechanism increases computational complexity,
especially when dealing with a large number of monitoring points or longer time series
inputs. In terms of computational requirements, the integration of CNN, BiLSTM, and atten-
tion mechanisms substantially raises both the computational load and memory demands,
making the model unsuitable for resource-constrained devices or real-time deployments.
Large-scale training requires significant computational resources, and the inference phase
demonstrates relatively low efficiency. Future research could explore lightweight net-
work architectures and incorporate distributed training strategies to improve the model’s
computational efficiency.

6. Conclusions

To address the inherent nonlinearity and complexity of dam monitoring data, we have
introduced a novel CNN–BiLSTM–AM multi-point displacement monitoring model for
earth-rock dams. In this model, a CNN is employed to extract features from the input data,
BiLSTM is responsible for learning and predicting based on these features, and the AM
captures the influence of temporal data feature states on the prediction outcomes. Using
the correlation between homologous observation points, the effectiveness of the model was
assessed in data prediction and data filling, demonstrating its accuracy and reliability. Key
findings from the study include:
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Improved Capture of Spatial Relationships: Unlike traditional single-point displace-
ment models, the multi-point model can capture the spatial relationships between
measurement points, overcoming the limitations resulting from relying solely on data
from individual points. The experimental results confirm the superior predictive
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performance of the proposed model as well as its high reliability in filling missing
values in monitoring datasets.
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Superiority of Deep Learning Models: Compared with machine learning models,
deep learning models show greater accuracy in both dam deformation prediction
and data filling. This is largely attributed to the deeper, more complex network
layers of deep learning models, which enable better feature extraction and improved
prediction capabilities.
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Hybrid Model Advantages: Achieving high prediction accuracy with a single net-
work is challenging. However, hybrid models—such as the combination of CNNs
with other models—can improve accuracy by leveraging a CNN’s ability to capture
spatiotemporal features in the monitoring data. Although hybrid models increase
complexity, the experimental results demonstrate that they outperform single models
in predictive accuracy.
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