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Abstract: This paper studies the dynamic response of corner-supported modular steel buildings with
a core wall system, under progressive collapse scenarios, associated with corner module removals.
Since using secondary systems such as concrete core in mid- to high-rise buildings is currently
unavoidable, understanding their impact on load transfer between modules during collapse scenarios
becomes essential. The designated four-, eight-, and twelve-story buildings were modelled using
the macro-model-based finite element method in Abaqus. In addition, three different locations are
considered for the concrete shear core within the building plan, leading to nine various case scenarios.
Each vertical and horizontal inter-module connection was modelled by one axial and two shear
springs with predefined nonlinear force-displacement behavior. The local and global buckling, which
plays an essential role in the building’s stability, was considered to obtain accurate results. Finally,
parametric studies on the building response were carried out, including the intra-module connection
rigidity and inter-module connection stiffness. The results demonstrated that the core wall could
maintain the robustness of a modular steel building through two mechanisms dependent on its
location within the plan. In addition, preventing plastic hinges from forming in beams could be
introduced as an anti-collapse mechanism in the corner module removal scenarios.

Keywords: anti-collapse; shear wall; progressive collapse; plastic hinge; robustness; buckling

1. Introduction

Modular steel buildings (MSBs) are construction systems made of repeating pieces
known as prefabricated or prefinished modules. This system has quickly gained popularity
in many countries as it offers several benefits, including fast-track construction, off-site
construction, cost-effectiveness, less site waste, and lower environmental impact [1–3]. The
corner-supported modular building, as shown in Figure 1, is one type of MSB in which each
module is tied at its corners by horizontal connections (HC) as well as vertical connections
(VC), which are called inter-module connections (see Figure 1a) and intra-module connec-
tions (Figure 1b). The interconnection with corner posts is the sole component responsible
for transferring loads from one module to another.

A typical structural layout for modular structures is comprised of stacked modules to
carry gravity loads and a core system to mainly resist lateral loads [4]. This paper presents
the impact of a core system on the collapse capacity of the MSB against corner module loss
scenarios by adopting the results of nine different cases.

The inter-module connections act as the linking elements between modules for load
distribution and efficient load transfer to the foundation. Since these connections play a
key role in the stability of the entire building [5], most of the research studies in the litera-
ture have been focused on the structural performance or constructional challenges [6–8].
Lacy et al. [6,9] studied the stiffness of bolted connections and showed that rotational stiff-
ness has a modest impact on global structural responses. It was concluded that simplified
modelling of inter-module connections could accurately predict overall building response
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under gravity and lateral demands [10]. Peng et al. [11] developed a tenon inter-module
connection using spring elements in Abaqus, which significantly lowered the computational
expenses. Feng et al. [12] studied the seismic performance of four types of inter-module
connection for modular box buildings, and the results showed that none satisfied Chinese
code limitations such as inter-story drifts. Similarly, Peng et al. [13] showed that 12-story
MSBs cannot meet the drift requirements against service wind loads.
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Figure 1. A typical view of MSB with: (a) inter-module connection; (b) intra-module connection.

Some notions have been put forward in recent research to overcome the former
shortcomings, ranging from developing innovative inter-modular connections [14–16]
as well as precast concrete core wall systems [17–19] to various module layouts [20,21].
Therefore, a secondary system, such as a core wall system, is essential in mid- to high-rise
MSBs [22]. Chua et al. [18] and Yee [23] investigated the lateral performance of a high-rise
MSB with a central concrete core. Bi et al. [19] also studied the lateral performance of
a multi-story MSB with two concrete cores under wind loads, as a case study located
in China.

From the MSB collapse perspective, several studies have been undertaken. Luo et al. (2019)
studied steel-frame progressive collapse by assuming that all connections are rigid [24].
However, actual connection behaviors would also be necessary to understand the ex-
tent of damage in the aftermath of a blast or fire events. Alembagheri et al. [25,26] and
Sharafi et al. [27] investigated the collapse capacity of rigid modular buildings in the macro
model context, in which the connections were modelled by translational axial and shear
nonlinear springs. In addition, their early work on the progressive collapse of a flexible
six-story modular steel frame revealed that the global column buckling dominates the pro-
gressive collapse response of the building [28]. The behavior of semi-rigid joints is one of
the issues that should be addressed in simplified numerical methods [29,30]. Thai et al. [31]
performed a parametric study on the progressive collapse of a 12-story braced MSB. The
results showed that the robustness of modular buildings is significantly increased by a
bracing system, as it decreases the effective length of columns. Likewise, it was indicated
that the MSB‘s ability to withstand collapse can be improved by up to 50% when wall
panels are tied in each module [32].

As using alternative lateral-force-resisting systems in mid- to high-rise MSBs to meet
drift requirements is unavoidable, a comprehensive study on their role in collapse scenarios
is essential. In the current literature, this is mostly performed based on the progressive
collapse of modular steel buildings without considering the contribution of the secondary
systems such as shear wall (core) or bracing systems. This paper studies the dynamic
response of corner-supported modular steel buildings incorporating a core wall system
when subjected to progressive collapse scenarios, with a focus on recognizing the role of
secondary systems. The primary aim of the current study is to provide insight into the
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impact of these systems on load redistribution and the structural robustness of the building
during the loss of a corner module. For this purpose, nine modular building cases are
considered, with four, eight, and twelve stories and three different locations on the plan for
a core wall system. The inter-module connections are modelled using the macro-model-
based finite element method. A guideline based on the alternative path method is used to
study the collapse response of modular buildings, and the corner modules are considered
a missing vertical-load-bearing component. Then, a parametric analysis is conducted to
examine the effect of inter-module connection stiffness, intra-module joint rigidity, and
plastic hinges on the MSBs’ robustness.

2. Gravity-Induced Progressive Collapse

All buildings contain critical components that, if lost under extreme conditions such as
blast, might cause the entire structure to collapse. The alternative load path (ALP) method
has been developed to address this issue. The ALP method is a threat-independent method,
in which a critical component of a building is removed, and then the ability of the building
to survive the loss scenario is investigated [33–38]. If the other components are capable of
resisting the redistributed loads, the building is deemed to be robust; otherwise, it may
result in a cascading failure and progressive collapse unless an essential element design or
segmentation is introduced [39]. The probable ALPs due to corner module loss are shown
in Figure 2.
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3. Simulated Modular Building

A typical plan shown in Figure 3a is chosen to study the robustness of modular
buildings with cores. There are 15 modules in three rows, with the middle module con-
sidered a corridor. In this study, the shear walls are in three zones: zone (1), zone (2), and
zone (3). There are two types of modules: the first has a 6 m length, 3 m width, 3 m height,
and a total mass of 20 tons; the other has a 3 m length, 3 m width, 3 m height, and a total
mass of 10 tons. It should be noted that the mass of each module is calculated by adopting
dead loads plus 25% of live loads specified by GSA guidelines [37]. The horizontal and
vertical clearances between neighboring modules are 0.2 m, as depicted in Figure 3b. Three
building heights are considered in this study.
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All buildings were designed in accordance with the requirements of AS1170 and
AS4100 [40]. The design resulted in SHS 100 × 100 × 9 for columns, 180 UB for floor
beams, and 150 UB for ceiling beams. The steel material for columns was assumed as a
tri-linear elastoplastic [41] model with an initial yielding stress of 350 MPa, and an ultimate
strength of 490 MPa at a plastic strain of 0.02. For beams, however, steel is treated as an
elastic material because plastic hinges are regarded at their ends. Furthermore, a density
of 7800 kg/m3, Young’s modulus of 200 GPa, and Poisson’s ratio of 0.25 were considered
for steel material. A thickness of 250 mm was adopted for the concrete core wall with
elastic material behavior, and the concrete density, Young’s modulus, and Poisson’s ratio
were, respectively, assumed to be 2400 kg/m3, 30 GPa, and 0.3. The finite element (FE)
mesh discretization developed in the Abaqus program is shown in Figure 4. All beams
and columns were modelled using two-node linear beam in space (B31) elements and the
core wall was simulated using four-node doubly curved thin shell elements with reduced
integration, hourglass control, and finite membrane strain (S4R). A tie constraint was
adopted to link shell nodes to the adjacent beam nodes. A clamped restraint was adopted
to fix column nodes to the ground.
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This study had two types of connections: inter-module and intra-module connections.
Adjacent modules were connected to each other via inter-module connections including
6M24 class 10.9 bolts, simplified with two horizontal connectors (HCx, HCz) and one
vertical connector (VC), as depicted in Figure 4.

A Cartesian connector element, available as a built-in connection in Abaqus, was
defined with the force-displacement relations proposed in [6], as shown in Figure 5. The
Cartesian connection type connects two nodes where the response in three local connec-
tion directions is defined. It was assumed that vertical and horizontal connections were
eliminated from the model after reaching their failure points as listed in Table 1. Note
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that the rotational stiffness of inter-module connections was neglected based on previ-
ous research [25] because the load-bearing mechanism in MSBs is primarily governed by
shear transfer.
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Table 1. Failure limits of inter-module connections.

Connection Axial Failure Force Shear Failure Force

Vertical (VC) 1700 KN 2000 KN

Horizontal (HC) 1200 KN 2000 KN

Intra-module connections, referred to as beam-column connections within a module,
were assumed to be rigid. However, concentrated plastic hinges were assigned to both ends
of the beam element to consider the effects of local buckling. The hinges were modelled as
rotational springs with a symmetric quadrilinear moment rotation relationship for positive
and negative rotations. The capacity of these hinges was based on the theoretical moment-
curvature (M-
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The nonlinear dynamic analysis was performed using the implicit dynamic solver in

Abaqus [43]. At first, an eigenvalue buckling analysis was performed, and buckling mode
shapes were determined and imposed as an initial state to the model. This analysis that
predicts the collapse mechanism was performed using the subspace iteration method to
extract the buckling modes. This analysis provides buckling eigenvalues and buckling
modes, which are used in the post-buckling analysis by determining the initial geometric
imperfection. Next, the gravity loads, including modules’ dead and live loads, were applied
gradually through the quasi-static step. The corner module was eventually removed from
the model within 0.0001 s, and the dynamic response of the remaining model was monitored
until it reached an equilibrium state.

Due to the limited availability of experimental tests specifically addressing the dy-
namic collapse of modular buildings, the validation of the numerical modelling procedure
presented in this study relies on the utilization of previously published numerical models.
To achieve this, we developed a steel modular building, which had been previously exam-
ined by Luo et al. [24], employing the methodology described in this paper. As shown in
Figure 6, there is an acceptable agreement between the developed model that had been
verified in our previous research [25] and the original model of Luo et al. [24].
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4. Response under Module Loss Scenario

The dynamic responses of different cases, reported in Table 2, are presented and
compared in this section, to evaluate the core wall’s role in the building’s robustness. To
that end, the response history of corner roof displacements, the maximum stress of the
shear wall, plastic hinges distribution, and internal forces in critical members in Figure 7 are
reported. In addition, maximum dynamic to static response ratio (DSR = rmax,dyn/rstatic),
the dynamic increase factor (DIF = rmax,dyn/rfinal), demand-capacity ratio (DCR), and some
design implications are addressed in this section. Note that rstatic is considered as a force at
the end of the quasi-static gravity step, and rmax,dyn is the maximum element force after the
corner modules’ removal.

Table 2. Overview of collapse analysis cases and corresponding building configurations.

Case No. Story No. Building Frame Types

1 4 Bare frame (4 s)
2 8 Bare frame (8 s)
3 8 Bare frame + shear core at zone 1 (8 sw1)
4 8 Bare frame + shear core at zone 2 (8 sw2)
5 8 Bare frame + shear core at zone 3 (8 sw3)

6 12 Bare frame (12 s)
7 12 Bare frame + shear core at zone 1 (12 sw1)
8 12 Bare frame + shear core at zone 2 (12 sw2)
9 12 Bare frame + shear core at zone 3 (12 sw3)Buildings 2024, 14, x FOR PEER REVIEW 8 of 24 
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4.1. Four-Story Structure

In the first case, the structure was robust after the corner module’s sudden removal
because no column buckling occurred. The time history of lateral and vertical displacements
of the roof corner, labelled A, is shown in Figure 8a. The maximum vertical and lateral
displacements are about 18 cm and 7 cm, respectively.
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In this case, Column#1 carried the highest load, about 560 kN, with a corresponding
DSR = 3.25 and DIF = 1.15. The critical buckling load of columns was about 860 kN. In
the corner module removal scenario, Column#1 has a key role in the stability of the entire
building because, as shown in Figure 9, substantial load distribution occurs. The time
history of axial load in beams shows that they are in compression, and Beam#3 has the
highest value. Additionally, it was observed that, despite employing plastic hinges in the
finite element model of the MSBs, no plastic hinges formed. This aligns with the findings
of the previous study [28], which discussed that in the scenario of corner module removal
in low-rise MSBs, the formation of plastic hinges can be disregarded as global column
buckling is the dominant behavior.
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After removing the corner module, no inter-module connection failure is observed
(see Figure 10). As mentioned above, the failure values for inter-module connections are
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summarized in Table 1. The compressive force in VC#3 is similar to that in Column#1.
HC#1 carries the highest shear force, corresponding to DCR = 160/2000 = 0.08, indicating
that the redistributed load flows mainly in the X direction rather than Y.
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4.2. Eight-Story Structure

In the second case, the eight-story MSB was inadequate to maintain its robustness
and collapsed. The collapse sequence of case no. 2 is shown in Figure 11. In the previous
case, it was shown that Column#1 is very prone to buckling because of substantial load
redistribution. Accordingly, in case no. 2, the collapse was triggered by the buckling of
Column#1 located close to the removed module and was accompanied by the buckling of
Column#2 after a while. As depicted in Figure 12b, after a second of removing the corner
modules, the maximum vertical and lateral displacements are about 49 cm and 20 cm,
respectively. Then, due to successive buckling of columns in the front row, the building
tends to overturn around the x-axis.
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Figure 11. Deformation of case no. 2 in different time frames after sudden removal of corner module.

The initial plastic hinges, which play an essential role in the robustness of the buildings,
are shown in Figure 12a. The hinges are formed in the ceiling beams of the modules right
close to the removed one because the rotation of these beams resulting from unsymmetrical
deflection is more pronounced than those above the removed modules. After removing
the corner modules, the main part of the gravity load tolerated by the removed columns is
transferred to Column#1. Moreover, the plastic hinge formation in the beams connected to
the Column#1 increases the effective length factor, K, so that exacerbates the situation of
the partially buckled column. The K-factors determining the effective length of columns in
corner-supported steel modular buildings are investigated by Farajian et al. [44–46], with
consideration for both sway and non-sway frames.

To explore the impact of the core wall on the collapse behavior of the MSB against
corner module removal, the core wall system was installed in three zones (case no. 3–5),
and their responses were compared with that of the bare frame (case no. 2).
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Figure 12. (a) Distribution of plastic hinges at elevation: 1, 0.4 s after the sudden removal of the
corner module. (b) Time history of global displacements of the roof corner above the missing module.

It was shown that the core wall located at the center of the building (case no. 3)
arrested the collapse of the building under the corner module loss scenario. The lateral
displacements in cases no. 2 and 3 were approximately equal when the building was in a
stable state. Despite the buckling of Column#1 and the significant vertical displacement of
about 520 mm depicted in Figure 13a, the building maintains its robustness under dynamic
loads. The time history of lateral and vertical displacements of the roof corner is shown in
Figure 13b. The distribution of the first plastic hinges is the same as in case no. 2.
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The time history of axial forces in several beams and columns in case no. 2 and
case no. 3 is compared in Figure 14. In case no. 2, the DSR of Column#1 and Column#2 are
2.87 kN and 3.34 kN, respectively. The highest load redistribution in Column#2 for case
no. 3 and case no. 2 is about 867 kN and 993 kN, respectively. In case no. 3, where the core
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wall was cantered, beams experienced more fluctuation in their axial load immediately
after module removal. The axial forces in Beam#1 and Beam#2 were the opposite of each
other. As Beam#2 was linked to HC#1, it had to bear tensile load, while Beam#1 suffered
compressive load. In case no. 3, after the buckling of Column#1 occurred, twice as many
loads were redistributed in these beams compared to case no. 2. This showed that the
concrete core led to better load sharing through the beams in the vicinity of removed
modules. Thus, the less axial load is redistributed to Column#2, as shown in Figure 14a.
The maximum redistributed load in Column#2 is reduced by 12% compared with case no. 2.
In both cases no. 2 and no. 3, Column#1 carried a load of about 1100 kN, which was higher
than the buckling capacity.
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Figure 14. Time history of axial forces in some (a) columns and (b) beams, close to the missing module
in an 8-story building.

Regarding inter-module connections, as shown in Figure 15, when Column#2 buckles
in case no. 2, the load-bearing capacity of HC#2 tends to zero. Despite the high deformation
of the building, no inter-module connection failure was observed because the dynamic
redistribution in inter-module connections, especially HC#1, which was considered the
most critical connection, was much lower than failure values. In both cases, The HC#1
maximum shear force was about 300 kN with a DCR of 300/2000 = 0.15. The highest force
redistribution through the inter-module connections was the axial force in VC#3, which
was approximately equal to the buckling load in Column#1.
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In the following, the outcomes of cases no. 4 and 5 are compared with case no. 3. The
results of case no. 4 and case no. 5 in terms of displacements, axial forces, and inter-module
connection forces are very close to each other. However, the axial force in Column#2 of
case no. 5, which was attached to shear walls, was reduced by about 50% compared with
case no. 4. Contrary to case no. 3, when the core wall was directly connected to the removal
zone through inter-module connections, the shear wall reduced horizontal displacements,
as observed in Figure 16b. The lateral Z displacement in case no. 4 is about 50% less than
in case no. 3.



Buildings 2024, 14, 235 12 of 23

Buildings 2024, 14, x FOR PEER REVIEW 12 of 24 
 

dynamic redistribution in inter-module connections, especially HC#1, which was consid-
ered the most critical connection, was much lower than failure values. In both cases, The 
HC#1 maximum shear force was about 300 kN with a DCR of 300/2000 = 0.15. The highest 
force redistribution through the inter-module connections was the axial force in VC#3, 
which was approximately equal to the buckling load in Column#1. 

 
  

Figure 15. Time history of the axial and shear forces in some critical HCs and VCs of an 8-story 
building. 

In the following, the outcomes of cases no. 4 and 5 are compared with case no. 3. The 
results of case no. 4 and case no. 5 in terms of displacements, axial forces, and inter-mod-
ule connection forces are very close to each other. However, the axial force in Column#2 
of case no. 5, which was attached to shear walls, was reduced by about 50% compared 
with case no. 4. Contrary to case no. 3, when the core wall was directly connected to the 
removal zone through inter-module connections, the shear wall reduced horizontal dis-
placements, as observed in Figure 16b. The lateral Z displacement in case no. 4 is about 
50% less than in case no. 3. 

 

 

(a) (b) 

Figure 16. (a) The final equilibrium position of the structure after corner module removal. (b) Time 
history of global displacements of the roof corner above the missing module, designated by A. 

Figure 17 shows that the time history of axial forces in the columns is virtually the 
same; however, the redistributed load for Column#2 in case no. 4 is a bit higher than in 
case no. 3. Although the shear core did not reduce the redistributed load in Column#2, the 
vertical displacement that the building undergoes is a little less than in case no. 3. This is 
because of decreasing the horizontal displacements provided by the stiff core wall, con-
nected directly to the modules above the missing modules. In fact, as illustrated, the hor-
izontal displacements can accelerate the column’s buckling, and restraining them helps 
the building stay robust. 

Figure 16. (a) The final equilibrium position of the structure after corner module removal. (b) Time
history of global displacements of the roof corner above the missing module, designated by A.

Figure 17 shows that the time history of axial forces in the columns is virtually the
same; however, the redistributed load for Column#2 in case no. 4 is a bit higher than in
case no. 3. Although the shear core did not reduce the redistributed load in Column#2,
the vertical displacement that the building undergoes is a little less than in case no. 3.
This is because of decreasing the horizontal displacements provided by the stiff core wall,
connected directly to the modules above the missing modules. In fact, as illustrated, the
horizontal displacements can accelerate the column’s buckling, and restraining them helps
the building stay robust.
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Figure 17. Time history of axial forces in some columns.

It can be seen from Figure 18 that the tensile envelope contours mostly appeared on
the walls that are parallel to the X-direction. The maximum tensile stress is about 2.7 MPa,
which is lower than the ultimate tensile strength of concrete. The majority of the envelope
contour is located in the walls of the first four stories of the MSB. Moreover, the bracing
effect on these walls can be seen. Therefore, walls with less thickness or fewer braces should
be considered for upper levels. On the other hand, the maximum compressive stress is just
limited to the vicinity of columns.
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Figure 18. Envelope contours of: (a) maximum principal (tensile) and (b) minimum principal
(compressive) stress of the shear core located at zone 1.

4.3. Twelve-Story Structure

In the sixth case, the 12-story MSB, considered as a high-rise building, the structure
collapses two seconds after removing the corner module. The collapse sequence of this case
is shown in Figure 19. Analogous to the eight-story MSB, the collapse initiates with the
buckling of Columns#1 and #2 but continues with the buckling of the rest of the columns at
the first and second story simultaneously. As seen in Figure 19, 0.5 s after removing the
corner modules, the maximum vertical and lateral displacements are about 500 mm and
110 mm, respectively. Then, due to further column buckling at the front row, the building
tends to overturn about the x-axis.
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As shown in Figure 20a, the first set of plastic hinges formed in 0.6 s after the sudden
removal of corner modules at the first elevation. Unlike the eight-story MSB, no hinges
are observed at the first story immediately after module removal. In addition, the hinges
are extended to the center modules at the first elevation, demonstrating that more beams
participated in load bearing.
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Figure 20. (a) Distribution of plastic hinges at elevation: 1, 0.6 s after sudden removal of corner
module. (b) Time history of global displacements of the roof corner above the missing module.

In the following, the effect of the shear wall (case no. 7–9) on the collapse behavior of
a 12-story MSB is studied. It is shown that the core wall system located at the center of the
building (case no. 7) does not prevent the building from collapsing. The time history of
lateral and vertical displacements of the roof corner is shown in Figure 21b. The maximum
lateral displacements at the beginning are about zero, eventually reaching about 500 mm.
Similar to case no. 6 (bare frame), the slope of the vertical displacement is constant because
columns at the first and second floor buckle successively. The distribution of the first set of
plastic hinges is the same as in case no. 6.
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The time history of axial forces in several beams and columns in case no. 6 and
case no. 7 is compared in Figure 22. Like the previous cases, a part of the loads is
redistributed by an additional load path, owing to the core wall, in Beam#1 and #2. In both
cases, the redistributed load in Column#2 and Column#1 is more than the critical buckling
load, which is about 860 kN, as shown in Figure 22a. In case no. 6, Column#1 tolerates the
highest load of about 1051 kN with the corresponding DSR = 1071/465 = 2.3.
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in a 12-story building.

As shown in Figure 23, there is still a high level of strength reserve capacity in the inter-
module connections. VC#3 suffers the maximum compressive force with corresponding
DCR = 1071/1700 = 0.63. In case no. 7, the shear force in HC#1 increases to 500 kN due to
the buckling of a column close to Column#3 on the second floor.
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As the results of case no. 8 and case no. 9 were approximately identical, case no. 8 is
compared with case no. 7. The results, depicted in Figure 24, in terms of displacements,
axial forces, and inter-module connection forces are very close. In these cases, neither
alternative loading paths due to the shear core nor limiting the lateral displacements help
the building’s robustness.

In terms of the concrete core’s stress pattern, like the 8-story MSB, most envelope
contour is located at the first half-height of the 12-story MSB. The maximum compressive
stress is localized in the vicinity of columns, and the maximum tensile stress is found in the
floor and ceiling beams. The maximum tensile stress is about 3.44 MPa, near the ultimate
tensile strength of concrete, and the maximum compressive stress is about 12 MPa, which
is much lower than its capacity.

In summary, the final state of each case against the corner module loss scenario is
presented in Table 3. In cases no. 6–9, because many columns start buckling at the same
time, the core wall cannot safeguard the building’s stability via improving load sharing or
reducing lateral displacements.
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Table 3. Summary of building’s stability results.

Cases Stability State Main Reasons

(1) 4 s stable No column buckling
(2) 8 s collapsed Buckling C#1 and C#2
(3) 8 sw1 stable Less redistributed load in C#2
(4) 8 sw2 stable Less lateral displacements
(5) 8 sw3 stable C#2 constrained with concrete core

(6) 12 s collapsed Several columns buckling
(7) 12 sw1 collapsed Several columns buckling
(8) 12 sw2 collapsed Several columns buckling
(9) 12 sw3 collapsed Several columns buckling

5. Parametric Investigation

A parametric study is conducted to explore the effects of the inter-module connection’s
behavior and the rigidity of intra-module connections on the overall response of the build-
ing, and the results are presented. The former section indicated that the ultimate capacity
of the initial design of inter-module connections is much higher than the corresponding
demand. Therefore, the effects of the weakened connections in terms of stiffness and
strength on the overall response of the building are studied. In addition, the effect of the
rigidity of the beam-to-column connection on the collapse capacity of the building, which
is yet to be identified, is investigated.

5.1. Inter-Module Connection: Stiffness and Strength Change

The horizontal and vertical springs are softened, as described in Figure 25 [25], to study
the impact of stiffness and strength reduction on the robustness of the MSB. In this process,
the force at each displacement is decreased, whereas the corresponding displacement
remains constant. The effects of the HCs and VCs are studied separately.

The HCs’ and VCs’ springs are softened by 50% and 90%; then, the results are com-
pared to the baseline models (case no. 2 and case no. 6). Starting with the eight-story MSB,
no inter-module connection failure is observed when the horizontal or vertical springs
are softened by 50%. Therefore, as depicted in Figure 26, the vertical displacements and
redistributed loads in critical connections are approximately the same as in the base model.
On the other hand, the situation for 90% softening is different because of the failure of
several inter-module connections. In the model where the vertical connections are 90%
softened, the collapse will happen sooner because of the failure of VC#3. As shown in
Figure 27a, its value reaches zero 0.5 s after corner module removal. As shown in Figure 28a,
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the failure propagates to the upper stories and side modules. The early-stage failures that
take 2 s are limited to the fourth row of modules.
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(b) 90% HC softening.

When the horizontal connections are 90% softened, failure of the inter-module connec-
tions leads to a delay in the collapse of the whole building for 12 s. The failure sequence
of the inter-module connections is shown in Figure 28. After the buckling of Column#1,
bridging of the remaining load to Column#2 is postponed because of the failure of several
HC connections, as shown in Figure 28b; then, two columns in the second story, shown
in this figure, start to buckle. After 12 s, the collapse will happen because of the buckling
of Column#2 and the numerous columns of the first and second stories. This shows that
the building had a higher resistance capacity against buckling and collapse. In addition,
unlike the past study where the modules were solid, the successive failure of inter-module
connections is not started by losing HC#1.

To recap, softening horizontal connections can convey the redistributed loads from
critical columns to other members. Moreover, identifying the first inter-module connection
prone to failure in critical situations helps the designers prevent damage propagation to
other modules.

In the 12-story MSB, like the 8-story model, no inter-module connection fails when
they are softened by 50%. Consequently, as depicted in Figure 29, the vertical displacements
and redistributed loads in critical connections also have the same values as the base model.
In 90% HCs, softening the premature failure in inter-module connections is not limited
to HCs of the first row. Several HCs of the first and second stories, connecting the first-
row modules to the corridor modules, failed. Since the base columns must bear more
loads in 12-story buildings than in 8-story building, more than just one column starts to
buckle immediately after module loss. Thus, the failure of inter-module connections cannot
change the situation as it does in the eight-story building. It should be noted that the first
inter-module connection that begins to fail for both 90% HCs and 90% VCs is the same as
an eight-story building.
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Figure 29. Time history of vertical displacements of the roof corner above the missing module,
designated by A.

5.2. Intra-Module Connection: Pin/Rigid, Plastic Hinges, and Anti-Collapse Remediation

To investigate the impact of plastic hinge formation on the robustness of MSB, the
eight-story MSB (case no. 2) is envisaged precluding local buckling. Figure 30 shows that
this assumption conservatively ensures the building’s robustness. It should be noted that
this assumption for the building with fewer stories, such as in case no. 1 and the one in the
former study [23] with less likelihood of plastic hinge formation, can substantially improve
computational runtime.
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To study the effect of fully pinned intra-module connections on the robustness of
the eight-story building, all semi-rigid beam-column connections turn into pinned ones.
In the pinned model, since there is less restraint at both ends of columns, the second-
and third-story columns become easily distorted after a sudden removal of the corner
modules. In Figure 31, at the time frame of 0.5 s after module removal, the first- and second-
row columns in the second and third story drift oppositely. This results in the buckling
of the base columns and the collapse of the whole building. The maximum horizontal
displacement of the building has occurred at the level where a module is removed. In
contrast, the maximum displacement in the semi-rigid model happened at the roof level.
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bly from 1042 kN to 710 kN. It can be concluded that enhancing the flexibility of the build-
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Figure 33 compares the time history of vertical displacement of the pinned and semi-
rigid twelve-story model. Like the eight-story model, the pinned model does not have 
enough redundancy, losing its robustness due to high deflection and successive buckling 
of columns. 

Figure 31. (a) The position of the structure at (a) 0.5 s and (b) 2 s after corner module removal.

In the pinned model, more kinetic energy dissipates due to more building deformation.
In Figure 32, the redistributed load in VC#3 and Column#1 decreased considerably from
1042 kN to 710 kN. It can be concluded that enhancing the flexibility of the building is
beneficial in terms of column buckling unless it leads to excessive relative displacements in
columns of the lower stories.
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Figure 33 compares the time history of vertical displacement of the pinned and semi-
rigid twelve-story model. Like the eight-story model, the pinned model does not have
enough redundancy, losing its robustness due to high deflection and successive buckling
of columns.
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6. Conclusions

This research was focused on studying the role of the concrete core wall in the robust-
ness of MSBs against immediate corner module removal. The verified numerical finite
element macro model of the building is simulated by incorporating material and geomet-
ric nonlinearities. The inter-module connections are modelled with nonlinear simplified
springs, and the intra-module connections are assumed rigid. The dynamic responses,
including lateral displacements, inter-module connection forces, and beams’ and columns’
internal forces, are reported for MSBs with different stories and shear core wall positions. In
the end, parametric studies were undertaken, including stiffness softening of inter-module
connections and intra-module rigidity. The main findings from this study are summarized
as follows:

• Unlike low-rise traditional steel buildings, four-story MSBs are robust against corner
module removal. No columns buckle at the base level, and no plastic hinges appear in
structural members. In addition, in the corner module removal scenario, inter-module
connections showed a significant safety factor in all cases, so no inter-module failure
was observed.

• In 12-story MSBs, where many columns collapse simultaneously, the core wall has a
minimal impact on robustness because there might not be enough time for load sharing.
However, eight-story MSBs benefited from the core wall system and maintained their
robustness. The core wall helps the robustness of MSBs in two ways: the first is
enhancing load sharing when the core is located at the center (zone 1); the second is
reducing lateral displacements, provided that the core wall is directly connected to the
modules above the missing module (zone 2 or 3).

• Softening horizontal inter-module connections can worsen or improve the performance
of the remaining modules against gravity-induced progressive collapse. In an eight-
story modular building, 50% and 90% of softening in HCs accelerated and delayed
the progressive collapse, respectively, by increasing flexibility. However, this was
accompanied by many connection failures that led to the collapse of the whole building.
Therefore, choosing an optimized inter-module connection stiffness is essential for the
robustness of MSBs.

• Preventing plastic hinges from forming can be considered as an anti-collapse mecha-
nism. It turned the unstable bare-frame eight-story MSB’s response against the corner
module removal scenario into a robust one.

• In the corner module removal scenario, the early set of plastic hinges formed in
the ceiling beams of the first elevation (in the X direction), which means structural
members in this region have higher participation in carrying redistributed loads.

The progressive collapse of steel modular buildings with a shear core was simulated
numerically using the finite element software Abaqus 2021. Load redistribution and pro-
gressive collapse responses of modular steel buildings (MSBs) with a typical layout under
corner module loss scenario were investigated. Various modular building cases with three
different heights and core wall locations were considered. Moreover, a parametric analysis
was conducted to assess the impact of inter-module connection stiffness, intra-module
connection rigidity, and plastic hinges on the robustness of the MSB under gravity loading.

The research can be expanded to include other types of layouts and configurations
such as different module sizes, geometries, material properties, and collapse scenarios.
Furthermore, the assumed instantaneous removal time, representing a blast scenario, can
be adjusted to a longer duration, which is more representative of a fire scenario.
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