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Abstract: There is no analytical solution to the deflection influence line of catenary hingeless arches
nor an explicit solution to the deflection influence line difference curvature of variable section
hingeless arches. Based on the force method equation, a deflection influence line analytical solution
at any location before and after structural damage is obtained, and then an explicit solution of the
deflection influence line difference curvature of the structural damage is obtained. The indexes
suitable for arch structure damage identification are presented. Based on analytical theory and a
finite element model, the feasibility of identifying damage at a single location and multiple locations
of an arch bridge is verified. This research shows that when a moving load acts on a damaged area
of an arch structure, the curvature of the deflection influence line difference will mutate, which
proves theoretically that the deflection influence line difference curvature can be used for the damage
identification of hingeless arch structures. This research has provided theoretical support for hingeless
arch bridge design and evaluation. Combined with existing bridge monitoring methods, the new
bridge damage identification method proposed in this paper has the potential to realize normal health
status assessments of existing arch bridges in the future.

Keywords: hingeless arch; analytical solution; deflection influence line; differential curvature;
damage identification

1. Introduction

Given that the hingeless arch bridge has the advantages of great overall rigidity, con-
venient construction and low maintenance cost, it is widely used in practical engineering.
However, temperature changes, material shrinkage, structural deformation, pier displace-
ment and other factors lead to the subsidence and cracking of the main arch ring. The
occurrence of these conditions usually leads to a reduction in the local rigidity of the
structure [1]. The main arch rib and main arch ring are the main load-bearing structures of
arch bridges [2]. Once the arch rib or main arch ring is damaged, the bearing capacity of an
arch bridge will decrease greatly, or the bridge may even collapse [3].

Therefore, locating the damage quickly and evaluating the extent of the damage of
the hingeless arch structure has great practical significance [4]. The influence line is an
inherent attribute of bridge structure which reflects the flexural rigidity distribution of
the bridge structure and is often used for safety assessments of beam bridge structures.
The bridge influence line can “scan” the flexural rigidity of the structure section in the
form of a single point output response under global loading to realize rapid testing and
an accurate evaluation of the bridge’s structure [5]. Influence lines have been widely
used in bridge engineering, such as rapid assessments of bridge load capacity [6], model
revision [7], and bridge load bearing [8]. In recent years, methods based on influence line
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damage identification have been rapidly developed [9,10]. Fan et al. [11] proposed an
identification method for the damage of displacement difference influence lines of tied-
arch bridges, derived the displacement influence lines of tied-arch bridges with the force
method equation and verified the effectiveness of those displacement difference influence
lines in identifying suspender damage on arch bridges through the finite element model.
Wang et al. [12] proposed an iterative fitting calculation method to accurately extract bridge
influence lines from the dynamic responses of bridge structures. Zhang et al. [13] proposed
a new method to identify local rigidity distribution by using microwave interference
radar technology and rotation influence lines. Zhu et al. [14] proposed a quasi-static
structural damage identification method based on a single sensor influence line and an
empirical Bayesian threshold estimation. He et al. [15] derived an iterative calculation
formula describing the relationship between the influence line and temperature based
on the analytical formula of the influence line of a concrete beam bridge and verified the
validity of the iterative calculation formula through experiments. Samim [16] showed that
the two most commonly used methods for identifying influence lines are the same in the
time domain (TD) and frequency domain (FD) through theoretical demonstrations and
comparative tests and proposed a new method for identifying influence lines. Ge [17]
proposed a visual high-precision displacement influence line measurement system based on
a combination of a computer vision subsystem and a motion weighing device which can be
used for bridge damage detection. Hazem [18] studied the accuracy of detecting structural
damage characteristics by using the rotation influence line (RIL) and its derivatives. The
above studies provide a theoretical reference for the application of influence lines to bridge
rapid testing and damage identification [19,20], but research on the analytic theory of
influence lines and their application to arch bridge structural damage identification is still
limited, and the scientific and practical applications of arch bridge damage identification
proved analytically need to be further explored [21]. Most active arch bridges are masonry
arch structures. Due to the complex internal force distribution of masonry structures and
the discrete mechanical characteristics of masonry materials [22], there are few reports
on the application of damage identification [23]. Therefore, the damage identification
method for hingeless arches based on an analytical solution of the deflection influence line
is proposed in this paper. The principle of damage identification can be clarified based on
analytic theory.

In this paper, the elastic center method is used to simplify the force method equation
and approximate curve fitting to simplify the catenary curve integral. The analytical
solution of deflection influence lines (DILs) is applicable to the hingeless arch of a variable
section catenary, and the deflection influence line of an arbitrary section of a catenary
hingeless arch structure after damage was analyzed. The deflection influence line difference
curvature (DILDC) before and after the structural damage was derived, and the DILDC
damage identification index was proposed. The accuracy of the analytical solution was
verified by establishing a hingeless arch finite element model. The scientific and practical
applications of the damage index in damage identification were verified using a mechanical
model of a catenary hingeless arch. The effects of locating the measuring point, the extent
of damage to the unit, the impact of environmental noise on DILDC identification and
the feasibility of quantifying the damage extent were studied. The analytical solution
for the damage identification of hingeless arches proposed in this paper provides a basis
for damage analyses of hingeless arches. A comparison of the numerical simulation and
analytical solution shows that the analytical solution has fairly high accuracy. The DILDC
index proposed in this paper provides an explicit solution for quantifying damage in
hingeless arches. This research provides theoretical reference for the engineering design
and damage diagnosis of structures.

The technical route is illustrated in Figure 1.



Buildings 2024, 14, 6 3 of 23Buildings 2024, 14, x FOR PEER REVIEW 3 of 26 
 

Statically indeterminate 

structure

Catenary

Hingeless arch structure

Analytical analysis of 

redundancy force 

influence lines

Analytical analysis of 

redundancy force 

influence lines with 

damage

Analytical solution of 

deflection influence line

Verification of analytical 

solution accuracy

Analytical solution of 

deflection influence line 

with damage

Analytical solution of 

deflection influence line 

difference curvature

Damage 

diagnostic 

index

Hingeless single 

arch model

Deck box type 

arch bridge 

model

Qualitative damage location

Quantitative damage extent

Qualitative damage generation

Qualitative damage location

Method accuracy verification

Method practicability verification
 

Figure 1. Technical route. 

2. Deflection Influence Line Analytical Solution of Hingeless Arch in Non-Damaged 

Condition 

2.1. Redundancy Force Influence Line of Variable Section Hingeless Arch in Non-Damaged Con-

dition 

The hingeless arch is divided into cantilever arches with left and right symmetry by 

the force method, which is illustrated in Figure 2. The A and B represent the left and right 

arch foot of the hingeless arch. The mid-span redundancy forces are x1, x2, and x3. The 

elastic center method is used to simplify the force method equation, and the moving force 

coordinate of point C is set to xm. 

 

Figure 2. The basic system of the catenary hingeless arch. 

The elastic center method is used to simplify the force method shown in Equation (1): 

11 1 1

22 2 2

33 3 3

0

0

0

P

P

P

x

x

x







+  =


+  =
 +  =

 (1) 

The catenary arch axis equation is expressed as follows (Equations (2) and (3)): 
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Figure 1. Technical route.

2. Deflection Influence Line Analytical Solution of Hingeless Arch in
Non-Damaged Condition
2.1. Redundancy Force Influence Line of Variable Section Hingeless Arch in
Non-Damaged Condition

The hingeless arch is divided into cantilever arches with left and right symmetry by
the force method, which is illustrated in Figure 2. The A and B represent the left and right
arch foot of the hingeless arch. The mid-span redundancy forces are x1, x2, and x3. The
elastic center method is used to simplify the force method equation, and the moving force
coordinate of point C is set to xm.
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Figure 2. The basic system of the catenary hingeless arch.

The elastic center method is used to simplify the force method shown in Equation (1):
δ11x1 + ∆1P = 0
δ22x2 + ∆2P = 0
δ33x3 + ∆3P = 0

(1)

The catenary arch axis equation is expressed as follows (Equations (2) and (3)):

y = f (chkx/l − 1)/(m − 1) (2)

k = ln(m2 +
√

m2 − 1) (3)
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where f denotes the height of the arch rib, m denotes the coefficient of the arch axis, and l
denotes the half-span of the arch axis.

According to the Ritter formula, set the arch axis thickness as shown below
(Equations (4)–(6)):

I = Io/[(1 − x/l + nx/l) cos φ] (4)

cos φ =
[
1 + (k2 f 2sh2(kx/l)/(m − 1)2l2)

]−1/2
(5)

A = Ao[[1 − (1 − n)x/l] cos φ]−1/3 (6)

where I0 denotes the vault’s moments of inertia, A0 denotes the cross-sectional area of the
rib vault position, n denotes the coefficient of change in the arch rib section and φ denotes
the horizontal angle of the arch section.

The solution of the redundancy force influence line is the basis for solving the deflec-
tion influence line. The internal force and influence line of a section under the redundant
force are depicted in Tables 1 and 2.

Table 1. Basic internal forces of the structure under the effect of redundancy forces.

Internal Force
Redundancy Force Dummy-Moving Load

x1 x2 x3 x≤xm x>xm

Moment M1 1 M2 y − ys M3 ±x Mp
0

−(x − xm)
Axial force N1 0

N2 cos φ N3 ∓ sin φ Np sin φ

Shear force Q1 Q2 ± sin φ Q3 cos φ Qp ∓ cos φ

(Note: When the section is calculated in the left half arch, the aforementioned symbol is utilized, and when the
right half arch is taken, the following symbol is utilized).

Table 2. Analytical solution of redundancy force influence line.

Parameter Significance Fundamental Mechanical
Expression Practical Analytical Solution

ys Elastic center
∫

S yds∫
S ds ys =

2 f
[
nk
(
m2 − 1

)1/2
+ (1 − n)(m − 1)− k2(1 + n)/2

]
k2(m − 1)(n + 1)

δ11

The
self-displacement
of hingeless arch

∫
S (M1

2
/EI)ds (1 + n)l/EIo

δ22
∫

S
M2

2

EI
ds +

∫
S

N2
2

EA
ds

[
2l f 2/EIo(m − 1)

]{
[(m − 2)/2(m − 1)− ys/ f ]

(
m2 − 1

)1/2/k+

[2(m − 1)]−1 − (1 − n)[((m − 2)/2(m − 1)− ys/ f )(
m2 − 1

)1/2/k + [4(m − 1)]−1 −
[
(m − 1)/k2]

((m − 3)/4(m − 1)− ys/ f )]}+
3l cos φ4/3(1 − n4/3)/2EAo(1 − n)

δ33
∫

S (M3
2/EI)ds (1 + 3n)l3/6EIo

∆1p

The
load–displacement
of hingeless arch

∫
S

(
M1 Mp/EI

)
ds −

(
l2/6EIo

)[
3(1 − xm/l)2 − (1 − n)(2 − 3xm/l + xm

3/l3)
]

∆2p
∫

S
M2 Mp

EI
ds +

∫
S

N2 NP

EA
ds

−
[

f l2/(m − 1)EIo
]
{(xm/kl)(sh(kxm/l)− shk)+

k−2[1 + (1 − n)xm/l](kshk − (kxm/l)sh(kxm/l)−
chk + ch(kxm/l)) +

[
(n − 1)/k3][(k2 + 2)shk−

(k2xm
2/l2 + 2)sh(kxm/l)− 2k(chk − (xm/l)

ch(kxm/l))]}+
(
l2/6EIo

)
( f /(m − 1) + ys)[

3(1 − xm/l)2 − (1 − n)(2 − 3xm/l + xm
3/l3)

]
−

(6.410E − 17)xm
6 + (2.948E − 15)xm

5+

(1.637E − 13)xm
4 − (1.088E − 12)xm

3−
(4.416E − 10)xm

2 − (4.020E − 10)xm + 1.619E − 7

∆3p

∫
S

(
M3 Mp/EI

)
ds −

(
l3/12EIo

)
[2(2− 3xm/l + xm

3/l3)−
(1 − n)(3 − 4xm/l +xm

4/l4)
]



Buildings 2024, 14, 6 5 of 23

Table 2. Cont.

Parameter Significance Fundamental Mechanical
Expression Practical Analytical Solution

x1

Redundancy force

−
∫

S

(
M1 Mp/EI

)
ds∫

S

(
M1

2/EI
)

ds
−l
[
3(1 − xm/l)2 − (1 − n)(2 − 3xm/l + xm

3/l3)
]
/6(n + 1)

x2 −

(∫
S

M2 Mp

EI
ds +

∫
S

N2 NP

EA
ds
)

(∫
S

M2
2

EI
ds +

∫
S

N2
2

EA
ds

)

{[
f l2/(m − 1)EIo

]
{(xm/kl)(sh(kxm/l)− shk) + k−2

[1 + (1 − n)xm/l](kshk − (kxm/l)sh(kxm/l)− chk+

ch(kxm/l)) +
[
(n − 1)/k3][(k2 + 2)shk− (k2xm

2/l2 + 2)

sh(kxm/l)− 2k(chk − (xm/l) ch(kxm/l))]}+
(
l2/6EIo

)
( f /(m − 1) + ys)

[
3(1 − xm/l)2 − (1 − n)(2 − 3xm/l + xm

3/l3)
]

−(6.410E − 17)xm
6 + (2.948E − 15)xm

5 + (1.637E − 13)xm
4−

(1.088E − 12)xm
3 − (4.416E − 10)xm

2 − (4.020E − 10)xm+

1.619E−7}/
{[

2l f 2/EIo(m − 1)
]
{[(m − 2)/2(m − 1)− ys/ f ](

m2 − 1
)1/2/k + [2(m − 1)]−1 − (1 − n)[((m − 2)/2(m − 1)− ys/ f )(

m2 − 1
)1/2/k + [4(m − 1)]−1 −

[
(m − 1)/k2]

((m − 3)/4(m − 1)− ys/ f )]}+ 3l cos φ4/3 (1 − n4/3)/2EAo(1 − n)
}

x3 −
∫

S

(
M3 Mp/EI

)
ds∫

S

(
M3

2/EI
)

ds

[
(4 − 6xs

l
+

2xs
3

l3 )− (1 − n)(3 − 4xs

l
+

xs
4

l4 )

]
2(1 + 3n)

(Note: When the moving load is in the right half arch, when the x axis is the negative axle in Figure 2, replace xm
of load–displacement ∆1P , ∆2P, and ∆3P with −xm, and ∆3P is minus one time of the corresponding position of
the left half span).

Since the constant section is a special case of the variable section, the redundancy
force influence line analytical solution of the constant section catenary hingeless arch is a
special case of the redundancy force influence line analytical solution of the variable section
catenary hingeless arch. When I = I0, the curve integral can be simplified by using the
catenary fitting method, i.e., ds = ch(x/a)dx. In this paper, the derivation of the redundant
influence line analytical solution of the constant section catenary hingeless arch will not
be discussed.

2.2. Deflection Influence Line Analytical Solution of Variable Section Hingeless Arch in
Non-Damaged Condition

Taking the variable section of the catenary hingeless arch structure as an example, as
depicted in Figure 3, based on the redundancy force influence line analytical solution of the
variable section catenary hingeless arch derived in Section 2.1, the deflection influence line
analytical solution of the variable section catenary hingeless arch structure in non-damaged
condition is derived [24,25].
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There is a dummy unit force F = 1 at G; when unit force P = 1 is applied at C, and
redundancy forces x1, x2, and x3 are applied at O, the deflection at G is (Equation (7)):

∆G =

{
−∆GP + x1∆G1 + x2∆G2 + x3∆G3 0 < xm < l
−∆GP + x1∆G1 + x2∆G2 − x3∆G3 −l < xm < 0

(7)

where ∆G denotes the deflection of the G point, ∆GP denotes the deflection of moving load
at the point, and ∆G1, ∆G2 and ∆G3 are, respectively, the deflection of redundancy force x1,
x2, and x3 at the G point. The mechanical expressions and analytical solutions of ∆GP, ∆G1,
∆G2 and ∆G3 are as follows (Equations (8)–(11)):

∆GP =



∫
S
(xm − x)(xG − x)

EI
ds 0 < xm < xG∫

S
(xm − x)(xG − x)

EI
ds xG < xm < l

0 −l < xm < 0

(8)

∆G1 =
∫

S

(xG − x)
EI

ds (9)

∆G2 =
∫

S

(y − ys)(xG − x)
EI

ds +
∫

S

sin φ cos φ

EA
ds (10)

∆G3 =
∫

S

x(xG − x)
EI

ds (11)

The corresponding parameters can be derived by substituting Equations (2)–(6) into
Equations (8)–(11) for calculation are depicted in Table 3.

Table 3. Analytical solution of deflection influence line of variable section catenary hingeless arch.

Parameter Significance Practical Analytical Solution

∆GP
Deflection at G under

moving load P

[
(3n + 1)l2 + (2nxG − 4nxm − 2xm)l + xG(xG − 2xm)(n − 1)

]
(l − xG)

2

12EIo l
, 0 < xm < xG[

(3n + 1)l2 + (2nxm − 4nxG − 2xG)l − xm(2xG − xm)(n − 1)
]
(l − xG)

2

12EIo l
, xG < xm < l

0,−l < xm < 0

∆G1
Deflection at G under
redundancy force x1 −

[
3l2
(

1 − xG

l

)2
− (1 − n)

(
2l2 − 3xG l +

xG
3

l

)]
6EIo

∆G2
Deflection at G under
redundancy force x2

−
[

f l2/(m − 1)EIo
]{

(xG/kl)(sh(kxG/l)− shk) + k−2[1 + (1 − n)xG/l] (kshk−
(kxG/l)sh(kxG/l)− chk + ch(kxG/l)) +

[
(n − 1)/k3][

(k2 + 2)shk − (k2xG
2/l2 + 2) sh(kxG/l)− 2k(chk − (xG/l)ch(kxG/l))]}+(

l2/6EIo
)
( f /(m − 1) + ys)

[
3(1 − xG/l)2 − (1 − n)(2 − 3xG/l + xG

3/l3)
]
−

(6.410 × 10−17)xG
6 + (2.948 × 10−15)xG

5 + (1.637 × 10−13)xG
4 − (1.088 × 10−12)xG

3−
(4.416 × 10−10)xG

2 − (4.020 × 10−10)xG + 1.619 × 10−7

∆G3
Deflection at G under
redundancy force x3

−
(
l3/12EIo

)
[2(2− 3xG/l + xG

3/l3)− (1 − n)(3 − 4xG/l +xG
4/l4)

]

In summary, by substituting parameters ∆GP, ∆G1, ∆G2 and ∆G3 in Table 3 and re-
dundancy force influence lines x1, x2, and x3 into (7), the influence line analytical solution
of variable section catenary hingeless arch deflection can be obtained. The influence line
analytical solution of constant section catenary hingeless arch deflection is derived in the
same way as above. When I = I0, the structure section is a constant section. Due to limited
space, it will not be repeated here.
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3. Deflection Influence Line Analytical Solution of Hingeless Arch in
Damaged Condition
3.1. Redundancy Force Influence Line of Constant Section Hingeless Arch in Damaged Condition

The elastic center method is used to simplify the force method equation and the
equivalent approximate curve fitting is used to simplify the catenary curve integral. Since
the redundancy force influence line is the basis for solving the deflection influence line,
therefore, it is the critical to obtain the redundancy force influence line analytical solution
of the constant section catenary hingeless arch structure at any section after damage.

By reducing the elastic modulus of the local structure to simulate the damage [26],
E’I and E’A represent the degradation of flexural rigidity and tensile rigidity. Taking the
hingeless arch of the left span damaged somewhere as an example, a symmetrical basic
system is selected by the principle of force method, as depicted in Figure 4.
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Figure 4. A basic system of the hingeless arch in damaged condition.

As for the constant section catenary hingeless arch, the suspension line fitting was
used to simplify the curve integral; that is, ds = ch(x/a)dx, its self-displacement values
are δ11, δ22, and δ33, load displacement values are ∆1P, ∆2P, and ∆3P, and the analytical
expression follows (Equations (12)–(17)):

δ11 = (1/EI)
∫ d−ε

0 ch(x/a)dx+(1/E′ I)
∫ d+ε

d−ε ch(x/a)dx+(1/EI)
∫ l

d+ε ch(x/a)dx

+(1/EI)
∫ l

0 ch(x/a)dx
(12)

δ22 = (1/EI)
∫ d−ε

0 (y − ys)
2ch(x/a)dx+(1/E′ I)

∫ d+ε
d−ε (y − ys)

2ch(x/a)dx+
(1/EI)

∫ l
d+ε (y − ys)

2ch(x/a)dx + (1/EI)
∫ l

0 (y − ys)
2ch(x/a)dx+

(1/EA)
∫ d−ε

0 cos φ2ch(x/a)dx+(1/E′A)
∫ d+ε

d−ε cos φ2ch(x/a)dx+

(1/EA)
∫ l

d+ε cos φ2ch(x/a)dx + (1/EA)
∫ l

0 cos φ2ch(x/a)dx

(13)

δ33 = (1/EI)
∫ d−ε

0 x2ch(x/a)dx+(1/E′ I)
∫ d+ε

d−ε x2ch(x/a)dx+(1/EI)
∫ l

d+ε x2ch(x/a)dx+

(1/EI)
∫ l

0 x2ch(x/a)dx
(14)

∆1P =



(1/EI)
∫ l

xm
(xm − x)ch(x/ a)dx −l ≤ xm ≤ 0

(1/EI)
∫ d−ε

xm
(xm − x)ch(x/ a)dx+(1/E′ I)

∫ d+ε
d−ε (xm − x)ch(x/ a)dx+

(1/EI)
∫ l

d+ε (xm − x)ch(x/ a)dx
0 ≤ xm ≤ d − ε

(1/E′ I)
∫ d+ε

xm
(xm − x)ch(x/ a)dx+(1/EI)

∫ l
d+ε (xm − x)ch(x/ a)dx d − ε ≤ xm ≤ d + ε

(1/EI)
∫ l

xm
(xm − x)ch(x/ a)dx d + ε ≤ xm ≤ l

(15)
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∆2P =



(1/EI)
∫ l

xm
(xm − x)(y − ys)ch(x/a)dx + (1/EA)

∫ l
xm

cos φ sin φch(x/a)dx −l ≤ xm ≤ 0

(1/EI)
∫ d−ε

xm
(xm − x)(y − ys)ch(x/a)dx+(1/E′ I)

∫ d+ε
d−ε (xm − x)(y − ys)ch(x/a)dx+

(1/EI)
∫ l

d+ε (xm − x)(y − ys)ch(x/a)dx + (1/EA)
∫ d−ε

xm
cos φ sin φch(x/a)dx+

(1/E′A)
∫ d+ε

d−ε cos φ sin φch(x/a)dx + (1/EA)
∫ l

d+ε cos φ sin φch(x/a)dx

0 ≤ xm ≤ d − ε

(1/E′ I)
∫ d+ε

xm
(xm − x)(y − ys)ch(x/a)dx+(1/EI)

∫ l
d+ε (xm − x)(y − ys)ch(x/a)dx+

(1/E′A)
∫ d+ε

xm
cos φ sin φch(x/a)dx+(1/EA)

∫ l
d+ε cos φ sin φch(x/a)dx

d − ε ≤ xm ≤ d + ε

(1/EI)
∫ l

xm
(xm − x)(y − ys)ch(x/a)dx + (1/EA)

∫ l
xm

cos φ sin φch(x/a)dx d + ε ≤ xm ≤ l

(16)

∆3P =



−(1/EI)
∫ l

xm
x(xm − x)ch(x/a)dx −l ≤ xm ≤ 0

(1/EI)
∫ d−ε

xm
x(xm − x)ch(x/a)dx+(1/E′ I)

∫ d+ε
d−ε x(xm − x)ch(x/a)dx+

(1/EI)
∫ l

d+ε x(xm − x)ch(x/a)dx
0 ≤ xm ≤ d − ε

(1/E′ I)
∫ d+ε

xm
x(xm − x)ch(x/a)dx+(1/EI)

∫ l
d+ε x(xm − x)ch(x/a)dx d − ε ≤ xm ≤ d + ε

(1/EI)
∫ l

xm
x(xm − x)ch(x/a)dx d + ε ≤ xm ≤ l

(17)

The parameters of self-displacement and load–displacement are introduced into the
expression of redundancy force influence line, x1 = −∆1P/δ11, x2 = −∆2P/δ22 and
x3 = −∆3P/δ33. The redundancy force influence line analytical solution of any section
after the damage of the catenary hingeless arch can be obtained.

3.2. Deflection Influence Line Analytical Solution of Constant Section Hingeless Arch in
Damaged Condition

Taking the left half span as the research object, according to the deflection calculation
diagram of measuring location G under the damage condition in Figure 5, the deflection
influence line of location G is solved by the principle of virtual work:
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Figure 5. Measurement location G deflection in damaged condition calculation diagram.

There is a dummy unit force F = 1 at G, when unit force P = 1 is applied at C
and redundancy force x1, x2 and x3 are applied at O, the deflection expression at G is
Formula (7), and the cross-section is in the form of a constant section, and catenary fitting
is selected.

According to the location of the moving force, ∆GP, ∆G1, ∆G2, and ∆G3 can be divided
into the following states (Equations (18)–(21)):

∆GP =


0 −l < xm < 0∫ l

xG

(xm − x)(xG − x)
EI

cosh
( x

a

)
dx 0 < xm < xG∫ l

xm

(xm − x)(xG − x)
EI

cosh
( x

a

)
dx xG < xm < l

(18)

∆G1 =
∫ l

xG

xG − x
EI

cosh
( x

a

)
dx (19)
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∆G2 =
∫ l

xG

(xG − x)(y − ys)

EI
cosh

( x
a

)
dx (20)

∆G3 =
∫ l

xG

(xG − x)x
EI

cosh
( x

a

)
dx (21)

The analytical solution of the deflection generated by each force at G is depicted in
Table 4.

Table 4. Analytical solution of deflection influence line.

Parameter Significance Practical Analytical Solution

∆GP
Deflection at G under

moving load P

0,−l < xm < 0

−

a2

(−2xm + 4l − 2xG) cosh
(

l
a

)
+ (xm − 2a − xG)e

−
xG

a + (xm + 2a − xG)e
xG

a


2EI

−[
a sin

(
l
a

)(
−4a2 + (2l − 2xG)(−l + xm)

)]
2EI

, 0 < xm < xG

−

a2

(−2xm − 4l + 2xG) cosh
(

l
a

)
+ (xm + 2a − xG)e

−
xm

a + (xm − 2a − xG)e
xm

a


2EI

−[
a sin

(
l
a

)(
−4a2 + (2l − 2xG)(−l + xm)

)]
2EI

, xG < xm < 0

∆G1
Deflection at G under
redundancy force x1 −

a
[
(2l − 2xG) sin

(
l
a

)
− (1 − n)

(
2l2 − 3xB l +

xB
3

l

)]
2EI

∆G2
Deflection at G under
redundancy force x2

ae
−k(l+xG )a−xG l

la

4EI
(

4l2 − 4a2(d + ε)2
)2

[
−
(

2l − 4a2(d + ε)2
)2

(2l + 2a − 2xG)(c + ys)e
−l2+(a(d+ε)+xG )l+xG (d+ε)a

la +

(
4l2 + 2(2a − 2(d + ε)a − 2xG)l + 4xG(d + ε)a

)
(2a(d + ε) + 2l)2lCe

−l2+(2a(d+ε)+xG )l+xG (d+ε)a
la −(

4l2 + 2(2(d + ε)a − 2a − 2xG)l − 4xG(d + ε)a
)
(−2a(d + ε) + 2l)2lCe

l2(2a(d+ε)+xG )l+xG (d+ε)a
la +(

4l2 + (2(d + ε)a + 2a − 2xG)2l − 4xG(d + ε)a
)
(−2a(d + ε) + 2l)2lCe

−xG (d+ε)a+l2−xG l
la −(

4l2 + (−2(d + ε)a − 2a − 2xG)2l + 4xG(d + ε)a
)
(2a(d + ε) + 2l)2lCe

xG (d+ε)a+l2+xG l
la +

2a
(

4l2 − 4a2(d + ε)2
)2

(C + ys)e
(d+ε)(l+xG )a+2xG l

la − 4l2Ca(−2a(d + ε) + 2l)2e
(d+ε)(l+2xG )a+2xG l

la +(
4l2 − 4a2(d + ε)2

)2
(2l − 2a − 2xG)(C + ys)e

(l+xG )(a(d+ε)+l)
la − 4al2C

[
4l2C(2a(d + ε) + 2l)2e

a(d+ε)+2xG
a −

2
(

4l2 − 4a2(d + ε)2
)2

(C + ys)e
(d+ε)(l+xG )

l +

(
(2a(d + ε) + 2l)2e

(d+ε)(l+2xG )
l + e(d+ε)(2l − 2a(d + ε))2

)]]

∆G3
Deflection at G under
redundancy force x3

−
a
[
2a2 + l(l − xG)

]
sinh

(
l
a

)
EI

+

a2

(2l − xG) cosh
(

l
a

)
+
(
−a − xG

2

)
e
−

xG

a + e
xG

a
(

a − xG

2

)
EI

In a similar way, the parameters in Table 4 and the analytical solutions x1, x2 and x3
of the redundancy force influence line of any section after damage are substituted into
Equation (7) to obtain the deflection influence line analytical solution of the hingeless arch
after damage.

4. Establishment of Damage Identification Index DILDC

The analytical solutions of the redundancy forces x1, x2, x3 and ∆GP, ∆G1, ∆G2 and
∆G3 of the arch rib damaged structure are introduced into Equation (7), and the deflection
influence line ∆G

′ after damage is obtained. Subtract the damaged deflection influence line
∆G

′ with the non-damaged deflection influence line ∆G, and take the second derivative of
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this calculation result. Therefore, the identification index DILDC of the curvature damage
of deflection influence line difference is proposed.

To simplify the index expression, let C = f /(m − 1). The calculation and analysis
of the second derivative ∆2PS1

′′ and ∆2P2 ′′ of the displacement position xm by the load–
displacement in the direction of redundancy force x2 in the damage region are as follows:

∆2PS1
′′ = 1

E′ I

∫ d+ε
xm

(xm − x)(y − ys)ch x
a dx

= 1
E′ I

(
−Ce−

(−ak+l)xm
la /4 − Ce−

(ak+l)xm
la /4 − Ce

(−ak+l)xm
la /4 − Ce

(ak+l)xm
la /4 + (e

xm
a + e−

xm
a )(C + ys)/2

)
∆2PS2

′′ =
1

E′A
∫ d+ε

xm
cos φ sin φch

x
a

dx

=
−k f (m − 1)

aE′A

[
(m − 1)2l2 + k2 f 2sh

(
kxm

l

)2
]2

[
sh
(

kxm

l

)3
sh
( xm

a

)
f 2k2l−

sh
(

kxm

l

)2
ch
( xm

a

)
ch
(

kxm

l

)
k3 f 2a + (m − 1)2l3sh

( xm

a

)
sh
(

kxm

l

)
+

akl2(m − 1)2ch
( xm

a

)
ch
(

kxm

l

)]
The G deflection influence line difference curvature (∆G − ∆G

′)′′ of the arch rib section
before and after damage can be divided into the following five scenarios (Equations (22)–(26)):

When −l ≤ xm ≤ 0
(∆G − ∆G

′)′′ = 0 (22)

When 0 ≤ xm ≤ d − ε
(∆G − ∆G

′)′′ = 0 (23)

When d − ε ≤ xm ≤ d + ε

(∆G − ∆G
′)′′ =

(
e

xm
a + e−

xm
a

)
2

(
xm∆G3

EIδ33
− xm∆G3

E′ Iδ33
+

∆G1

EIδ11
− ∆G1

E′ Iδ11

)
+(

∆G2

E′ Iδ22
− ∆G2

EIδ22

)
∆2PS1

′′ E′ I +
(

∆G2

E′Aδ22
− ∆G2

EAδ22

)
∆2PS2

′′ E′A

(24)

When d + ε ≤ xm ≤ xG
(∆G − ∆G

′)′′ = 0 (25)

When xG ≤ xm ≤ l
(∆G − ∆G

′)′′ = 0 (26)

According to Equations (22)–(26), when the moving load is located in the non-damaged
sector, the curvature (∆G − ∆G

′)′′ pertaining to the deflection influence line difference of
arch rib section G is zero, whereas when the moving load is located in the non-damaged
sector, and the curvature (∆G − ∆G

′)′′ of the deflection influence line difference is a value
that is not zero, it results in sudden change. Subsequently, the damage location can be
identified and the damage extent can be quantitatively judged according to the magnitude
of the sudden change.

5. Example Analysis
5.1. Accuracy Analysis of the Deflection Influence Line Analytical Solution

To identify the analytical accuracy of the deflection influence line derived in Section 2.2,
a finite element model was established by taking four variable section catenary hingeless
arches as examples; the calculated results of the derived deflection influence line were
compared, and the relative errors of the analytical solution and the finite element numerical
solution were compared. The span of the four arches is 40 m, and the rise–span ratios are
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1/2, 1/3, 1/5, and 1/7, as depicted in Figure 6. The width of the arch rib section is 1 m, and
the height of the mid-span arch section is 1 m. The section height changes according to the
Ritter formula (Equations (4)–(6)), the elastic modulus of the material is 3.45 × 107 kN/m2,
the arch axis coefficient m is 1.988, and the arch thickness change coefficient n is 0.4. The
deflection influence lines of L/2 and L/4 sections for formula analysis and finite element
calculation in this paper are illustrated in Figures 7–10, and the numerical results of typical
sections are depicted in Table 5.
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Figure 7. Section L/2.
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Figure 10. Section L/4.

The comparison between the analytical solutions of different typical sections in
example 1 (unit: m) and the FE numerical calculation are depicted in Figures 7 and 8.

The comparison between the analytical solutions of different typical sections in
example 4 (unit: m) and the FE numerical calculation are depicted in Figures 9 and 10.

From the analysis of Table 5, Figures 7–10, it can be seen that for arch axes with
different rise–span ratios, when the axial force is considered, the deviation between the
deflection influence lines analytical solutions of the four kinds of variable cross-section
catenary hingeless arch in the calculation examples, and the result of the finite element
calculation is less than 6%.

However, when the axial force is not considered, the calculation deviation pertaining
to the deflection influence line analytical solution of the variable section catenary hingeless
arch of 1/2 and 1/3 rise–span ratios can be controlled within 20%. However, the analytical
calculation deviation of the measuring location L/2 of the 1/5 and 1/7 rise–span ratios
deflection influence line is larger than 20%, and the maximum calculation deviation is
greater than 300%.

For the same rise–span ratios, the analytical deviation of the influence line at measuring
location L/4 is generally smaller than that at measuring location L/2, and the influence of
axial force at measuring location L/4 is less than that at measuring location L/2.
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Table 5. Typical cross-section value comparison table of calculation examples.

Load Position

Deflection of Section L/2 L/4

Analytical
Solution/m

Numerical
Solution/m

Relative
Error/%

Analytical
Solution/m

Numerical
Solution/m

Relative
Error/%

Example 1
(rise–span
ratio 1/7)

Axial force
−L/4 5.233 × 10−7 5.540 × 10−7 5.541 5.723 × 10−6 5.795 × 10−6 1.242
L/2 −9.951 × 10−6 −1.017 × 10−5 2.153 5.233 × 10−7 5.540 × 10−7 5.541
L/4 5.233 × 10−7 5.540 × 10−7 5.541 −9.806 × 10−6 −9.988 × 10−6 1.822

Axial force
not

included

−L/4 2.279 × 10−6 5.540 × 10−7 311.460 6.660 × 10−6 5.795 × 10−6 12.987
L/2 −6.660 × 10−6 −1.017 × 10−5 34.540 2.279 × 10−6 5.540 × 10−7 311.460
L/4 2.279 × 10−6 5.540 × 10−7 311.460 8.870 × 10−6 −9.988 × 10−6 11.193

Example 2
(rise–span
ratio 1/5)

Axial force
−L/4 1.296 × 10−6 1.295 × 10−6 0.077 6.131 × 10−6 6.169 × 10−6 0.615
L/2 −8.486 × 10−6 −8.720 × 10−6 2.683 1.296 × 10−6 1.295 × 10−6 0.077
L/4 1.296 × 10−6 1.295 × 10−6 0.077 −9.399 × 10−7 −9.590 × 10−6 1.991

Axial force
not

included

−L/4 2.279 × 10−6 1.295 × 10−6 43.176 6.660 × 10−6 6.169 × 10−6 7.372
L/2 −6.660 × 10−6 −8.720 × 10−6 23.623 2.279 × 10−6 1.295 × 10−6 43.176
L/4 2.279 × 10−6 1.295 × 10−6 43.176 −8.870 × 10−6 −9.590 × 10−6 7.507

Example 3
(rise–span
ratio 1/3)

Axial force
−L/4 1.861 × 10−6 1.795 × 10−6 3.546 6.431 × 10−6 6.417 × 10−6 0.217
L/2 −7.423 × 10−6 −7.700 × 10−6 3.597 1.861 × 10−6 1.795 × 10−6 3.546
L/4 1.861 × 10−6 1.795 × 10−6 3.546 −9.099 × 10−6 −9.322 × 10−6 2.392

Axial force
not

included

−L/4 2.279 × 10−6 1.795 × 10−6 21.237 6.660 × 10−6 6.417 × 10−6 3.648
L/2 −6.660 × 10−6 −7.700 × 10−6 13.506 2.279 × 10−6 1.795 × 10−6 21.237
L/4 2.279 × 10−6 1.795 × 10−6 21.237 −8.870 × 10−6 −9.322 × 10−6 4.848

Example 4
(rise–span
ratio 1/2)

Axial force
−L/4 2.059 × 10−6 1.936 × 10−6 5.973 6.538 × 10−8 6.495 × 10−6 0.657
L/2 −7.055 × 10−6 −7.373 × 10−6 4.313 2.059 × 10−6 1.936 × 10−6 5.973
L/4 2.059 × 10−6 1.936 × 10−6 5.973 −8.991 × 10−6 −9.265 × 10−6 2.957

Axial force
not

included

−L/4 2.279 × 10−6 1.936 × 10−6 15.050 6.660 × 10−6 6.495 × 10−6 2.477
L/2 −6.660 × 10−6 −7.373 × 10−6 9.670 2.279 × 10−6 1.936 × 10−6 15.050
L/4 2.279 × 10−6 1.936 × 10−6 15.050 −8.870 × 10−6 −9.265 × 10−6 4.263

5.2. Arch Rib Structure Example Verification

The hingeless single arch structure finite element model is established as a simplified
model of the bridge arch rib. The span is L = 50.934 m, the material is C50 concrete, and a
rectangular section of 1 m × 1.3 m is utilized, as depicted in Figure 11.
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In the process of example verification, the local damage is simulated by reducing the
element elastic modulus. The section size and the mass of the damaged element remain
unchanged. The damage extent is defined by the percentage decline in the elastic modulus.

The hingeless single arch model is divided into 48 beam elements. The quasi-static
moving force is applied as the influence line loading method, and the length of the loading ele-
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ment is 1.061 m with a total of 49 moving loading steps. Damage conditions 1–5 are illustrated
in Table 6. The noise introduction method is illustrated in Equations (27) and (28) [27,28].

∆i
N = ∆i · [1 + µ · RAND(−1, 1)] (27)

∆N(x′) =
[
∆1

N · · · ∆i
N · · · ∆n

N
]

(28)

where ∆i denotes the deflection data extracted from the measurement location under
the i loading step, ∆i

N denotes the deflection data containing noise at the i loading step,
RAND(−1, 1) denotes a random number that follows a standard normal distribution, µ
denotes the noise extent level, and superscript N indicates that the quantity value has
included the introduced noise information. The damage index is constructed using the
deflection data containing noise to verify the noise immunity of the proposed method.

The moving load is applied to the single hingeless arch structure, and the DILDC curve
of the corresponding measuring location in Table 6 is extracted. The damage identification
results of the arch rib structure identification curve are drawn as illustrated in Figures 12–15
(unit: mm). The damage identification results in the noise condition are drawn as illustrated
in Figure 16 (unit: mm).

Table 6. Damage condition of the arch structure.

Damage Condition Damage Unit Damage Extent Measuring
Location (Point) Result of Identify

Work condition 1 24# 5%, 10%, 20%, 40% 13# Figure 12
Work condition 2 24# 5%, 10%, 20%, 40% 2# Figure 13
Work condition 3 2#, 24# 10% 13# Figure 14
Work condition 4 Between Unit 24# and unit 25# Mid-span plastic hinge 13# Figure 15
Work condition 5 24# 40% (Noise extent 1%, 3%, 5%) 13# Figure 16
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To better explore the effect of measuring location and unit damage extent on DILDC
damage identification, the DILDC index curves of 40% damage and 5% damage extent
in Work condition 1 and Work condition 2 were compared, respectively, as illustrated in
Figures 17–20 (unit: mm).
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Through the analysis of Figures 12–20, the following can be observed:

(1) The DILDC index identification method exhibits a satisfactory identification effect
on both the single location damage and multiple location damage of hingeless arch
structures, and it can accurately identify the damage location.

(2) According to conditions 1 and 2, the amplitude height of the curve is proportional to the
damage extent at the same measuring location. Compared with Work conditions 1 and 2,
the amplitude height of the quarter-span DILDC index curve at the measuring loca-
tion is greater than that at the arch foot, and the damage identification effect of the
measuring location at the quarter-span is better than that at the arch foot. Therefore,
the closer the measuring location is to the damage location, the better the identification
effect will be. It is worth noting that the damage identification effect of DILDC on
unit damage at 40% is better than that of unit damage at 5% under the condition of
one-quarter measuring location, and the situation is the opposite when the measuring
location is located at the arch foot.

(3) Figure 16 indicates that when the damage extent is 40% and the noise extents are
1%, 3% and 5%, the damage location can still be effectively identified, and the noise
immunity of DILDC is good.
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The analytical solution theoretical value derived in Section 4 is compared with the
Work condition of 40% damage extent in Work condition 1.

When the moving load is located at the damage location at the i end of unit 24, the
basic data of the bridge is put into Equation (29):

(∆G − ∆G
′)′′ =

(
e

xm
a + e−

xm
a

)
2

(
xm∆G3

EIδ33
− xm∆G3

E′ Iδ33
+

∆G1

EIδ11
− ∆G1

E′ Iδ11

)
+(

∆G2

E′ Iδ22
− ∆G2

EIδ22

)
∆2PS1

′′ E′ I +
(

∆G2

E′Aδ22
− ∆G2

EAδ22

)
∆2PS2

′′ E′A

= 4.911 × 10−5

(29)

The deviation between the obtained values and the finite element results is 9.1%,
which is analyzed as the deviation caused by curve fitting, and the deviation satisfies the
needs of practical engineering calculation and application.

In order to explore the relationship between damage extent and DILDC amplitude and
to invert the damage extent, DILDC amplitudes under severe damage extent were taken in
Work condition 1. The relationship between damage extent and amplitude is illustrated in
Table 7 and Figure 21.

Table 7. Maximum value of DILDC in different damage extent conditions.

Damage Extent x 0% 20% 40% 60% 80% 90% 99.9%

Amplitude S(x)max 0 2.10 × 10−5 5.40 × 10−5 1.21 × 10−4 2.93 × 10−4 5.67 × 10−4 2.05 × 10−2
Buildings 2024, 14, x FOR PEER REVIEW 20 of 26 
 

 

Figure 21. Relation between damage extent and DILDC. 

As shown in Figure 21, when the damage extent is less than 90%, the amplitude of 

DILDC changes gently, and the increase in the damage extent of elements has little impact 

on the structural rigidity characteristics and has a certain safety reserve. However, with 

the increase in the damage extent, the amplitude of DILDC changes sharply and long, and 

the damage extent has a greater impact on the structural rigidity characteristics, and the 

structural safety performance becomes low. This is consistent with the actual structural 

damage change law. 

The DILDC amplitude in Figure 21 is fitted with the damage extent, and the fitting 

results are shown in Equation (30), where the subscript of DILDCa-b amplitude a-b repre-

sents the amplitude of unit b in Work condition a. 

5 4 3 2

1-24( ) 1.2372 2.7658 2.1637 0.687 0.0725 0.00004DILDC x x x x x x= − + − + −  (30) 

The goodness of fit was analyzed, and the determination coefficient R = 0.981 indi-

cated that the fitting effect was good. Taking the arch rib structure as an example, the 

damage extent could be directly obtained by substituting the DILDC amplitude into Equa-

tion (30) for the determined work conditions. 

In Work condition 4, the rigid joint is weakened into a hinge to simulate the plastic 

hinge in the actual structure. The DILDC value of the damage location is substituted into 

Equation (30), and the calculated damage extent x is 90.95%, which is close to 100.00% in 

the case of complete damage. 

5.3. Example Verification of Deck Box-Type Arch Bridge 

The model of a single-span concrete deck box arch bridge is established, and the prac-

ticability of the damage identification method is verified. The quasi-static moving force is 

applied as the influence line loading method, and the length of the deck is 120 m with a 

total of 29 moving loading steps. The span of the arch bridge model is 116 m, the main 

arch ring is made of C40 concrete, and the elastic modulus is 32.5 Gpa. The model com-

prises 82 units and 96 nodes. The finite element model and component dimensions of the 

deck box-type arch bridge are illustrated in Figures 22 and 23. 

0 10 20 30 40 50 60 70 80 90 100

0.0

5.0x10-3

1.0x10-2

1.5x10-2

2.0x10-2

Damage extent(%)

D
IL

D
C

(m
m

)

 Work condition1~24

Figure 21. Relation between damage extent and DILDC.

As shown in Figure 21, when the damage extent is less than 90%, the amplitude of
DILDC changes gently, and the increase in the damage extent of elements has little impact
on the structural rigidity characteristics and has a certain safety reserve. However, with
the increase in the damage extent, the amplitude of DILDC changes sharply and long, and
the damage extent has a greater impact on the structural rigidity characteristics, and the
structural safety performance becomes low. This is consistent with the actual structural
damage change law.

The DILDC amplitude in Figure 21 is fitted with the damage extent, and the fitting
results are shown in Equation (30), where the subscript of DILDCa-b amplitude a-b represents
the amplitude of unit b in Work condition a.

DILDC1-24(x) = 1.2372x5 − 2.7658x4 + 2.1637x3 − 0.687x2 + 0.0725x − 0.00004 (30)
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The goodness of fit was analyzed, and the determination coefficient R = 0.981 indicated
that the fitting effect was good. Taking the arch rib structure as an example, the damage
extent could be directly obtained by substituting the DILDC amplitude into Equation (30)
for the determined work conditions.

In Work condition 4, the rigid joint is weakened into a hinge to simulate the plastic
hinge in the actual structure. The DILDC value of the damage location is substituted into
Equation (30), and the calculated damage extent x is 90.95%, which is close to 100.00% in
the case of complete damage.

5.3. Example Verification of Deck Box-Type Arch Bridge

The model of a single-span concrete deck box arch bridge is established, and the
practicability of the damage identification method is verified. The quasi-static moving force
is applied as the influence line loading method, and the length of the deck is 120 m with a
total of 29 moving loading steps. The span of the arch bridge model is 116 m, the main arch
ring is made of C40 concrete, and the elastic modulus is 32.5 Gpa. The model comprises
82 units and 96 nodes. The finite element model and component dimensions of the deck
box-type arch bridge are illustrated in Figures 22 and 23.
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Next, we explored the damage identification effect of DILDC on the deck-type box
arch bridge. According to the damage of the main arch ring of the main load-bearing
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component in practical engineering, five damage conditions are established, as illustrated
in Table 8 and Figure 24.

Table 8. Damage condition of deck box-type arch bridge.

Damage Condition Damage Unit Damage Extent Measuring
Location (Point)

Identify the
Result

Work condition 1 Main arch ring top 72# 5%, 10%, 20%, 40% 81# Figure 25
Work condition 2 Main arch ring top 72# 5%, 10%, 20%, 40% 76# Figure 26
Work condition 3 Main arch ring top 72# 5%, 10%, 20%, 40% 87# Figure 27
Work condition 4 Main arch ring 56, 80# 5% 81# Figure 28
Work condition 5 Main arch ring top 72# 5% (Noise intensity 1%, 3%, 5%) 81# Figure 29
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Figure 24. Main arch span damage condition and arrangement measuring location.
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Figure 25. Work condition 1.
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Figure 29. Work condition 5.

The damage identification results of the arch ring structure identification curve are
drawn as illustrated in Figures 25–28 (unit: mm). And the damage identification results in
noise condition are drawn as illustrated in Figure 29 (unit: mm).

According to the analysis of Figures 25–28, for the deck box-type arch bridge, due
to the limited number of actual force-transmitting structure columns and the unbalanced
force on the main arch ring, the identification effect is not good. Therefore, the DILDC
index obtained is processed by sliding average filtering. The numerical examples show
that the filtered DILDC index has a good effect on the damage identification of the main
arch ring structure, and the amplitude of the DILDC index curve changes with the change
in damage extent. The higher the damage extent, the higher the amplitude. According
to Work conditions 1, 2 and 3, the amplitude of the curve decreases with the position of
the deflection measuring location from mid-span, one-quarter and arch foot. According
to Work condition 4, it can be seen that the multi-point damage of the structure still has a
good identification effect.

Figure 29 indicates that the DILDC index after filtering and noise reduction also
exhibits a satisfactory noise immunity to 5% low damage extent structures.

6. Practical Process of Damage Identification for Hingeless Arch Bridges

In order to solve the problem that it is difficult to apply single-axis concentrated load
in a beam bridge influence line test, a three-step loading scheme based on moving load
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reduction is proposed to diagnose beam bridge damage quickly when traffic is interrupted
for a short time [29,30], as illustrated in Figure 30.

(1) Select two two-axle loading vehicles with the same wheelbase and different front-to-
rear axle load ratios. The front, back and axle of each vehicle can be simplified to
the same relative position, while the value of the concentration force is different. It
should be noted that the actual loading efficiency should consider both the effective
stimulation of the structure and the potential damage condition of the bridge. Due to
the limitation of the length of this study, we will not conduct in-depth research here.

(2) Two vehicles are used to carry out quasi-static influence line loading on the bridge,
respectively, requiring the same virtual loading node of the bridge for two times the
influence line loading, which can be achieved by controlling the moving speed of the
loading vehicle and extracting and recording the two deflection response data.

(3) Find the lowest common multiple A1 and A2 of the equivalent concentrated force
Ff 1 and Ff 2 of the front axles of the two vehicles; then, amplify the difference after
the equivalent concentrated force of the rear axles of the two vehicles by the corre-
sponding magnification, and

∣∣∣A1Ff 1 − A2Ff 2

∣∣∣ is the equivalent loading concentrated
force. The deflection data Di11 and Di12 measured two times are amplified, and then
the deflection response |A1Di11 − A2Di12| corresponding to the concentrated force
loading is obtained, which can be used to diagnose bridge damage.
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7. Conclusions

(1) The deflection influence line analytical solution of the hingeless arch in non-damaged
condition is derived. It is found that the error of the analytical solution is up to 5.973%
when the axial force is considered. The analytical solution can meet engineering
precision requirements.

(2) The DILDC solution before and after structural damage was derived, and the feasibil-
ity of damage identification of a hingeless arch structure by deflection influence line
differential curvature was proved theoretically. It is verified by FE analysis software.

(3) In actual engineering, damage amplitude can be determined by the DILDC; after-
wards, the DILDC amplitude curve under different damage conditions can be simu-
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lated by FE software, and the damage extent and amplitude relationship formula can
be fitted to invert the damage extent so as to achieve accurate damage quantification.

(4) The results show that the amplitude of DILDC index curve is proportional to the
damage extent, and the DILDC index has a good effect on the identification of single-
location and multiple-location damage of the arch bridge.

(5) The research in this paper contributes to the development of damage diagnosis
and load capacity assessment methods for arch bridges. With a combination of
existing bridge monitoring methods, the identification method of arch-bridge damage
proposed in this paper has the prospect of facilitating routine health assessment of
in-service arch bridges in the future.
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