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Abstract: Building Information Modeling (BIM) and Internet of Thing (IoT) integration technologies
can improve operational efficiency in the operational phase of construction projects. Currently,
research on the integration of BIM and IoT has yet to ensure secure data transmission and lacks
real-time data processing capabilities. This study builds a framework to collect and analyze BIM
and IoT data in real time. The framework is verified to be effective through a case study in an office
building. The monitoring system can automatically calculate the Predicted Mean Vote (PMV) value,
upload and update real-time temperature and humidity data, and visualize thermal comfort through
heat maps. The proposed integration approach offers building management strategies to enhance
thermal comfort in office environments, fostering a more inclusive and accommodating workspace
that acknowledges the diverse cultural backgrounds of occupants.
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1. Introduction

People spend about 85% of their time indoors [1], so maintaining a comfortable
indoor thermal environment is crucial for humans’ working efficiency and health [2,3].
Thermal comfort is defined as “a psychological state that is used to express satisfaction
with the thermal environment” by the American Society of Heating, Refrigerating, and
Air-Conditioning Engineers; it has no absolute standard and varies from person to person
even in the same environment [4].

Previous studies have shown that the thermal environment should satisfy at least
80% of the occupants of the space [5,6]. Existing research about real-time environmental
monitoring technology is primarily focused on outdoor settings. However, the determina-
tion of the comfortable indoor temperature is not directly related to the average outdoor
temperature but is influenced by the thermal characteristics of the building envelope and
its heating and cooling system settings [7]. This intricate relationship underscores the
necessity for real-time indoor thermal monitoring.

Building Information Modeling (BIM) is widely used in the architecture, engineering,
and construction (AEC) industry, and it has been defined in various ways by stakeholders
with differing interests [8]. For designers, BIM serves as a digital tool that transforms
design data into a digital format, thereby mitigating risks and optimizing options [9]. For
contractors, BIM represents a process for mapping and managing data produced across the
building’s lifecycle [10]. This research defines BIM as a method for visually managing data
to decrease errors and enhance the quality and efficiency of building operations [11,12].
BIM is not only pivotal in assessing building performance but also significantly improves
environmental quality during the design phase [13,14]. However, it cannot autonomously
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integrate real-time external environmental data, thus requiring sensors and plugins to
enhance visualization capabilities [15]. The Internet of Things (IoT) constitutes a network
of interconnected intelligent devices, such as sensors and actuators. This network is
characterized by its openness and extensive coverage, enabling these devices to exchange
and respond to information [16]. IoT technology is widely applied daily, enhancing living
standards and efficiency.

Previous reliance on cumbersome and inefficient questionnaires for capturing indoor
thermal comfort data has shifted. Modern digital technologies streamline the acquisition
of thermal environment data efficiently [17]. BIM and IoT technologies enable real-time
thermal environment monitoring and significantly enhance life efficiency. The new tech-
nological solutions offer a more streamlined and practical approach for assessing and
managing indoor thermal conditions.

Current research needs to address the challenges of unifying and simplifying the
development process and securing and enhancing the real-time efficiency of BIM and
IoT integration technologies [18]. A critical gap exists in examining these technologies
during the operational and maintenance phases of smart buildings, particularly in real-time
monitoring of indoor thermal environments. Additionally, existing studies primarily focus
on improving managerial efficiency from an administrative viewpoint, often neglecting the
vital aspect of user experience [19,20]. There is a pressing need for initiatives that provide
building occupants with real-time visualizations of the thermal environment, a change
that could significantly improve their indoor experience. Furthermore, most research on
the cultural influences on thermal comfort assessment is limited to outdoor spaces or
large buildings, leaving a notable lack of exploration into how cultural backgrounds affect
thermal comfort in small indoor environments.

Considering the research gaps identified, this study aims to meticulously explore the
following research questions:

1. How to develop a framework to effectively integrate BIM and IoT from the perspective
of real-time monitoring?

2. How to develop and validate a real-time updated thermal comfort monitoring platform?
3. How can the BIM–IoT integration platform be applied to enhance indoor thermal

comfort by considering occupants’ preferences?

This research contributes to the field by developing a comprehensive framework for
the effective integration of BIM and IoT technologies, specifically focused on enhancing real-
time monitoring capabilities. Additionally, it aims to create and validate a real-time thermal
comfort monitoring platform that leverages advanced IoT sensors and data analytics to
provide continuous feedback on indoor environments. Furthermore, the study explores
the application of the BIM–IoT integration platform in improving indoor thermal comfort
by incorporating occupants’ preferences, thereby promoting a more responsive and user-
centered approach to building management. These contributions aim to bridge existing
gaps in research and practice, ultimately leading to more efficient and comfortable indoor
environments. The research begins with an introduction covering background and objec-
tives, followed by a literature review highlighting key concepts and gaps. The methodology
section explains how IoT and BIM technologies are used for data integration. An engineer-
ing building case study at Xi’an Jiaotong Liverpool University (XJTLU) was applied to test
the framework’s effectiveness. The discussion assesses advantages and disadvantages, and
the conclusion summarizes findings and suggests future research directions.

2. Literature Review
2.1. BIM and IoT Application in the AEC Industry

Existing studies on BIM and IoT integration primarily concentrate on project design
and construction phases. For example, Li et al. [21] focused on the construction phase, uti-
lizing a platform supported by IoT and BIM technologies to monitor on-site workers’ health
and work conditions (duration and location). Similarly, Ismail [22] concentrated on the
construction phase in building projects, with a systematic literature review demonstrating
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that integrating IoT sensors into program-counter components and linking them to a digital
representation of the physical building in BIM facilitated real-time monitoring, predictive
maintenance, and energy optimization, thereby significantly enhancing construction and
energy efficiency. Lokshina et al. [23] primarily emphasized the design phase, employing
blockchain as a security and control measure to ensure the integration of IoT and BIM
technologies. They devised an intelligent system for a smart building, a concept eventually
implemented in a museum project. Only a few studies addressing the amalgamation of
BIM and IoT have delved into construction projects’ maintenance and operational phases.
Moreover, most of these studies emphasize enhancing operational efficacy, optimizing facil-
ity management, and maximizing interior space utilization, typically targeting managers
and property owners [19,20].

2.2. Methods for Integrating BIM and IoT

Currently, a unified standard for integrating BIM and IoT technologies is absent, with
existing methods falling into five distinct categories. The first method capitalizes on the
extant databases and Application Programming Interfaces (APIs) of BIM tools, streamlining
the import, export, and modification of BIM and sensor data. This method is particularly
advantageous for elementary BIM models and a modest number of sensors, accommodat-
ing users with basic programming competencies. The second strategy entails converting
BIM contextual information into a database that can be queried, laying the groundwork for
devising a novel data schema that facilitates the integration of BIM and IoT, thus promoting
efficient information retrieval [24]. The third method employs an advanced query language
to optimize BIM and IoT integration for particular scenarios. Significantly, Alves et al. [25]
devised BIMSL, a domain-specific language, to enhance facility management. The fourth
distinguished methodology merges BIM with the Semantic Web, unifying BIM and sensor
data into a consistent format that supports collaborative and interoperable data exchange,
demonstrating strong potential for enabling extensive connectivity [5,26]. The fifth ap-
proach utilizes relational databases to facilitate data conversion within a Semantic Web
framework, with sensor data archived as a time series in the database to forge a correlation
with building data [27,28].

2.3. BIM–IoT Integration for Improving Thermal Comfort

Despite the limited number of studies examining the application of BIM and IoT
integration technologies during the operation and maintenance phase, their significant
contribution to enhancing indoor thermal comfort management efficiency in this phase
has been recognized [10,29]. For instance, Marzouk and Abdelaty [30] employed sensors
within subway environments to collect real-time temperature and humidity data to enhance
visualization of metro elements and spaces pertinent to air quality. This initiative also
aided operators in identifying areas potentially experiencing thermal comfort issues. The
collected data were transmitted via routing nodes to a computer and integrated into the
Revit 2022 model. Subsequently, the model processed temperature and humidity data
using the Arduino Uno microcontroller and the external program Gobetwino. These data
were then logged into an Excel file and linked to a Microsoft Access server database, en-
abling real-time updates and visualization within the BIM model. Zahid et al. [31] and
Chang et al. (2018) [15] utilized Dynamo, a plugin accompanying Revit, preceding Excel, to
facilitate the integration of building spatial data from BIM with temperature and humidity
metrics archived in the database. These studies conducted a PMV analysis using the Python
programming language, enabling facility managers to visualize color-coded comfort distri-
butions derived from sensor data within the Revit model. Instead of adopting Revit as the
user interface, Valinejadshoubi et al. [17] employed a smartphone application. Integrating
BIM and IoT technologies facilitated the development of a system that enabled facility
managers to swiftly identify and address issues stemming from HVAC failures or building
envelope shortcomings. Arowoiya et al. [32] highlighted that integrating BIM and IoT
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technologies enhanced the accuracy of PMV and PPD calculations for traditional thermal
comfort rating indicators, thereby improving building performance and energy efficiency.

The research mentioned above primarily utilizes BIM and IoT integration technologies
to furnish building operation managers and facility technicians with data for evaluating
indoor thermal comfort. This approach neglects the preferences of building occupants who
seek to comprehend their thermal environment directly [31]. Moreover, these investigations
predominantly employ the Predicted Mean Vote (PMV) as the index for thermal comfort
assessment, a metric that may prove challenging and less intuitive for the layperson.
Building users would benefit more from directly transforming temperature and humidity
readings into visual graphics, facilitating an immediate and clear understanding of their
thermal surroundings.

In addition to the limited research focusing on building occupants’ preferences for
indoor thermal comfort, these studies demonstrate significant limitations. Given building
occupants’ lack of familiarity with specialized thermal comfort metrics, Dave et al. [33] in-
troduced Otaniemi3D, a platform designed to furnish users with essential thermal comfort
data, including temperature and humidity readings. Additionally, the platform enabled
occupants to utilize an app to adjust room HVAC equipment settings. However, they over-
looked the variance in thermal comfort preferences among different occupants, potentially
leading to frequent HVAC adjustments and consequent equipment wear. Naheed and
Shooshtarian [34] found that cultural background contributed to variations in thermal per-
ception, preferences for specific thermal conditions, expectations of comfort, and clothing
choices. In that context, culture encompassed various factors, including ethnic customs,
climate, and economic conditions. Lam et al. [35] and He et al. [36] highlighted the impact
of clothing on thermal satisfaction. Individuals who required additional layers for religious
or aesthetic reasons tended to be more adaptable to uncomfortable temperatures.

Operating from a unified premise, Salamone et al. [37] and Shahinmoghadam et al. [38]
persisted in employing the PMV as the evaluative metric for disseminating information
on the indoor thermal environment to the broader building user base. Specifically, [37]
introduced an integrated framework that leveraged nearable and wearable technologies,
parametric modeling, and machine learning to evaluate and enhance the thermal comfort
conditions for occupants. This methodology surpassed the constraints of conventional
physical models through the analysis of occupants’ psychophysical conditions, the appli-
cation of IoT solutions, user feedback, and machine learning techniques. Nevertheless,
such indicators and data may need to be more relevant to the average building occupant,
who is predominantly disinclined to invest time in comprehending their implications.
Ref. [38] investigated a system architecture that utilized real-time computation of PMV
and Predicted Percentage of Dissatisfied indices, augmenting BIM-based visualizations
in Virtual Reality settings with real-time monitoring data from IoT devices. The system
employed sensors and edge computing devices to calculate average radiant temperatures
derived from thermal imagery in near real time. While attempting to employ VR as a
user interface to improve environmental interaction, the expensive cost of VR equipment
and its cumbersome use should have been addressed, rendering the proposed framework
impractical for everyday applications. Overall, extant research needs to concurrently meet
the criteria for practicality, metrics intelligibility, and development cost-efficiency.

2.4. Summary of the Research Gaps

The above literature review identified gaps in the current research on BIM and IoT
integration. Primarily, this integration has been extensively explored in the design and
construction phases, where it assists in design adjustments, enhances construction safety,
and monitors progress. However, few studies have examined BIM and IoT applications
in the operation and maintenance phase, focusing mainly on improving efficiency for
managers. These studies typically address automated responses, such as activating air
conditioning when temperatures rise or alerting managers to deactivate cooling equipment
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when temperatures drop, aiming to save energy and provide convenience for managers
and owners.

Most studies on integrating BIM and IoT technologies focus on new, unfinished
construction projects. For example, automated management of building equipment requires
that the equipment be remotely controllable or pre-equipped with necessary features.
Research on using BIM and IoT to enhance old buildings is limited.

There are various methods to integrate IoT and BIM, such as using APIs to connect
IoT and BIM data or developing new query languages. However, practical case studies to
verify the feasibility and stability of these methods are lacking.

The potential of IoT technology to monitor indoor thermal comfort has not been fully
explored. Most studies focus on using IoT to optimize building energy consumption, with
fewer studies aimed at enhancing the thermal comfort experience for users.

Current thermal comfort assessments rely mainly on periodic questionnaires, which
are intrusive and do not provide real-time data [39]. In environments like Sino-foreign
universities, the diverse thermal comfort needs due to cultural and climatic differences are
not adequately addressed by existing methods. There is a need for research to develop a
platform that allows building users to choose a personalized thermal environment.

3. Research Methodology

To achieve the research objectives and solve the research question, this research was
conducted according to the process shown in Figure 1. The process began with presenting
questions through an introduction and a comprehensive literature review to identify ex-
isting knowledge and gaps. The analysis highlighted key research gaps, such as the lack
of a unified integration method for BIM and IoT, insufficient case studies validating the
reliability and practicality of this integration, and a lack of focus on enhancing users’ indoor
thermal comfort assessments. From these gaps, specific research questions were formulated,
including how to effectively integrate BIM and IoT, realize real-time thermal environment
monitoring, and present thermal data visually. The research objectives were then defined
to address these questions, aiming to integrate BIM and IoT safely and efficiently, achieve
real-time monitoring, and provide clear visualizations of thermal data. To solve these
questions, the research methodology employed BIM tools’ APIs and a relational database,
utilizing the Revit model platform and measuring key parameters such as temperature,
humidity, and PMV, with heat maps used for visualization. This approach aimed to offer
users reliable information to improve their indoor thermal comfort satisfaction. A practical
case demonstration was conducted in Room 577 of XJTLU’s Engineering Building, with the
research concluding by drawing insights from the findings and case study. This structured
approach ensured a comprehensive exploration and practical validation of the integration
of BIM and IoT technologies for enhancing indoor thermal comfort.

To successfully visualize the indoor thermal environment, this study used IDW to
calculate the correlation values of interpolation points, as shown in Equations (1)–(3).

di =
2
√
(x − xi)

2 + (y − yi)
2 (1)

wi =
1

di
p (2)

Z(x, y) =
∑n

i=1 wi × Z(xi, yi)

∑n
i=1 wi

(3)

di: distance from the discrete point to the interpolating point.
(x, y): interpolating point coordinates.
(xi, yi): discrete point coordinates.
wi: the weighted value of the interpolation point.
p: power parameter that controls the rate at which the weights decrease with distance,

typically >0, here taken as 2.
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Z(x,y): estimated value of interpolated point with coordinate (x, y).
Z(xi ,yi)

: the value of a discrete point.
n: total number of discrete points.
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In this research, the proposed framework depicted in Figure 2 encompassed four
primary units: the data collection unit, the data transmission unit, the data sorting and
updating unit, and the visualization unit. Detailed descriptions of these units are provided
in the subsequent sections.
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3.1. Data Collection

The data collection unit consisted of microcontrollers connected to temperature and
humidity sensors. This research employed the ESP32 microcontroller to communicate air
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temperature and relative humidity data in the room. Although the ESP8266 microcontroller
is similar in size and supports Wi-Fi communication at a lower cost, the ESP32’s dual-core
processor offers better Wi-Fi performance compared to the single-core ESP8266. Therefore,
the ESP8266 was not considered for this research.

The DHT-20 Digital Temperature and Humidity sensor was used in this study. The
DHT-20 measures temperatures from −40 to 80 ◦C with a resolution of 0.01 ◦C and a mea-
surement error of ±0.5 ◦C. It also measures humidity from 0 to 100% RH with a resolution
of 0.024% RH and a measurement error of ±3% RH. The choice of the DHT20 sensor, despite
its ±0.5 ◦C accuracy not aligning with the ASHRAE 55-2020 requirement of ±0.2 ◦C, may
be justified by considering several factors: the application context, cost-effectiveness, and
acceptable risk levels. The DHT20 sensor offers improved accuracy compared to the DHT11
used in previous research, which has a temperature error of ±2 ◦C [38]. In scenarios where
budget constraints exist or where high precision is not critical for decision-making, the
DHT20’s performance is sufficient for indoor environment monitoring and data collection.
Additionally, integrating the sensor into a larger BIM–IoT framework enabled real-time
data aggregation and analysis, potentially mitigating the sensor’s accuracy limitations
through averaging multiple measurements and correlating them with other environmental
factors. This pragmatic approach allowed for effective thermal comfort monitoring while
balancing cost, complexity, and acceptable measurement tolerances.

3.2. Data Transmission

In terms of data transmission, this study leveraged edge computing and cloud comput-
ing technologies to develop microcontroller Wi-Fi connectivity and database connections
within the Arduino IDE 2.2.1 platform using C++ language code. The edge computing
aspect allowed for real-time data processing and decision-making at the microcontroller
level, reducing latency and improving responsiveness [40]. Concurrently, cloud computing
facilitated the storage, analysis, and management of large data sets in a scalable manner.
The microcontroller connected to Wi-Fi, enabling seamless data transmission to the cloud,
where advanced computational resources handled extensive data processing tasks. This in-
tegrated approach ensured efficient and reliable data flow from the sensors to the database,
enhancing the overall system’s performance and robustness.

3.3. Data Sorting and Updating

The data sorting and updating unit consisted of a MySQL database integrated with a
BIM system. This study used the MySQL platform to develop the relational database, which
stored and updated data captured by sensors. It employs Structured Query Language
(SQL) to manage and retrieve data efficiently, supports multi-user access, and processes
large data sets effectively. The database schema consisted of tables designed to handle
the required data. Due to software incompatibilities with newer MySQL versions, such
as version 8.0, and to ensure stability and compatibility with Arduino and the Dynamo
platform, this study adopted MySQL version 5.7. The temperature and humidity data
collected by sensors were sent to the online MySQL database at the frequency specified by
the code.

The BIM system consisted of a Revit model and several Dynamo scripts. The Revit
model was created using Revit 2022 software to store building space information. Dynamo,
a plugin seamlessly integrated with Revit, enables real-time feedback and modifications
through dynamic connections and it allows users to create custom design scripts, enhanc-
ing productivity, reducing errors, and maximizing the benefits of BIM technology [41].
Therefore, this study chose Dynamo over creating another API to connect sensor data with
the BIM model, ensuring stable operation. This module mainly extracted and integrated
space information stored in the Revit model with the temperature and humidity time-series
data stored in MySQL. The integrated data were then imported into the corresponding
properties of Revit model components.
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3.4. Visualization

Given that humans are naturally adept at interpreting spatial and visual information,
heat maps can instantly and intuitively convey temperature data [33]. To better visualize
thermal comfort, this study used Revit as the user interface to display visualizations
processed and generated by Dynamo nodes. By leveraging Revit’s 3D modeling capabilities,
users could more easily view the temperature distribution across different spaces, while
Dynamo nodes handled real-time sensor data processing to create the corresponding heat
maps. This combination not only enhanced data visualization but also enabled users to
more easily understand and utilize this information to optimize indoor thermal comfort.

4. Case Study
4.1. Framework of the Thermal Comfort Monitor Platform
4.1.1. Data Collection

In this case study, Revit 2022 was used to model a PhD office in the Engineering
Building of Xi’an XJTLU (Figure 3). The office’s selection reflected XJTLU’s unique position
as a Sino-foreign, comprehensive, international university with a diverse population. This
diversity was critical, encompassing a broad spectrum of thermal comfort preferences
influenced by varied cultural backgrounds and climatic experiences. For example, cul-
tural practices and clothing preferences, such as lighter attire in warmer climates versus
traditional sarees, indicated differing thermal comfort thresholds [42]. These variations
underscored the importance of considering a wide range of comfort levels in the study.
Additionally, the office’s communal use by multiple PhD candidates, rather than a single
occupant, presented a unique scenario for evaluating shared thermal comfort perceptions.
The office’s desk arrangement supported self-selection, empowering students to choose
their preferred seating in contrast to conventional university-assigned seating. This strategy
fostered autonomy by aligning with individual seating preferences, directly supporting the
study’s objective: to use visual feedback to enable occupants to tailor their seating choices
for enhanced personal comfort and satisfaction with the indoor thermal environment.
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In the developed Revit model, nine DHT-20 virtual sensors and 17 virtual desks were
integrated. The model featured a “Room” object that delineated the office space, with each
sensor programmed to simulate environmental conditions by displaying parameters like
“reading time”, “temperature”, and “humidity”, as depicted in Figure 4a. Each virtual
sensor and desk in the Revit environment was assigned a unique ID to reflect their physical
counterparts accurately. Given the absence of a pre-existing DHT-20 sensor template in the
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Revit library, a custom sensor component was created using a standard family template for
this research, detailed in Figure 4b.
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The successful deployment of the IoT system in this study was achieved through
the synergistic integration of Arduino, MySQL, and Dynamo. These technologies are
fundamental to constructing the system’s architecture, enabling precise data collection,
storage, and processing. A comprehensive analysis of their interconnected roles is provided
in the subsequent sections.

4.1.2. Data Transmission

The Arduino platform utilized in this study supports Wi-Fi-enabled microcontroller
development and seamless integration with edge and cloud computing, enabling envi-
ronmental data captured by sensors to be stored in a MySQL database. Additionally, the
platform manages sensor activation cycles, incorporating a 30 min hibernation period post-
activation to optimize energy efficiency. This design not only conserves energy but also aids
in clarifying the operational status for users during sensor and microcontroller initialization.

This research established a new MySQL connection named “DC” on the MySQL 5.7
platform using port 3308. Under this connection, a new schema named “test_data” was
created, which included nine tables named “testID”. These tables were designed to store
sensor data independently. The structure and data types for these tables were detailed in
Table 1. Each table used an automatically generated “ID” as its primary key. The “Readtime”
parameter also recorded the date and time when data were entered.

Table 1. A MySQL table holds elements and their data types.

Parameter Type

ID Int (11)
Temperature float

Humidity float
Readtime datetime
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4.1.3. Data Sorting and Updating

For automated data visualization, the nodes in Dynamo were organized into six key
modules: MySQL database connections, data sorting, reference point generation, sensor
coordinate acquisition, interpolation, and heat map coloring. Detailed descriptions of the
primary functions and nodes within each module are provided in the following sections.

The MySQL database connection was established using the Slingshot suite, configur-
ing the “Connection.MySQL_ConnectionString” node with server ID, port number, user
ID, password, command timeout, and connection timeout settings. Subsequently, the
“Query.MySQL_Query” node received the connection string, a Boolean true value, and the
SQL query to access and query database tables. Details on the configuration and use of
these nodes are illustrated in Figure 5.
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The data sorting module’s primary function was to segregate temperature, humidity,
and reading times in a table, assigning them to the corresponding virtual sensors’ property
fields. Critical nodes in this process included “List.GetItemAtIndex” for selecting specific
table columns (referred to as lists in Dynamo) and “Element.SetParameterByName” for
mapping these values to properties in the Revit model. Upon selecting a Revit model ele-
ment and specifying parameters, the “Element.SetParameterByName” node automatically
updated the relevant fields with the latest data. Details on node functionality, connections,
and execution outcomes are illustrated in Figure 6.

The reference point generation module was designed to obtain the uniformly dis-
tributed point coordinates of the plane space of the target office for later temperature inter-
polation calculation. Firstly, the grid’s fineness that divided the target office’s floor space
into small planar squares had be determined. Next, the boundary and the corner points on
the boundary of the target office were obtained by going over the “Element.BoundingBox”
and “BoundingBox.Min/MaxPoint” nodes, respectively. Lastly, the grid dimensions re-
quired to achieve the previously determined level of grid refinement were calculated, and
the “Point.ByCoordinates” node was used to generate the center reference point for each
grid; the grid accuracy determined in this research was 25 × 25. Since PhD students in the
office predominantly spent their time seated and working, this study focused on tempera-
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ture and humidity effects 1 m above the ground. Accordingly, sensors and reference points
were positioned 1 m off the floor, ensuring the z-axis coordinates for both were consistently
at that height. Further details about this module can be found in Figure 7.
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In the sensor coordinate acquisition module, acquiring the spatial coordinates of
virtual sensors was straightforward when these sensors were pre-placed in the Revit model.
The primary node, “FamilyInstance.Location”, input elements from the virtual sensors,
generating a list of their locations. Figure 8 illustrates the nodes used in this module and
their connections.

In the interpolation module, temperature values for each grid square were calculated
using the inverse distance weighted (IDW) interpolation method, implemented through
the “Python Script” node. IDW interpolation, a commonly used deterministic model in
spatial interpolation, is frequently utilized to generate climate-dependent heat maps [4].
Figure 9 illustrates how the IDW interpolation formula was implemented in IronPython2
within the “Python Script” node.



Buildings 2024, 14, 3361 12 of 23

Buildings 2024, 14, x FOR PEER REVIEW 12 of 25 
 

interpolation calculation. Firstly, the grid’s fineness that divided the target office’s floor 
space into small planar squares had be determined. Next, the boundary and the corner 
points on the boundary of the target office were obtained by going over the “Ele-
ment.BoundingBox” and “BoundingBox.Min/MaxPoint” nodes, respectively. Lastly, the 
grid dimensions required to achieve the previously determined level of grid refinement 
were calculated, and the “Point.ByCoordinates” node was used to generate the center ref-
erence point for each grid; the grid accuracy determined in this research was 25 × 25. Since 
PhD students in the office predominantly spent their time seated and working, this study 
focused on temperature and humidity effects 1 meter above the ground. Accordingly, sen-
sors and reference points were positioned 1 meter off the floor, ensuring the z-axis coor-
dinates for both were consistently at that height. Further details about this module can be 
found in Figure 7. 

 
Figure 7. Reference point generation module of Dynamo. 

In the sensor coordinate acquisition module, acquiring the spatial coordinates of vir-
tual sensors was straightforward when these sensors were pre-placed in the Revit model. 
The primary node, “FamilyInstance.Location”, input elements from the virtual sensors, 
generating a list of their locations. Figure 8 illustrates the nodes used in this module and 
their connections. 

 
Figure 8. Sensor coordination acquisition module of Dynamo. 

In the interpolation module, temperature values for each grid square were calculated 
using the inverse distance weighted (IDW) interpolation method, implemented through 
the “Python Script” node. IDW interpolation, a commonly used deterministic model in 
spatial interpolation, is frequently utilized to generate climate-dependent heat maps [4]. 
Figure 9 illustrates how the IDW interpolation formula was implemented in IronPython 
within the “Python Script” node. 

Figure 8. Sensor coordination acquisition module of Dynamo.
Buildings 2024, 14, x FOR PEER REVIEW 13 of 25 
 

 
Figure 9. Python code for calculating temperature at each point using IDW interpolation. 

4.1.4. Visualization 
The heat-map coloring module converted interpolated data into visual heat maps, 

facilitating more accessible access to thermal comfort data. The process involved three 
central nodes: “Color Range”, “Math.RemapRange”, and “Element.OverrideColor-
InView”. Initially, RGB values were input into the “Color Range” node, which accepted 
only values between zero and one. The “Math.RemapRange” node adjusted the interpo-
lated values to that range to accommodate this. Using the “Element.OverrideColor-
InView” node, the final step, applied the colors to selected elements. Detailed descriptions 
of node usage and connections appear in Figure 10. 

Figure 9. Python code for calculating temperature at each point using IDW interpolation.

4.1.4. Visualization

The heat-map coloring module converted interpolated data into visual heat maps,
facilitating more accessible access to thermal comfort data. The process involved three
central nodes: “Color Range”, “Math.RemapRange”, and “Element.OverrideColorInView”.
Initially, RGB values were input into the “Color Range” node, which accepted only values
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between zero and one. The “Math.RemapRange” node adjusted the interpolated values
to that range to accommodate this. Using the “Element.OverrideColorInView” node, the
final step, applied the colors to selected elements. Detailed descriptions of node usage and
connections appear in Figure 10.
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Figure 10. Heat-map coloring module of Dynamo.

Although heat-map generation did not directly incorporate PMV values, nodes calcu-
lated and recorded the PMV for each mesh square in the corresponding object’s attribute
column. The PMV formula, written in Iron Python, was implemented in Dynamo via the
“Python Script” node, as shown in Figure 11. Since office occupants primarily engaged
in sedentary activities like typing, the metabolic rate was 1.1 met. Adequate mechanical
power was maintained at 0 W/m2, a standard for indoor thermal comfort assessments.
Experiments conducted in autumn reflected typical lightweight long-sleeved office attire,
setting clothing insulation at 0.96 clo. A nominal value of 0.1 m/s was used for the relative
wind speed parameter without relative wind speed sensors. Adequate mechanical power
is consistently assumed to be zero in indoor thermal comfort assessments.

Table 2 outlines comfort levels across PMV ranges, providing general guidelines based
on typical temperature preferences. A PMV of zero is generally considered comfortable,
although individual preferences can vary, affecting comfort perception. For example,
while a PMV of −1 may be comfortable for some, others may find a PMV of +1 more to
their liking.

As illustrated in Figure 12, a complete rundown of all the nodes in the Dynamo
produced a smooth heat map that met the design requirements.

Table 2. Comfort level corresponding to PMV index.

PMV Index −3 −2 −1 0 1 2 3

Feeling Cold Cool Slightly Cool Neutral Slightly Warn Warm Hot
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4.2. Case Demonstration

This research applied the ASHRAE 55-2020 standard [43] to evaluate indoor thermal
comfort. The case study was conducted during the transition from autumn to winter, a
period that potentially affects thermal perceptions. According to ASHRAE Standard 55,
the acceptable indoor temperature range is from 22.2 ◦C to 26.4 ◦C, assuming the relative
humidity remains between 30% and 60%.

This study employed a real-world scenario in a PhD office at XJTLU to validate the
proposed thermal comfort visualization method. The experimental setup, including a
DHT-20 sensor, an ESP32 microcontroller, and a portable power source, is depicted in
Figure 13. Figure 14 shows the office’s spatial layout and the sensors’ placement. Data
collection occurred at 30 min intervals over 24 h from 10:00 a.m. on 21 November 2023
to 10:30 a.m. on 22 November 2023. The windows remained closed throughout the data
collection period. Air conditioner 1 was turned on after sunset (19:00) and turned off after
the last person left the office at night (22:30); air conditioner 2 was not used. The outdoor
temperature ranged from 13 to 20 ◦C, while the relative humidity was about 41%.
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Figure 13. Data acquisition devices in the case.

Figure 15 illustrates the data collected by individual sensors, highlighting minor diur-
nal variations in temperature and humidity, with slight differences in the readings among
sensors. After the heating was activated for two hours, a notable increase in temperature
was observed across all sensors, peaking at approximately 10:30 PM. Temperatures returned
to their baseline levels two hours after the heating was turned off, maintaining stability
with few fluctuations. As for humidity, a modest decrease was recorded two hours after the
heating began, returning to normal levels once the heating was deactivated. The humidity
readings from the nine sensors showed consistent variations.

During the data collection period, as shown in Figure 15a, the highest and lowest
temperatures were recorded as 25.6778 ◦C by sensor 4 at 23:36 and 21.0904 ◦C by sensor
7 at 10:03, respectively. The temperature fluctuated by as much as 4.5 ◦C in the same office
on the same day. Given the human body’s thermal perception threshold of approximately
0.5 ◦C to 1 ◦C, it is crucial to provide users with visualized environmental data to assist in
selecting optimal seating [44].
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As shown in Figure 15b, relative humidity levels ranged from a low of 38.7733% at
12:33 by sensor 4 to a high of 50.648% at 10:03 by sensor 1. As both values were within the
ASHRAE 55 standard’s comfort range and given the lower human sensitivity to humidity
variations compared to temperature, excluding humidity from heat map calculations was
both practical and conserved resources.

Figure 15 shows the maximum and minimum temperature and humidity values
recorded by each sensor, demonstrating that the office’s conditions typically met the
ASHRAE 55 recommended comfort ranges for temperature (22.2 ◦C to 26.4 ◦C) and hu-
midity (30% to 60%) during the data collection period. While the minimum temperature
occasionally dropped below that range, such instances were brief. They occurred late at
night when the office was unoccupied, suggesting that the overall comfort standards were
generally upheld.

Figure 16 presents the results of the proposed method for visualizing the indoor
thermal environment through BIM and IoT integration, developed by the research institute.
It shows that during active office hours (10 a.m. to 7 p.m.), without heating, the temperature
around desks 1, 8, and 13 was within the neutral range, while the temperature around
desks 9, 10, 14, and 15 was in the warm range.

Heating was activated at 7:30 p.m., causing desks 11 to 15 to warm up compared to
other areas rapidly. Desks 1, 2, 3, 6, and 7 exhibited superior insulation, retaining heat for a
significantly longer duration after the heating was deactivated, as documented in Figure 16.
The analysis also showed that desks 4, 5, 16, and 17 were largely unaffected by the heating,
remaining cooler throughout the study period compared to other desks.

After 24 h of data collection, PMV, temperature, and humidity fluctuations remained
within the predefined acceptable ranges, with thermal comfort levels during active periods
showing no significant deviations. PMV values during the case study were maintained
between –0.4 and 0.4, indicating conditions generally perceived as comfortable. Thus, all
areas, whether depicted as red or blue on the heat map, were likely to meet most occupants’
comfort needs. When choosing a seat, students should consider their personal temperature
preferences; for example, desks 9, 10, 14, and 15 were suited for those preferring warmth,
while desks 4, 5, 16, and 17 were better for those who preferred cooler conditions. It is
important to note that seasonal adjustments may be required, particularly in summer when
heating vents are converted to cooling vents, and individuals sensitive to cold may need to
reevaluate their seating choices based on the latest operational data.
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Figure 15. (a) Temperature read by sensors 1–9; (b) Humidity read by sensors 19.
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4.3. Thermal Comfort Feedback

In this study, a survey was conducted after office personnel adjusted their seating
arrangements based on the heat map presented in Section 4.2. The survey was involved
17 occupants, of whom 14 agreed to participate, resulting in a response rate of 82.35%.
This response rate is considered acceptable according to previous research benchmarks,
which typically recognize a response rate above 70% as sufficient for drawing meaningful
conclusions [34]. The feedback from diverse culture groups are shown in Table 3.

Table 3. Thermal comfort survey results after seat adjustment.

Country Number Satisfied Neutral Unsatisfied

China 7 5 2 0
India 3 2 1 0
Baxi 1 1 0 0

Nigeria 2 1 1 0
Sri Lanka 1 1 0 0

Total 14 10 4 0

The survey results indicated a generally positive response to the seating arrangement
adjustments made by office personnel, with a total of 10 out of 14 respondents (71.4%)
reporting satisfaction with their thermal comfort. Notably, participants from China showed
the highest level of satisfaction, with five out of seven respondents feeling comfortable after
the adjustments. This may be due to cultural factors that prioritize communal well-being
in work environments, leading individuals to be more accepting of changes designed to
enhance comfort for the group. Conversely, the responses from Nigeria and India, where
participants expressed a mix of satisfaction and neutrality, suggest variations in cultural
norms regarding thermal comfort and acceptance, highlighting the complexity of how
different backgrounds influence perceptions of comfort.

5. Discussion

This research introduced a framework that integrated BIM and IoT technologies to
visually represent the indoor thermal environment for building occupants. Due to the
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general unfamiliarity with PMV indices among non-specialist users and the limited impact
of relative humidity on perceived comfort, the heat maps generated did not include PMV
indices or relative humidity as variables. Nonetheless, these metrics are calculated within
Dynamo and are accessible to users requiring detailed real-time data on temperature,
humidity, and PMV through the Revit model’s property bar, as shown in Figure 17.
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5.1. Contributions

The proposed research framework significantly improves the timeliness of moni-
toring indoor thermal environments, enhancing efficiency compared to the traditional
questionnaire-based approach, often protracted from design to result analysis. This frame-
work notably shortens the time from sensor data collection to the presentation of visual
information to building occupants, reducing it to a few seconds. This research advances
indoor thermal environment visualization by presenting data and using thermal maps to
provide a clear and immediate perception of thermal conditions. Moreover, this frame-
work enhances data transmission security during BIM and IoT integration by utilizing
MySQL’s SSL/TLS encryption and setting defined access rights for MySQL administrators.
Additionally, the framework supports future functional enhancements and expansions by
incorporating new nodes in Dynamo. Notably, this approach reduces the traditionally high
costs associated with BIM and IoT integrations by eliminating the need to develop new
applications and Web pages. Instead, it leverages existing architectural design software for
the user interface and employs visual programming tools, thus decreasing the dependence
on specialized personnel.

The proposed BIM–IoT integration framework emphasizes the practical needs of or-
dinary users by focusing on temperature, the most direct and understandable indicator
of thermal comfort. Using real-time highest and lowest temperature values as boundary
indicators for heat-map coloring, this approach offers more intuitive and easily under-
standable information than Chang et al.’s [15] method of using PMV values. Users can
quickly identify the hottest spots in a classroom at any given time. Furthermore, the study
enhances the precision of indoor thermal environment monitoring with a resolution of one
pixel per 0.16 square meters, which is particularly suitable for small, densely populated
indoor spaces. This framework also provides more detailed information for personalized
user choices compared to Dave et al.’s [33] approach of generating a single-color block
based on average temperature, thereby simplifying how building occupants perceive and
interact with their environment. By avoiding complex, technical indices, this approach
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enhances usability and applicability in daily operations, ultimately improving the overall
user experience in indoor environments.

For the thermal comfort feedback, the varying levels of satisfaction can be attributed
to diverse cultural beliefs and practices surrounding comfort and climate adaptation. For
instance, individuals from India and Nigeria may have different thresholds for thermal
comfort due to their distinct regional climates and cultural histories. In India, the exposure
to both humid and dry climates might lead to a greater variability in comfort levels among
individuals when faced with temperature changes. On the other hand, the participants
from Nigeria expressed more ambivalence, with one person feeling neutral about their
comfort level. This could indicate a potential disconnect between the heat map data and
the personal comfort preferences of respondents, reinforcing the idea that cultural context
significantly informs individual responses to environmental adjustments.

To enhance overall thermal comfort in office environments, building management
strategies should consider these cultural differences in workplace thermal preferences.
Firstly, implementing a flexible seating arrangement policy that allows employees to choose
their own seating based on real-time thermal data can accommodate diverse preferences.
Additionally, offering personalized climate controls, such as desktop fans or localized heat-
ing, may help individuals adapt their microenvironments. Furthermore, regular training
sessions and workshops exploring cultural perspectives on thermal comfort can foster
greater awareness among staff about the varying thresholds for comfort experienced by
their colleagues. By integrating these strategies, building management can create a more
inclusive and comfortable work environment that recognizes and responds to the cultural
backgrounds of all employees.

5.2. Limitations

The framework proposed in this research introduces innovative approaches but also
exhibits notable limitations. The data collection phase needs to fully account for the influ-
ence of human activities, such as the heat generated by prolonged computer use, which may
skew sensor readings and fail to represent the environmental conditions accurately. The
accuracy of the DHT20 sensor may slightly influence the monitoring of occupant comfort
levels. Future research should utilize more precise temperature sensors, such as PT100
(RTD) and thermocouples, to enhance scientific rigor and ensure that findings accurately
reflect indoor environmental conditions. Moreover, the analysis focused primarily on tem-
perature as a key determinant while overlooking other critical factors like carbon dioxide
levels, which are essential for a comprehensive assessment of the thermal environment.

The proposed framework’s scope is less applicable for entities outside the construction
sector due to the requirement for specific software, such as Revit, which may not be a
cost-effective investment for these groups. Furthermore, the system lacks exception-alert
mechanisms, a critical omission that fails to notify administrators of issues like connectivity
disruptions. The framework also needs more interactive or feedback mechanisms, provid-
ing visual data without supporting user engagement and limiting its effectiveness in creat-
ing a responsive, user-centered environment. Additionally, relying on mobile power sources
without a strategy for long-term data monitoring calls into question its sustainability.

6. Conclusions

This research developed a customized relational database schema and employed
cloud and edge computing to collect and analyze BIM and IoT data in real time. It cre-
ated a platform that transformed indoor thermal data into context-based visualizations,
such as heat maps displayed within a Revit model. This platform facilitated real-time
monitoring of the indoor thermal environment, enabling users to choose spaces that
aligned with their comfort preferences, which could enhance productivity by optimiz-
ing environmental conditions.

Future work will enhance user interaction with the platform by developing a more
interactive feedback system, allowing the platform to recommend spaces based on real-time
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environmental data and user preferences. Additionally, users can immediately respond by
adjusting equipment settings, enhancing the system’s responsiveness. Further research will
focus on optimizing the power supply system and applying the methodology in various
settings to evaluate its long-term viability across different scenarios.

The significant contribution of this research is its innovative approach to integrating
real-time sensor data with BIM models, which involves projecting detailed visualizations
of the thermal environment directly onto these models. This enhancement allows building
occupants to accurately gauge indoor conditions and select seating based on their comfort
preferences. The proposed framework streamlines the decision-making process for facility
managers by providing actionable insights and empowers occupants by offering choices
that cater to individual comfort needs. Furthermore, this study enhances indoor thermal
comfort by incorporating the preferences of occupants from diverse cultural backgrounds,
thereby promoting a more user-centered approach to building management strategies.
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