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Abstract: Traditional concrete structures are frequently linked to poor energy efficiency and sub-
stantial heat loss, which pose significant environmental issues. To enhance thermal insulation and
reduce heat loss, the use of precast insulated walls is suggested. This research introduces a new
energy-efficient precast concrete panel (PCP). We explored various material combinations, including
air bubbles, nano microsilica compound (NMC), nano microsilica powder (NMP), and latex, to deter-
mine the most effective formulation. A total of 99 tests were performed to assess the compressive
strength of the samples, with 28 tests selected for thermal conductivity evaluations at temperatures
of 300 ◦C and 400 ◦C based on satisfactory compressive strength results. The results indicated that
the optimal mix of 4% air bubbles and 13% NMC achieved the lowest thermal conductivities of
1.31 W/m·K and 1.20 W/m·K at 300 ◦C and 400 ◦C, respectively, showing improvement ratios of 7%
and 15.5% compared to the baseline tests. Additionally, the tests that included latex did not meet
the thermal conductivity standards. The optimal combinations identified in this research can be
effectively utilized in PCPs, resulting in significant energy savings. It is expected that stakeholders in
the green building sector will recognize these proposed PCPs as a practical energy-efficient solution
to advance sustainable and environmentally friendly construction practices.

Keywords: precast concrete panels; thermal insulation; energy efficiency

1. Introduction

Growing global energy and environmental concerns underscore the urgent need for
energy efficiency, reduced emissions, and sustainable practices. In this regard, the building
sector leads all industries as the top energy consumer and greenhouse gas emitter [1,2].
Residential buildings, as the most prevalent type of structure, demand greater focus to
decrease their energy usage. The key to energy conservation in these buildings centers on
upgrading the building envelope and heating systems [3]. In 2021, building operations
alone were responsible for 30% of global energy consumption and 27% of emissions from
the energy sector [4]. Consequently, there is an urgent need to reduce energy consumption
in buildings. In this context, enhancing the thermal insulation of building elements such
as walls and roofs can be highly effective [5]. Consequently, numerous energy efficiency
rating systems and building codes mandate specific thermal resistance levels, especially in
colder regions.

To improve the thermal performance of concrete, many researchers have conducted
studies on the thermal and mechanical properties of concrete incorporating various ad-
ditives, both in laboratory settings and at real-world scales [6–14]. For example, in the
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research conducted by Ebru and Atmaca [15], Portland cement (PC) CEM II 42.5R was
partially replaced with bentonite clay (BC) in varying proportions, ranging from 0 to 30%
by volume. Mechanical and thermal conductivity tests were performed on the concrete
samples after 28 days. Samples with 5% bentonite clay showed a substantial 94.7% im-
provement in compressive strength and a 31.2% decrease in thermal conductivity compared
to the control group. However, exceeding 15% bentonite content significantly degraded
both mechanical and thermal performance.

Air entrainment consistently proved more effective in lowering concrete’s thermal
conductivity than other explored additive modifications in small-scale tests [16–18]. For ex-
ample, Abdellatief et al. [19] explored using eggshell powder (ESP) and sawdust ash (SDA),
along with aluminum powder as a foaming agent, to create geopolymer foam concrete
(GFC). Partially replacing precursors with up to 20% ESP and SDA, they found that a 10%
ESP mix improved compressive strength by 16.54% and a 5% SDA mix by 4.45%, relative
to the control mix. In terms of thermal performance, the 10% ESP mixture demonstrated a
thermal conductivity of 1.237 W/m.K, which is significantly lower than that of conventional
concrete, typically around 1.4–2.5 W/m.K, indicating improved insulation properties.

Beyond small-scale tests on the thermal behavior of concrete, various binders have
been shown to positively influence the thermal performance of concrete in full-scale wall
applications [20–24]. Moreover, numerical simulations were used to model the thermal
behavior of concrete in different building configurations, offering detailed insights into
how various factors impact heat transfer and insulation performance in real-world con-
ditions [25–28]. These studies collectively demonstrate that alternative binders not only
enhance thermal insulation properties, but also maintain the structural integrity of concrete,
making them viable for practical construction applications. For example, Ding et al. [29]
developed prefabricated lightweight self-insulating foamed concrete wall panels using
low-density, thermally insulating foamed concrete. While the panels’ impermeability met
Chinese standards, their dry shrinkage, though improved, remained suboptimal. Crucially,
the 150 mm thick panels exhibited excellent mechanical properties, meeting or exceeding
standards for flexural strength, impact resistance, and load-bearing capacity, suggesting
their suitability for enhancing building insulation and structural performance.

Two studies explored the enhancement of building insulation using modified foamed
concrete. Nguyen-Van et al. [22] incorporated phase-change materials (PCM) into foamed
concrete cladding panels, significantly reducing internal wall and air temperatures, al-
though the performance varied with sun exposure. Shi et al. [30] investigated using desert
sand (DS) and rice husk ash (RHA) in foamed concrete. While DS improved stability but
reduced strength, adding RHA mitigated this by enhancing the matrix structure and ther-
mal performance. The DS/RHA combination improved insulation, lowered environmental
impact, and reduced costs. Both studies demonstrate promising approaches to improving
building energy efficiency with modified foamed concrete.

Despite significant advancements in building materials and energy efficiency, there
remains a critical need to further enhance energy savings in concrete structures. Numerous
studies have been published highlighting various approaches to this challenge [8,31–38];
however, innovative solutions are still required to optimize thermal performance. This
study aims to contribute to this ongoing effort by focusing on the development of a
novel concrete panel specifically designed for interior walls, with the goal of improving
energy efficiency in buildings. The primary objective of this study is to develop a new
precast concrete panel (PCP) that enhances energy efficiency. To achieve this, the research
will evaluate the effects of various combinations of cement dosages, air bubbles, nano
microsilica compound (NMC), nano microsilica powder (NMP), and latex on the thermal
conductivity of the PCP. The ultimate goal is to reduce the thermal conductivity of the
lightweight concrete panel while ensuring that the material maintains an acceptable level
of compressive strength.
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2. Experimental Design
2.1. Used Materials and Testing Program

A new concrete panel has been developed and proposed for use in buildings situated in
cold regions. This study involved the production of samples utilizing various combinations
of cement dosages, air bubbles, NMC, NMP, and latex for compressive and thermal testing.

The selection of specific ingredients for developing the concrete mixture was based
on their unique properties and potential synergistic effects in achieving both thermal
efficiency and structural integrity. The incorporation of NMC and NMP was primarily
driven by their nanoscale particle size, which enables them to fill microscopic voids in
the cement matrix, creating a denser microstructure. Their high surface area-to-volume
ratio enhances reactivity with cement compounds, promoting stronger chemical bonds
through pozzolanic reactions that produce additional C-S-H gel. Similarly, air bubbles were
introduced through foaming agents to create a cellular structure within the concrete matrix
that traps air, naturally reducing thermal conductivity while decreasing the overall density
of the concrete panel. This combination of nanomaterials and air voids was designed to
optimize thermal resistance while maintaining structural integrity.

The inclusion of latex in certain mix designs was aimed at improving the bond between
cement particles and aggregates while enhancing the flexibility and crack resistance of the
hardened concrete. This additive also contributes to reduced permeability, which can affect
thermal properties, and provides better adhesion properties for potential surface treatments.
The systematic selection and combination of these materials directly aligned with our
research objectives of developing energy-efficient precast concrete panels while maintaining
structural requirements for interior wall applications. Through varying proportions of
these materials in different mix designs, we were able to identify the optimal combination
that achieves the lowest thermal conductivity while meeting the required compressive
strength criteria, making these panels particularly suitable for interior wall applications in
buildings situated in cold regions.

Figure 1 illustrates the materials and the proposed concrete panel utilized in this
research. The primary investigation focused on evaluating the effects of these materials on
the compressive strength of the samples. Both the individual and combined effects of these
materials were tested. The concrete mix design is presented in Table 1. The engineering
properties of used materials are shown in Table 2. The exact details of these tests, including
the specific percentages of each additive, are shown in Table A1 (Appendix A). Based on
Table A1, 99 tests (TS-1 to TS-99) were conducted. It should be noted that the effects of
these materials were only evaluated using samples cured for 28 days. As expected, the
inclusion of air bubbles decreased the compressive strength of the samples. Therefore,
thermal conductivity tests were only performed on selected samples that met the minimum
required compressive strength. This selection will be discussed in the Results section.
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Table 1. Concrete mix design.

Reference
Mixture

Cement
Dosage (kg/m3) W/C W

(kg)
C

(kg)
G

(Natural Coarse)
S

(Fine Coarse)

I 300 0.5 150 300 1135 730
II 350 0.5 175 350 1140 745
III 400 0.5 200 400 1160 756

Note: W/C = water to cement; C = cement; G = gravel; S = sand.

Table 2. Engineering properties of used materials.

Properties NMC NMP Latex

Particle Size 0.3 µm 50 nm 100 nm
Density 2.2 g/cm3 2.4 g/cm3 1.1 g/cm3

2.2. Implementation of Precast Concrete Panels for Interior Wall Systems

The thermally-efficient PCPs developed in this research are particularly suitable for
interior wall applications, offering both thermal insulation and space-efficient solutions
for building interiors. This section outlines the practical implementation aspects of these
panels as interior wall systems. Interior PCPs primarily utilize two types of connections:
floor/ceiling connections and panel-to-panel connections. The floor connection system
employs L-shaped steel brackets anchored to the floor slab, allowing for vertical adjustment
during installation. At the ceiling interface, adjustable top connections accommodate
construction tolerances and potential floor deflection. Panel-to-panel connections are
achieved through concealed mechanical fasteners or tongue-and-groove systems, ensuring
smooth wall surfaces while maintaining thermal properties. This approach to interior PCP
implementation combines the thermal efficiency benefits of our research with practical
installation considerations, supporting sustainable interior construction practices while
maintaining functionality and esthetics.

2.3. Test Standards

The experimental procedures adhered to specific standards for both the preparation
and testing of the samples. The ASTM standard C260-86 (1995) [39] was followed for the
suggested combinations and proportions of additives used in the concrete mixtures. This
standard outlines the requirements for air-entraining admixtures used in concrete, which
are chemical additives that introduce and stabilize microscopic air bubbles in the concrete
mix. For evaluating the compressive strength of the samples, the BS EN 12390-3 standard
(2009) [40] was employed. This standard outlines the methods for making and curing test
specimens, as well as the procedures for conducting the compressive strength tests.

The thermal conductivity coefficient of the samples was tested according to the ISO
8301 standard (1991) [41], which specifies the use of the guarded hot plate apparatus for
determining the steady-state thermal transmission properties of materials. The apparatus
consists of a central heating plate, surrounded by a guard ring, and two cooling plates,
ensuring a uniform one-dimensional heat flow through the sample. The test specimens
were placed between the hot and cold plates and the heat flux through the material was
measured. The thermal conductivity was calculated based on the temperature gradient
and the heat flow across the sample. For this study, measurements were carried out at
two distinct temperature levels, 300 ◦C and 400 ◦C, to evaluate the material’s performance
under varying thermal conditions. The apparatus was calibrated and maintained according
to the ISO 8301 (1991) [41] guidelines to ensure the accuracy and repeatability of the results.
Figure 2a,b illustrate the compressive strength and thermal conductivity tests conducted in
this study, respectively.
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Figure 2. Experimental tests. (a) Compressive strength test; (b) thermal conductivity test.

A petrographic analysis was conducted on hardened concrete samples to assess the
air-void system, specifically to characterize the size, distribution, and morphology of
the air bubbles within the cement paste. This analysis provided quantitative data on air
content and void characteristics, which are crucial factors influencing the freeze–thaw
durability and overall performance of the concrete. Thin sections were prepared and
examined under a polarized microscope to identify and measure the air voids, allowing
for a detailed assessment of the air-entraining admixture’s effectiveness and the resulting
air-void system’s characteristics.

3. Results and Discussions
3.1. Compressive Strength Tests

Figure 3a,b illustrate the compressive strength (f’c) results from the conducted tests.
The baseline test, which utilized 300 kg/m3 of cement without any additives, achieved
an f’c of 35.53 MPa. It is well established that the incorporation of air bubbles generally
reduces f’c. For instance, the addition of 4% air (designated as TS-5) to the baseline mixture,
without any other additives, resulted in a significant decrease in compressive strength
to 15.77 MPa, reflecting a reduction of approximately 55%. Conversely, in the TS-9 test,
the incorporation of 8% NMC led to an increase in f’c to 40.33 MPa, demonstrating an
improvement of 13%. Additionally, Figure 3a presents the top four tests ranked by f’c.
Notably, the highest f’c was observed in the TS-72 test, which utilized a combination of
5% NMC, achieving an f’c of 56.83 MPa.
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For better visualization, Figure 3c presents the f’c values in a 3D format. As expected,
reducing the air content and increasing the cement quantity generally led to higher f’c
values. However, the presence of the NMC and NMP in some test combinations reveals
that the addition of air can actually enhance f’c. This unexpected outcome is attributed to
the beneficial effects of NMC and NMP. Nevertheless, due to the influence of four distinct
parameters, achieving precise visualization and interpretation of the results, even in a 3D
format, remains challenging.

To better illustrate the influence of various parameters on f’c, a correlation matrix
of the developed dataset was generated and is presented in Figure 4. Given the complex
interactions among the influencing parameters, this chart provides an approximate rep-
resentation of their effects on the f’c of the samples. As expected, the results indicate a
positive correlation between cement content and f’c, while latex exhibits a negative impact
on f’c. The reduction in f’c associated with latex-modified concrete can be attributed to
several factors. First, latex tends to increase the flexibility of the concrete compared to con-
ventional mixes. While this flexibility enhances crack resistance and improves toughness, it
may also lead to lower f’c, especially if the mix is primarily designed for flexibility rather
than load-bearing capacity. Additionally, the introduction of latex can result in increased
air entrapment within the concrete mix, which further contributes to a decrease in f’c.
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The correlation matrix indicates positive correlations for both the NMC and NMP with
values of 0.12 and 0.20, respectively. These positive correlations suggest that the inclusion
of these materials enhances the f’c of the concrete samples. The beneficial effects of NMC
and NMP can be attributed to their ability to improve the microstructure of the concrete.
Specifically, these nano-sized materials fill the voids within the cement matrix, leading
to a denser and more homogeneous structure. This densification reduces the porosity of
the concrete, which, in turn, enhances its mechanical properties, including f’c. Addition-
ally, both NMC and NMP contribute to the pozzolanic reaction, which further enhances
strength by producing additional calcium silicate hydrates (C-S-H) during hydration. This
reaction not only improves the binding properties of the concrete, but also contributes
to increased durability and resistance to environmental factors, making these materials
valuable additives in the pursuit of higher f’c.

It should be mentioned that NMP outperforms NMC in enhancing the f’c due to
its finer particle size, which allows for better void filling and improved packing density
within the concrete matrix. NMP exhibits higher pozzolanic reactivity, leading to the
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greater production of calcium silicate hydrate (C-S-H) during hydration. Additionally,
NMP contributes less to air entrapment, resulting in a denser mix. Its superior workability
facilitates more uniform material distribution, enhancing the overall concrete performance.
These factors collectively make NMP a more effective additive for achieving higher f’c.

3.2. Thermal Conductivity Tests

Figure 5a–c depict the thermal conductivity of the test samples across various condi-
tions. Based on these results, the thermal conductivity and f’c of various PCP mixtures
at 300 ◦C were analyzed in relation to different material compositions. The thermal con-
ductivity (K) values were found to range from 1.20 W/m·K to 2.12 W/m·K, while the f’c
varied between 15.77 MPa and 46.57 MPa. These variations are attributed to the influence
of cement content, air entrainment, latex, NMP, and NMC.

The effect of air entrainment on the thermal and mechanical properties was partic-
ularly evident. Samples containing air (e.g., TS-5, TS-21, TS-29) exhibited lower thermal
conductivity values, as air acts as an effective insulator. For instance, TS-5, which contained
4% air, showed a thermal conductivity of 1.28 W/m·K, one of the lowest values recorded.
However, this reduction in thermal conductivity was accompanied by a significant decrease
in f’c, with TS-5 exhibiting the lowest f’c of 15.77 MPa. This suggests that while air entrain-
ment improves thermal insulation, it has a detrimental effect on the mechanical strength of
the concrete.

The inclusion of latex in the mixtures was found to increase thermal conductivity,
but it also enhanced compressive strength. For example, TS-66, which contained 5%
latex, exhibited a thermal conductivity of 2.02 W/m·K, higher than most other samples.
Despite this, the compressive strength of TS-66 remained relatively high at 26.77 MPa.
Similarly, TS-99, which also contained 5% latex, displayed the highest thermal conductivity
at 2.12 W/m·K, but still maintained a compressive strength of 31.9 MPa. These results
indicate that latex improves the mechanical performance of the concrete, albeit at the cost
of increased thermal conductivity.

The effects of NMC on both thermal and mechanical properties were also significant.
Samples containing NMC (e.g., TS-21, TS-33, TS-54, TS-66, TS-87, TS-99) generally exhibited
higher thermal conductivity values. For instance, TS-99, which contained 8% NMC, showed
the highest thermal conductivity of 2.12 W/m·K. However, its f’c was also relatively
high at 31.9 MPa, suggesting that the use of NMC enhances the mechanical properties of
the concrete, albeit with an associated increase in thermal conductivity. This trend was
consistent across other samples containing NMC, such as TS-33 and TS-66, both of which
exhibited high thermal conductivity but maintained good f’c.
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3.3. Improvement Ratio of the Thermal Conductivity Tests

The analysis of the improvement rates of thermal conductivity for selected tests, as
depicted in Figure 6, highlights significant findings. Tests TS-5, TS-29, TS-33, TS-38, and
TS-62 showed notable reductions in thermal conductivity compared to the baseline. Among
these, TS-29 demonstrated exceptional performance, with the optimal combination of 4%
air bubbles and 13% NMP, achieving the lowest thermal conductivities of 1.31 W/m·K at
300 ◦C and 1.20 W/m·K at 400 ◦C. These changes resulted in improvement ratios of 7% and
15.5%, respectively, compared to the baseline. The graph illustrates that the selected tests
generally achieved better improvement ratios at 400 ◦C than at 300 ◦C, indicating enhanced
thermal performance at higher temperatures. This trend underscores the effectiveness
of the material modifications in maintaining lower thermal conductivity under elevated
thermal conditions.
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Additionally, it was observed that tests incorporating latex did not meet the desired
thermal conductivity requirements, suggesting that latex may not be suitable for applica-
tions prioritizing thermal insulation. This insight directs future research towards exploring
alternative additives that might better balance thermal and mechanical properties. The
findings suggest that the optimal combinations identified, particularly those in TS-29,
can be effectively applied in precast concrete panels, offering potential for significant en-
ergy savings. The application of these optimized mixtures in construction could lead to
improved energy efficiency in buildings, aligning with sustainable development goals. Fur-
ther research could explore scaling these findings to real-world applications, considering
long-term performance and cost-effectiveness.

Figure 7 depicts the microstructure of the concrete samples, specifically highlighting
the distribution and characteristics of air bubbles within the matrix. The petrographic
analysis of the TS-5 sample, which contains 4% air, reveals the presence and arrangement
of air voids throughout the concrete structure. These air bubbles, indicated by red dots
in the image, play a crucial role in the thermal performance of the concrete panel. The
distribution, size, and frequency of these air voids directly influence the material’s thermal
conductivity by creating discontinuities in the solid matrix that impede heat transfer.
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The petrographic analysis shown in Figure 7 allows for a detailed examination of
the concrete’s internal structure, providing visual evidence of the effectiveness of the air
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entrainment process. The presence of these air bubbles contributes to the lightweight
nature of the concrete and its improved insulating properties. This microscopic view of the
concrete sample supports our findings regarding the thermal conductivity improvements
observed in the TS-5 mix design, demonstrating the correlation between the intentional
introduction of air voids and the enhanced thermal performance of the precast concrete
panels. Furthermore, this analysis helps validate the methodology employed in creating
energy-efficient concrete mixtures for interior wall applications.

3.4. Energy Saving Estimation

To demonstrate the potential energy savings of the optimized precast concrete panels
(PCPs), we present a comparative analysis using a hypothetical building scenario. This
example illustrates the energy savings achieved by using our most effective mixture (TS-29)
compared to a standard concrete panel.

Example Scenario:
Consider a 10-story office building located in a cold climate region, with each floor

having 1000 m2 of floor area. The building has 4000 m2 of interior walls made of precast
concrete panels, with a thickness of 0.15 m.

Calculation Method:

Heat Transfer Equation: Q = k × A × (∆T/d)
where:
Q = Heat transfer rate (W)
k = Thermal conductivity (W/m·K)
A = Surface area (m2)
∆T = Temperature difference (K)
d = Wall thickness (m)
Assumptions:

Indoor temperature: 20 ◦C
Average outdoor temperature during heating season: 0 ◦C
Heating season duration: 180 days

Comparison:

(a) Standard concrete panel: k = 1.42 W/m·K (baseline value)
(b) Optimized PCP (TS-29): k = 1.20 W/m·K
Calculations:
Heat transfer rate for standard panel:
Q_std = 1.42 × 4000 × (20/0.15) = 756,800 W
Heat transfer rate for optimized PCP:
Q_opt = 1.20 × 4000 × (20/0.15) = 640,000 W
Energy Savings:
Daily energy saving: (756,800–640,000) × 24 h = 2,803,200 Wh = 2803.2 kWh
Seasonal energy saving: 2803.2 kWh × 180 days = 504,576 kWh
Cost Savings:
Assuming an electricity cost of USD 0.12 per kWh:
Annual cost saving: 504,576 kWh × USD 0.12 = USD 60,549.12

This example demonstrates that using the optimized PCP (TS-29) could potentially
save approximately 504,576 kWh of energy per heating season, translating to a cost saving
of over USD 60,000 annually for this hypothetical building. This represents a significant
reduction in energy consumption and operational costs, highlighting the practical benefits
of the developed PCPs in building applications.

It is important to note that the actual savings may vary depending on specific building
characteristics, climate conditions, and energy prices. However, this example clearly
illustrates the substantial potential for energy and cost savings when implementing the
optimized precast concrete panels developed in this study.
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4. Conclusions

This study investigated the optimization of concrete mixture designs for enhanced ther-
mal performance in precast concrete panels (PCPs), balancing the need for both low thermal
conductivity and adequate compressive strength. A total of 99 initial mixes were tested,
with 28 selected for further thermal analysis. The key findings are summarized below.

• The most effective mixture (TS-29) incorporated 4% air bubbles and 13% nano microsil-
ica powder (NMP), achieving thermal conductivities of 1.31 W/m·K and 1.20 W/m·K
at 300 ◦C and 400 ◦C, respectively. This represents a 7% and 15.5% improvement
compared to the baseline, demonstrating significant potential for energy savings in
building applications.

• While air entrainment effectively reduced thermal conductivity, it also lowered com-
pressive strength. This highlights the importance of carefully balancing air content to
achieve optimal performance in both areas.

• Latex addition, while beneficial for compressive strength, proved detrimental to
thermal insulation, increasing conductivity. This suggests latex is unsuitable for PCP
applications where thermal performance is a primary concern.

• Nano microsilica compound (NMC) additions exhibited a complex relationship with
both thermal conductivity and compressive strength, generally increasing both. Fur-
ther investigation is warranted to fully understand the influence of NMC on overall
PCP performance.

5. Limitations of the Current Study and Recommendations for Future Research

It should be mentioned that, in the present study, the material exploration focused on a
specific set of components (air bubbles, NMC, NMP, and latex), potentially overlooking other
promising additives. Furthermore, the research was conducted under controlled laboratory
conditions, necessitating further investigation into real-world applications and long-term
performance. The study primarily evaluated compressive strength, neglecting other important
mechanical properties like flexural strength and impact resistance. Finally, a comprehensive
cost analysis was not included, limiting the assessment of economic viability.

Building upon the findings of this study, several recommendations for future research
emerge. Expanding the material investigation to include a broader range of additives, such
as different nanoparticles, fibers, and supplementary cementitious materials, could further
enhance PCP performance. Validating the laboratory findings through field studies and pilot
projects is crucial for assessing real-world durability and performance. A more comprehensive
mechanical testing program, incorporating flexural strength, impact resistance, and other
relevant properties, is needed. Finally, life-cycle assessment and cost–benefit analysis are
essential for evaluating the environmental and economic impacts of the optimized PCPs,
paving the way for their wider adoption in sustainable construction.

While our innovative precast concrete panel design offers significant thermal perfor-
mance benefits, it is important to acknowledge certain constraints. The incorporation of
the nano microsilica compound may result in marginally increased upfront costs. Addi-
tionally, the manufacturing process requires the meticulous management of air content
to achieve optimal results. Nevertheless, these challenges are outweighed by the con-
siderable enhancements in thermal insulation and long-term energy conservation. The
design’s alignment with sustainable building practices and its potential for widespread
application in energy-conscious construction make it a valuable contribution to the field.
Despite the initial complexities, the design maintains feasibility for practical implementa-
tion, striking a balance between advanced performance and real-world applicability in the
construction industry.

To build upon the results of this study, we propose implementing extensive energy
simulations using sophisticated modeling software like EnergyPlus. Our research primarily
concentrated on the experimental creation and evaluation of novel precast concrete panels.
However, incorporating comprehensive energy simulations would offer crucial information
about the extended performance of these panels in diverse real-world applications. Such
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simulations would enhance our understanding of the panels’ effectiveness across various
building types and climate zones and over extended time periods, thereby providing a more
complete picture of their potential impact on energy efficiency in the construction industry.

Further research should also consider optimizing PCP designs for specific climate
zones to maximize energy efficiency.
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Appendix A

Table A1. Details of the compressive strength tests.

Test Cement
Dosage Additives Additive Percentage (%)

TS-1 300 None 0

TS-2 300 Air bubbles 1

TS-3 300 Air bubbles 2

TS-4 300 Air bubbles 3

TS-5 300 Air bubbles 4

TS-6 300 NMC 5

TS-7 300 NMC 6

TS-8 300 NMC 7

TS-9 300 NMC 8

TS-10 300 Latex 2

TS-11 300 Latex 3

TS-12 300 Latex 4

TS-13 300 Latex 5

TS-14 300 NMP 10

TS-15 300 NMP 11

TS-16 300 NMP 12

TS-17 300 NMP 13

TS-18 300 Air bubbles and NMC 1–5

TS-19 300 Air bubbles and NMC 2–6

TS-20 300 Air bubbles and NMC 3–7

TS-21 300 Air bubbles and NMC 3–8

TS-22 300 Air bubbles and Latex 1–2

TS-23 300 Air bubbles and Latex 2–3

TS-24 300 Air bubbles and Latex 3–4

TS-25 300 Air bubbles and Latex 4–5
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Table A1. Cont.

Test Cement
Dosage Additives Additive Percentage (%)

TS-26 300 Air bubbles and NMP 1–10

TS-27 300 Air bubbles and NMP 2–11

TS-28 300 Air bubbles and NMP 3–12

TS-29 300 Air bubbles and NMP 4–13

TS-30 300 Air bubbles, NMC, and Latex 1–5–2

TS-31 300 Air bubbles, NMC, and Latex 2–6–3

TS-32 300 Air bubbles, NMC, and Latex 3–7–4

TS-33 300 Air bubbles, NMC, and Latex 4–8–5

TS-34 350 None 0

TS-35 350 Air bubbles 1

TS-36 350 Air bubbles 2

TS-37 350 Air bubbles 3

TS-38 350 Air bubbles 4

TS-39 350 NMC 5

TS-40 350 NMC 6

TS-41 350 NMC 7

TS-42 350 NMC 8

TS-43 350 Latex 2

TS-44 350 Latex 3

TS-45 350 Latex 4

TS-46 350 Latex 5

TS-47 350 NMP 10

TS-48 350 NMP 11

TS-49 350 NMP 12

TS-50 350 NMP 13

TS-51 350 Air bubbles and NMC 1–5

TS-52 350 Air bubbles and NMC 2–6

TS-53 350 Air bubbles and NMC 3–7

TS-54 350 Air bubbles and NMC 3–8

TS-55 350 Air bubbles and Latex 1–2

TS-56 350 Air bubbles and Latex 2–3

TS-57 350 Air bubbles and Latex 3–4

TS-58 350 Air bubbles and Latex 4–5

TS-59 350 Air bubbles and NMP 1–10

TS-60 350 Air bubbles and NMP 2–11

TS-61 350 Air bubbles and NMP 3–12

TS-62 350 Air bubbles and NMP 4–13

TS-63 350 Air bubbles, NMC, and Latex 1–5–2

TS-64 350 Air bubbles, NMC, and Latex 2–6–3
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Table A1. Cont.

Test Cement
Dosage Additives Additive Percentage (%)

TS-65 350 Air bubbles, NMC, and Latex 3–7–4

TS-66 350 Air bubbles, NMC, and Latex 4–8–5

TS-67 400 None 0

TS-68 400 Air bubbles 1

TS-69 400 Air bubbles 2

TS-70 400 Air bubbles 3

TS-71 400 Air bubbles 4

TS-72 400 NMC 5

TS-73 400 NMC 6

TS-74 400 NMC 7

TS-75 400 NMC 8

TS-76 400 Latex 2

TS-77 400 Latex 3

TS-78 400 Latex 4

TS-79 400 Latex 5

TS-80 400 NMP 10

TS-81 400 NMP 11

TS-82 400 NMP 12

TS-83 400 NMP 13

TS-84 400 Air bubbles and NMC 1–5

TS-85 400 Air bubbles and NMC 2–6

TS-86 400 Air bubbles and NMC 3–7

TS-87 400 Air bubbles and NMC 3–8

TS-88 400 Air bubbles and Latex 1–2

TS-89 400 Air bubbles and Latex 2–3

TS-90 400 Air bubbles and Latex 3–4

TS-91 400 Air bubbles and Latex 4–5

TS-92 400 Air bubbles and NMP 1–10

TS-93 400 Air bubbles and NMP 2–11

TS-94 400 Air bubbles and NMP 3–12

TS-95 400 Air bubbles and NMP 4–13

TS-96 400 Air bubbles, NMC, and Latex 1–5–2

TS-97 400 Air bubbles, NMC, and Latex 2–6–3

TS-98 400 Air bubbles, NMC, and Latex 3–7–4

TS-99 400 Air bubbles, NMC, and Latex 4–8–5
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