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Abstract: In the last decade, despite rapid advancements in artificial intelligence (AI) transform-
ing many industry practices, construction largely lags in adoption. Recently, the emergence
and rapid adoption of advanced large language models (LLMs) like OpenAI’s GPT, Google’s
PaLM, and Meta’s Llama have shown great potential and sparked considerable global interest.
However, the current surge lacks a study investigating the opportunities and challenges of
implementing Generative AI (GenAI) in the construction sector, creating a critical knowledge
gap for researchers and practitioners. This underlines the necessity to explore the prospects and
complexities of GenAI integration. Bridging this gap is fundamental to optimizing GenAI’s early
stage adoption within the construction sector. Given GenAI’s unprecedented capabilities to
generate human-like content based on learning from existing content, we reflect on two guiding
questions: What will the future bring for GenAI in the construction industry? What are the
potential opportunities and challenges in implementing GenAI in the construction industry?
This study delves into reflected perception in literature, analyzes the industry perception using
programming-based word cloud and frequency analysis, and integrates authors’ opinions to
answer these questions. This paper recommends a conceptual GenAI implementation frame-
work, provides practical recommendations, summarizes future research questions, and builds
foundational literature to foster subsequent research expansion in GenAI within the construction
and its allied architecture and engineering domains.

Keywords: generative AI; implementation framework; construction; AEC; GPT; LLM; PaLM; Llama;
fine-tuning

1. Introduction

In the last four decades, the field of machine learning (ML), particularly the deep
learning subdomain reliant on artificial neural networks, has undergone substantial mat-
uration, causing immense transformations across many industrial landscapes [1]. It has
emerged as a powerful asset, automating procedures within the construction sector, an
industry that trails behind others in both efficiency and output. However, embracing this
paradigm shift faces impediments due to gradual headway in overseeing data quality and
the absence of directives for integrating domain expertise with data-centric evaluation.
These challenges crystallize into three critical concerns: the disparity between a feature-rich
space and limited samples, the balance between model precision and applicability, and the
reconciliation of machine learning outcomes with field-specific insights [1,2]. Here are three
simple examples of these challenges: (1) A construction company has a large amount of
data on the features of construction projects, but only data on a limited number of projects.
This disparity between the feature-rich space and the limited samples makes it difficult to
train a machine learning model that can precisely predict the cost of construction projects;
(2) An owner organization is trying to implement a machine learning model to predict the
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completion time of a construction project based on data they have access to such as project
value, delivery method, complexity, and materials quantity in previous projects. However,
the company wants to make sure that the model is applicable to a wide range of projects,
so it does not want to make the model too precise. A more precise model will be able to
make more accurate predictions about the completion time of a project, but it may not be
applicable to a wide range of projects. A less precise model will be more applicable to a
wider range of projects, but it may not be as accurate; (3) The safety manager is using a
machine learning model to predict the likelihood of a fall accident on a construction site and
has access to data on the weather, the type of construction, and the safety practices used on
previous projects and predicts that there is a 10% chance of a fall accident on the current
project. However, the developed model may not be able to account for all the factors, such
as human errors, and unforeseen conditions, that can contribute to an accident. Therefore,
traditional machine learning algorithms are somewhat constrained in their capabilities
restricted to these limitations [1,3,4].

The rapid growth of artificial intelligence (AI), a discipline that involves develop-
ing computer systems capable of human-like cognition and actions, has enabled the
advancement of sophisticated large language models (LLMs), such as GPT, PaLM, and
Llama. GenAI, a subset of deep learning, leverages neural networks, and can process
both labeled and unlabeled data using supervised, unsupervised, and semi-supervised
methods to synthesize novel content like text, images, and audio [5,6]. An LLM trains
models on existing data, constructing statistical representations to predict content.
When provided prompts, generative systems output new synthesized content learned
from underlying patterns. Architecturally, transformer models enable GenAI, contain-
ing encoders to process inputs and decoders to translate them into contextually relevant
outputs [6]. There are four major types of GenAI models: text-to-text, text-to-image,
text-to-video/3D, and text-to-task. Text-to-text models, trained to learn mappings
between text pairs, accept natural language input and generate text output [7]. Text-to-
image models, a recent development, are trained on image datasets paired with text
captions. These models take text prompts as input and generate corresponding images
as output, often using diffusion techniques [8]. Text-to-video models synthesize videos
from text prompts, accepting inputs ranging from single sentences to full scripts, and
outputting corresponding video representations [9]. Similarly, text-to-3D models create
3D objects that match a user’s textual description. Text-to-task models are trained to
execute particular tasks based on textual prompts. These models can perform diverse
actions including responding to questions, conducting searches, making predictions,
and carrying out requested behaviors [10]. Generative AI, such as LLMs, are large-scale
pre-trained models like GPT, which are designed for adaptability and trained on vast
amounts of data. This enables fine-tuning to a wide range of tasks including question
answering (Q&A), sentiment analysis, information extraction, image captioning, object
recognition, instruction following, and more [11].

Over the past few decades, in the construction, researchers have published articles
on implementing AI and its subdomains to address industry-specific challenges. These
studies demonstrate AI and machine learning applications across the construction
management spectrum, including safety management [12–17], cost predictions [18–22],
schedule optimization [1,4,23,24], progress monitoring [25–29], quality control [30,31],
supply chain management [32–36], logistics management [37,38], project risks manage-
ment [39–44], disputes resolution [45,46], waste management [47–49], sustainability
assessments [50–54], visualization [55,56], infrastructure damage inspections [57–60]
and overall construction process improvements [1,61–64]. Also, there have been stud-
ies highlighting the integration of AI with Building Information Modeling (BIM) to
enhance information extraction, streamline workflows, and optimize construction
management efficiency [65–69]. Furthermore, some research studies also emphasized
the impact of robotics and AI integration in construction such as improvements in
construction quality, safety, project acceleration, and the mitigation of labor short-
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ages [70–73]. However, there is a noticeable gap in research on GenAI’s applications,
future opportunities, and adoption barriers specific to the construction industry. This
gap is likely due to the recent and rapid emergence of GenAI as a novel technology for
this field, resulting in a delay in research and implementation when compared with
other industries that have already begun to explore and capitalize on the benefits of
GenAI adoption [2,5,74–77]. As the construction industry continues to deal with its
unique challenges, there exists a vital need to bridge this research gap, uncover the
untapped opportunities offered by GenAI, and address the barriers obstructing its
adoption within the construction sector.

With this background, in this study we seek to answer the two major research
questions: (1) What are the current opinions and evidence about the opportunities
and potential applications, and overall challenges related to GenAI technologies im-
plementation in the context of construction?, and (2) What are the most important
research questions to investigate in future related to GenAI technologies in the context
of construction? The remainder of this paper is arranged as follows: Section 2 sum-
marizes our methodology. Section 3 describes various GenAI model structures and
presents related work in construction. Section 4 synthesizes opinions and evidence
on opportunities, summarizes potential application areas, and visualizes conceptual
implementation framework, and Section 5 examines key challenges, from technical
limitations to industry challenges. The recommendations for implementation, and crit-
ical research questions to prioritize investigating GenAI’s unknowns in construction
will be discussed in Section 6. Finally, Section 7 concludes by spotlighting this study’s
significant findings.

2. Methodology

To achieve our research goals, identifying the potential opportunities and chal-
lenges of GenAI in construction, developing a conceptual implementation framework,
and summarizing future research questions, we followed the research framework
outlined in Figure 1. Given the limited literature on generative AI in construction,
we conducted a non-systematic review using keywords like “Generative AI AND
Construction”, “Generative AI”, and “Large Language Models AND Construction”
in Scopus and Google Scholar. We then used the snowball method, identifying key
articles and mining their references and citations to find more relevant studies. In
addition, to obtain the most up-to-date insights, construction industry professionals’
perceptions of generative AI via posts on LinkedIn over the three months leading up to
20 August 2023. Using three keyword combinations—“Generative AI in construction”,
“#generativai #construction”, and “#generativeai #aec”—we identified 32 relevant opin-
ions comprising a total of 63,778 words. Our analysis incorporated various formats
including posts, comments, polls, and articles. Articles accounted for 48% of the data,
comments 34%, posts 16%, and polls 6%. To analyze these data, we utilized Python
programming-based text mining techniques including word cloud analysis to high-
light the most frequent terms, sentiment analysis to categorize opinions as positive,
negative, or neutral, and frequency analysis to summarize key themes throughout
the corpus. With a literature review and industry perspectives, this paper outlines
potential GenAI applications in construction. A conceptual implementation framework
is then proposed to implement identified applications, along with key implementa-
tion challenges.
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3. Various GenAI Model Structures and Related Work in Construction

In recent years, researchers have increasingly focused on modifying the learning algo-
rithms of generative AI (GenAI) models to fit specific domains and tackle industry-specific
problems. The choice of which generative AI model to use depends on the specific task
at hand. Based on their generative mechanism, there are five major types of GenAI mod-
els [2,78,79] as represented in Figure 2. While our primary focus is on the five major types
of GenAI models, it is important to know the continuous evolution of models in this field,
as researchers have been actively exploring novel model architectures and methodologies.
Generative Adversarial Networks (GANs) are often used for image generation because
they can create realistic images. Variational AutoEncoders (VAEs) are commonly used for
text generation, as they can produce clear, grammatically correct samples by learning the
original distribution of the training data. Autoregressive models are best at text generation
similar to their training data, since they generate text token-by-token while conditioning on
previous tokens. Diffusion models can create smooth and natural image samples by starting
with noise and reversing a diffusion process. And flow-based models learn transformations
between data and latent representations, enabling diverse and creative image generation. In
the following subsections, we will investigate the background of each model, explain their
operational mechanisms including model architecture, underline any limitations, examine
their relevance within the construction domain, if such use cases exist, and summarize the
characteristics, advantages, and disadvantages of all models.
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3.1. Generative Adversarial Network

First introduced by Goodfellow et al. in 2014, GANs are a type of deep learning model
comprised of two neural networks: a generator and a discriminator [80]. The generator is
tasked with creating new synthetic data, while the discriminator attempts to differentiate
between real and generated data. GANs are trained through an adversarial process,
where the generator produces fake samples that are fed along with real samples into the
discriminator [79]. The discriminator then predicts which samples are real or fake, and
loss gradients are calculated using a loss function to update both models. During training,
the generator tries to fool the discriminator by improving its ability to generate realistic
data [78,81]. The format of the real and synthetic data samples can vary, as long as the neural
network architectures are adapted accordingly. GANs have proven adept at generating
images, video, and text that are remarkably close to actual data distributions. Their
adversarial training process allows for modeling complex, multi-modal data. However,
GAN training can be unstable, and finding the optimal balance between the generator and
discriminator is challenging [82].

GANs have shown possibilities for a variety of applications in the construction indus-
try. Researchers have demonstrated that GANs can generate plausible technical drawings,
including floorplans, mechanical/electrical/plumbing diagrams, sectional views, and
colored plans [79]. The adversarial training process allows GAN models to synthesize
images that closely match the style and content of real architectural drawings across
multiple domains. In another study, GANs have been applied to generate photorealis-
tic renderings of building facades [83]. By learning from datasets of real facade images,
GANs can produce synthetic views that are useful for tasks like style classification and
image restoration.

3.2. Variational AutoEncoders

Variational Autoencoders (VAEs) are a class of generative models specifically de-
signed to acquire a data representation in a lower-dimensional latent space. This latent
space provides a compressed yet essential feature representation of the original data [84].
Kingma and Welling introduced VAEs in 2013, establishing them as a pivotal model in
the field [85]. VAEs consist of two intertwined and independently parameterized com-
ponents: the encoder, responsible for recognition, and the decoder, focused on genera-
tion. These components work in tandem to support each other’s operations [86]. The
model comprising an encoder network and a decoder network. VAEs are proficient in
approximate inference and can be effectively trained using gradient descent methods.
The encoder network, characterized by parameters, efficiently compresses data into the
lower-dimensional latent space, mapping input data to a continuous latent variable. Con-
versely, the decoder network utilizes this latent variable to generate data, performing
the reverse mapping to reconstructed data. Both the encoder and decoder employ deep
neural networks for their construction, with parameters [87]. VAEs are trained to uti-
lize variational inference, enabling the acquisition of a probabilistic distribution over the
latent space. This learned distribution empowers VAEs to generate new data samples
that closely resemble the training data. VAEs exhibit versatility and find applications
in several domains, including data compression, image synthesis, text generation, and
discovery. Because VAE imposes assumptions about the latent space, they are less flexible
than other generative models in capturing complex real-world data distributions and data
sequences [88,89].

Like other industries, construction struggles with limited access to large datasets,
a major obstacle for implementing deep learning models. While several studies have
investigated big data challenges, solutions remain needed to compile requisite construc-
tion data. A recent study by Delgado and Oyedele [90] highlighted the approaches to
addressing limited data including data augmentation through distortions and variants
of original data, synthetic data generation with methods like VAE, and transfer learn-
ing. And the study explored using VAE to expand financial datasets for construction
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projects, as financial data lacks the transformation invariance present in images, mak-
ing AutoEncoders a promising technique. The results showed that VAE provided more
robust outputs and better represented the non-linear correlations between the variables
in the financial datasets. Another study by Balmer et al. [91] presented the use of VAEs
for the conceptual design of pedestrian bridges from synthetically generated data, elim-
inating manual and time-consuming traditional design processes. Variational AutoEn-
coders show promise for generating new design and construction data to address lim-
ited datasets and facilitating advanced deep learning applications. VAEs can be used
to generate new data that is similar to existing data for defect detection, extract fea-
tures from sensor data for predictive maintenance, model uncertainty in construction
projects for risk assessment, and generate new designs for buildings or infrastructure.
VAEs can learn from data at different levels of abstraction, depending on the specific task
being performed.

3.3. Autoregressive Models

An autoregressive model is a type of generative model that predicts the next token in
a sequence, given the previous tokens. This means that the model is trained on a sequence
of data, and it learns to predict the next token in the sequence based on the previous
tokens [92]. One common architecture for an autoregressive model is a recurrent neural
network (RNN). The output at certain time in an autoregressive model relies not only on
the input but also on prior inputs from preceding time steps. Nevertheless, in contrast to
an RNN, the preceding inputs are not conveyed through a concealed state; rather, they are
directly supplied to the model as additional inputs [93]. Autoregressive generative models
leverage the chain rule of probability to decompose the joint distribution of a sequence
into conditional distributions over tokens based on their context [88,94]. While autoregres-
sive models are powerful density estimators, their sequential sampling is slow for high-
dimensional data and requires a fixed ordering to decompose the data, which is not always
straightforward [88].

A study by Elfahham [95] found the prediction of the construction cost index us-
ing the autoregressive time series method was most accurate compared with neural
network and linear regression approaches. The autoregressive technique’s specialized
modeling of temporal dependencies allowed it to outperform. Autoregressive mod-
els have the potential to enable advanced analytics in construction by modeling tem-
poral dependencies in historical data. Applications include forecasting construction
costs, risk identification, schedule optimization, and automating tasks. These models
capture relationships over time to predict future outcomes and empower data-driven
decision-making.

3.4. Diffusion Models

Diffusion models, a type of GenAI, are popular for high-quality synthetic images
and videos by learning to reverse an artificial diffusion process. However, their util-
ity extends beyond just images and videos. These models can be used for a variety of
content types, including text [96], audio [97], physics [98], and more. The diffusion pro-
cess involves gradually adding Gaussian noise to training data over multiple time steps,
following a predefined schedule that gradually masks the original data [8,99]. During
training, the model learns to take a noisy sample from an intermediate point within this
noise schedule and subsequently predict a less noisy version of the data from the pre-
vious time step. By repeatedly applying this de-noising prediction across many time
steps, the model can start from pure noise and reverse the diffusion back to a realistic
generated image [100]. Though sampling is relatively slow due to the multiple required
predictions, diffusion models can generate sharp and coherent outputs, especially for
image generation. Their ability to condition the sampling makes them versatile and
broadly applicable across computer vision tasks. Popular GenAI models like DALL-
E2 and Imagen are based on the diffusion model concept [7]. Some studies underline
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the major limitations of the diffusion models such as poor time efficiency during infer-
ence requiring many evaluation steps, and high computational expense for the iterative
de-noising [101,102].

Some recent studies have leveraged diffusion models in design and construction. For
instance, one research study trained a diffusion model to understand interior design styles
and generated interior designs, including decoration styles and spatial functions, from
textual descriptions [103]. Additionally, other research has demonstrated the potential ap-
plication of diffusion models in areas like building information modeling (BIM) techniques,
infrastructure safety, and computational architectural design [104–106]. It shows that the
generative diffusion models hold the potential for improving the design and optimization
of construction processes.

3.5. Flow-Based Models

Flow-based models represent a category of GenAI models that generate synthetic
outputs by framing the data generation process as a continuous normalizing flow. They
work by taking noise vectors and repeatedly transforming them through a series of
bijective functions, each designed to bring the distributions closer to the target data
distribution. Unlike other generative models, the flow model only uses a reversible
encoder to complete the model’s construction, which makes the design more deli-
cate [2,107]. Through these transformations, flow models can convert noise inputs
into realistic generated samples. The origin of flow-based generative models dates
back to the work of Dinh et al. in 2014 [108]. These models offer various advan-
tages, including precise latent-variable inference, accurate log-likelihood evaluation,
and efficiency in both inference and synthesis processes [109]. These models were
further refined and extended by Dinh et al. in 2016 [110]. The flow-based models
have some challenges in terms of training complexity due to the need for invert-
ing networks and computing determinants, which creates a primary drawback. Al-
though flow-based generative models have been explored in various domains [111,112],
the construction research domain has yet to explore the potential of these powerful
generative techniques.

Table 1 provides a summary of GenAI model types, their characteristics, advantages,
and disadvantages. It helps in understanding and selecting the suitable generative model
for specific applications.

Table 1. Summary of GenAI models.

GenAI Model Type Characteristics Advantages Disadvantages

Generative
Adversarial Network

(GAN)

Two neural networks, a
generator, and a discriminator,
compete with each other to
generate realistic data.

- Generate high-quality data
that is indistinguishable from
real data.

- Unstable to train.
- Difficult to find the right

balance between the generator
and discriminator.

Variational
AutoEncoder (VAE)

Encodes data into a latent
space and then decodes it
back into the original space.

- Generate data that is similar
to the training data.

- Less flexible than GANs.
- Lack the ability to tackle

sequential data.
- Difficult to control the quality

of the generated data.

Autoregressive
models

Generate data one step at a
time, using the previously
generated data as input.

- Generate data that is very
realistic, especially for text
and speech.

- Slow to generate data in high
dimension.

- Difficult to scale to large
datasets.
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Table 1. Cont.

GenAI Model Type Characteristics Advantages Disadvantages

Diffusion models
Start with a noisy image and
gradually refine it to a realistic
image.

- Generate high-quality images
from a small amount of data.

- Can be trained without paired
or labeled datasets.

- Slower generation process.
- Computationally expensive.

Flow-based models
Transform data from one
distribution to another using a
series of invertible functions.

- Flexible and can generate data
from a wide-ranging variety
of distributions.

- Can be difficult to train.
- Can be computationally

expensive.

4. Opportunities of GenAI in Construction
4.1. Current GenAI Applications and Developments in Construction

Recent studies using LLMs to solve construction-related problems demonstrate
the long-term opportunities of GenAI in the industry. In 2023, Zheng and Fischer
developed a BIM-GPT integrated framework [113] to retrieve, summarize, and answer
questions from the BIM database, overcoming the challenges due to the extensive engi-
neering required to automate complex information extraction from rich BIM models.
By prompting the LLM appropriately, BIM-GPT shows how advanced integration can
extract value from construction data assets. In the early days, such a pioneering idea
laid the groundwork for GenAI in the AEC domain. Despite its increasing popularity,
BIM faces major challenges like interoperability and standardization [114]. Using
LLMs to extract BIM information in different formats can streamline workflows by
addressing these issues [115]. A recent work by Prieto et al. in 2023 [116] shows the
potential for large language models to automate repetitive, time-intensive construction
tasks. Their study tested using ChatGPT to generate coherent schedules that logi-
cally sequence activities and meet scope requirements. Hasan et al. proposed a novel
method for classifying injury narratives to identify risks and hazards in construction by
fine-tuning bidirectional encoder representations from transformers (BERT) sentence-
pair models [117]. The BERT-based approach was also utilized for the automatic
detection of contractual risk clauses within construction specifications [118]. A study
indicated that limited language generation applications in construction despite exten-
sive documentation such as drawings, reports, and contract documents, cannot feed
intelligent systems, though they contain critical references for decisions. Generative
AI-like technologies such as ChatGPT and BARD can enable automated synthesis of
construction documents and question answering, overcoming analog barriers to unlock
the value in these data [119]. In construction automation, the major challenge in maxi-
mizing robotic systems is creating efficient sequence planning for construction tasks.
Current methods, including mathematics, and machine learning, have limitations in
adapting to dynamic construction settings. To address this, a recent study introduced
RoboGPT, leveraging ChatGPT’s advanced reasoning for automated sequence planning
in robot-based construction assembly [120]. One of the major challenges in flexible
behavior of robot in complex construction setting lies on interpretation of operational
knowledge, which is translating human natural language into robot interpretable
format. A study indicated deficits in numerical and physical reasoning prevent com-
plete reliance on current LLMs alone to directly plan and coordinate robot direction,
though LLMs’ capabilities hold promise [121]. Another recent study attempted to apply
LLMs for planning indicated the limitations around plan correctness, over-dependence
on simulation and real-world feedback, plus inefficiencies in utilizing human guid-
ance [122]. While there exists limitations at present, there is a promising opportunity
for researchers to explore deeper into the interaction between LLMs and robotics for
improvement and innovation in addressing these challenges. The recent CREATE
AI Act authorizing the National Artificial Intelligence Research Resource (NAIRR)
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indicates growing government interest in expanding AI development. By providing
open access to key AI resources, NAIRR aims to catalyze innovation across sectors
while also serving as a testbed for trustworthy AI practices. In the early stages, this
initiative represents an important step toward equitable AI advancement by connect-
ing public infrastructure to circulate capabilities more widely through academia and
industry [123].

Given the rapid development and deployment of LLMs in recent years, compar-
ing LLMs is useful for tracking progress in this fast-moving field and understanding
tradeoffs between model scale, and accessibility to provide an at-a-glance overview
for researchers and practitioners. The training parameter size indicates the scale and
potential capability of LLMs, giving users insight into model strength, and infrastruc-
ture requirements. Bigger models with more parameters tend to be more powerful,
generally costlier, and need more computational resources.

The LLMs include both open-source and closed-source approaches, each with
distinct implications for access, innovation, and collective development. On one hand,
open-source large language models promote transparency by providing public access
to critical model assets like source code, training data, and model parameters. With
freely available implementation details, open source fosters collaboration as developers
and researchers can contribute to enhancing and customizing the models to align with
specific needs. However, hosting and maintaining accessible open-source models incur
infrastructure costs. In contrast, closed-source LLMs are proprietary models restricted
to license-holder organizations. Without access to the underlying code, the specific
details of the architecture, and training data, the algorithms of closed-source LLMs
may not be known to the public. While commercial closed-source models may ensure
consistent uptime through dedicated cloud resources, their lack of public transparency
limits external innovation opportunities. At the same time, closed-source models
carry the advantage of preserving training data privacy. Table 2 summarizes the top
ten LLMs currently available, and offers insights for developers and researchers to
evaluate both open-source and closed-source options against capability, and updated
time when selecting a model aligned with their priorities and constraints.

Table 2. Current ten largest LLMs [124–132].

LLM Developed by Training Parameter
Size (Billion) Release Year Access

1 GPT-4 OpenAI 1000+ 2023 Closed

2 PaLM Google AI 540 2022 Open

3 MT-NLG Nvidia 530 2021 Closed

4 Llama 2 Meta AI 500 2023 Open

5 Gopher DeepMind 280 2021 Open

6 GPT-3.5 OpenAI 175 2022 Closed

7 GPT-3 Open AI 175 2020 Closed

8 OPT Meta AI 175 2022 Open

9 LaMDA Google AI 137 2022 Open

10 GPT-NeoX Microsoft 100 2023 Closed

4.2. What Opportunities Are Perceived by Construction Industry Practitioners?

To gain insights into construction industry professionals’ perspectives on GenAI,
various text analytics techniques were applied. A word cloud uncovered frequent key
terms, sentiment analysis indicated overall sentiment and opportunities list synthe-
sized potential application areas. This comprehensive text data analysis provides a
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picture of discussion topics, attitudes, and outlooks regarding the potential of integrat-
ing GenAI into the construction industry.

A word cloud visualization of the LinkedIn data provides an overview of fre-
quently mentioned terms related to generative AI in construction (Figure 3). A word
cloud provides a visual representation of textual data, serving as an impactful tool
for text analysis [133,134]. We preprocessed the data by cleaning and tokenization to
improve quality. Text cleaning involved formatting adjustments to improve computa-
tional readability. Tokenization segmented the text into discrete, meaningful units by
isolating individual words and phrases. We then utilized the Natural Language Toolkit
(NLTK) [135] in Python to remove generic stop words and distill the corpus down to
substantive terms [136,137]. This shaped a refined dataset with reduced noise, ready
for analysis. The results summarize a diverse range of terms that capture the overarch-
ing themes and trends within the dataset. The most dominant word is “ai” highlighting
the increased attention on artificial intelligence technologies broadly. Notably, “gen-
erative” appears with high frequencies demonstrating awareness of this specific AI
subdomain. Other common terms like “design”, “data”, “project”, and “technology”
indicate a focus on potential applications in construction processes. “ChatGPT” arises
fairly often as well, suggesting this popular demo has significantly shaped industry
impressions of generative AI capabilities and potential applications in construction.
Numerous terms point to opportunities like “productivity”, “designs” “tools”, and
“processes”. Meanwhile, words such as “help”, “need”, “could”, and “future” convey
a sense of anticipation and speculation around GenAI’s developing impacts. Taken
together, the word cloud provides a snapshot of how construction professionals are
engaging with the emergent GenAI phenomenon, highlighting key opportunities while
also indicating uncertainty about optimal applications and next steps. Construction
professionals are actively discussing GenAI on platforms like LinkedIn, focusing on
practical applications in construction, design, and productivity while anticipating its
impact on the future of the industry.
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Furthermore, it is important to uncover the underlying sentiments conveyed in
the text. Sentiment analysis, also called opinion mining, involves using computational
methods to determine the opinions, attitudes, and emotions expressed toward a sub-
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ject [134,138,139]. Sentiment analysis classifies opinions at three levels: document level
categorizes the sentiment of entire documents; sentence level determines the sentiment
of each sentence; and aspect level examines deeper to categorize sentiment towards
specific entity aspects [140]. In our study, we utilized the TextBlob [141] library to
quantify sentiment polarity scores, ranging from −1 to 1, revealing positive, negative,
or neutral sentiment. Through preprocessing, tokenization, and model-driven analy-
sis, we categorized each text segment. In our sentiment analysis, the discernment of
emotional tonality yielded a remarkable distribution: a predominant positivity, cou-
pled with very small negativity and an equivalent neutrality. This outcome highlights
the overwhelmingly positive sentiment inherent within the analyzed corpus about
GenAI in construction. Visualization using a bar chart showed proportions of positive,
negative, and neutral sentiments as shown in Figure 4.
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Based on the analysis of people’s perspectives, this study synthesizes the key
themes regarding the potential opportunities of Generative AI in construction as men-
tioned in Table 3. First, we identified the main points and common ideas expressed
across multiple perspectives in the body of the text through careful reading and anal-
ysis. Second, we synthesized these main points into a few key, overarching themes
that capture the essence of the perspectives. There is consensus around Generative
AI’s promise to drive greater efficiency, innovation, and data-driven decision-making
across the construction lifecycle. However, viewpoints diverge regarding the scale
and scope of GenAI’s applications, as well as the need to thoughtfully manage its
integration to maximize benefits versus risks.

4.3. Potential Applications of GenAI in Construction

Generative AI shows huge potential to transform information workflows in architec-
ture, engineering, and construction. Advanced LLMs can parse volumes of unstructured
data to extract insights with new levels of ease and speed. For instance, by analyzing build-
ing codes, generative models can identify relevant requirements and produce summarized,
project-specific reports for architects. This automates laborious manual reviews. Similarly,
contractors can input design specifications into AI systems to automatically compile cost
and schedule estimates by associating 3D models with external databases. Many simple
properties like material name, soil type, concrete strength, roof slope, furniture suppliers,
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last changed by, as well as complex analytical queries become accessible to stakeholders
through AI’s natural language capabilities. Whether generating code requirements from
regulations, connecting designs to cost data, or retrieving wind load assumptions, GenAI
allows seamless information flow between physical and virtual manifestations of the built
environment. The power of language models lies in their ability to comprehend, reason
about, and generate knowledge. As explained through these use cases, GenAI can improve
project understanding and decision-making by unlocking information trapped in unstruc-
tured data. The GenAI holds vast potential to increase productivity and collaboration in
the AEC industry.

Table 3. Overarching themes on opportunities.

Perspectives: Main Points Key Theme

Applying GenAI for construction management of documents in
different format and sources.

Construction Documents and Data Management
Quick enterprise data search.

Data management and extraction ultimately offers time-saving
benefits and increased productivity when effectively leveraged.

For example, Integrating GenAI in scheduling to identify the
most effective schedule path to follow.

Can help improve conversations and collaboration between
project stakeholders such as contractors, designers, and owners. Question Answering (QnA):

Stakeholder demands for faster, affordable, and sustainable
builds create opportunities for GenAI and automation to

address construction’s unique challenges such as repetitive
tasks and unsafe work environments.

Automation for Unique Challenges

AI-generated designs and plans reduce manual work,
enhancing data systems for faster payments, fewer errors, and

better decisions.
AI-Generated Designs

Generative AI increases predictive capabilities, leveraging
historical data for accurate project forecasting, forecasting of

trends, risk assessment, and opportunity identification.
Accurate Forecasting

Incorporating GenAI streamlines the synthesis of project data
and provides avenues for automating intricate information

management, such as contract-related data, thereby enhancing
decision-making during the initial phases of construction.

Project Data Synthesis

AI and modern innovations in construction address labor
shortages, cost escalation, and environmental concerns,

positioning the industry for a transformative future.
Efficiency and Sustainability

Integrate materials assessment AI tools to support quick and
informed materials selection for improved sustainability,

maximizing de-carbonization.
Materials Assessment

The development of GenAI, like ChatGPT, improves human
capabilities rather than replacing jobs. AI Augmentation

In this section, based on lessons learned from literature, peoples’ perspectives, and build-
ing lifecycle tasks and information identified from the literature, we provide the potential
application examples across the project lifecycle, detailing beneficiaries and appropriate GenAI
model types for each as shown in Table 4. Clearly defining the output modality generated by
each AI system, whether text, image, 3D, video, or task, simplifies technical requirements for
implementation. Readers can identify suitable architectures by mapping desired functionality
to output types. In addition, clustering potential applications by common model families also
enables knowledge transfer across use cases and highlights productive pairings of activities
with generative techniques. In addition, the popular model examples of each type at the end
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of the table expedites the process of model selection, allowing researchers and practitioners to
make quicker decisions customized to their specific application requirements and objectives.

Table 4. Potential applications of GenAI in different phases of building lifecycle.

Phase Potential GenAI Application Main Beneficiary Model Type Based on the
Output

Feasibility
[142–145]

• To generate a feasibility report Stakeholders text-to-text

• To generate a project initiation document (PID) Owner text-to-text

• Interactive Q&A chatbot to refine PID details Owner text-to-text

• To create visual representations of data such as site
conditions, traffic patterns, zoning laws, etc. Stakeholders text-to-image

• To predict project milestones and success criteria for
different phases of the project Stakeholders text-to-text

• To create contracts and agreements Stakeholders text-to-text

Design
[142–145]

• To generate multiple conceptual designs based on
the program requirements and communicate with
the architect

Architect text-to-task

• Animated 3D visualization of organization chart and
responsibilities Stakeholders text-to-3D

• To automatically generate detailed cost estimation
report Owner text-to-text

• To associate cost/time data with building design Contractor text-to-text

• To extract structural design requirements Engineer text-to-text

• To extract Mechanical, Electrical, and Plumbing
(MEP) design requirements Engineers text-to-text

• To generate a permit application draft Architect text-to-text

• To generate a risk analysis report Stakeholders text-to-text

• To develop a design communication Q&A chatbot Architect text-to-text

• To compare the design against the building code
requirements Architect text-to-task

• To perform complex design checking (routing
analysis, etc.) Architect text-to-task

• To select the most suitable contractors based on
project-specific criteria, performance histories, and
contractual considerations

Owner text-to-text
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Table 4. Cont.

Phase Potential GenAI Application Main Beneficiary Model Type Based on the
Output

Procurement
[142–145]

• To visualize the material delivery schedule Logistics team text-to-3D

• To generate a request for a quotation Procurement team text-to-text

• Identification of optimal supplier based on variables Project manager text-to-text

• Streamline subcontractor bidding and selection Contractor text-to-text

• Automated inventory management Procurement team text-to-text

Construction
[142–145]

• To extract project information from construction
documents such as dimensions, materials used,
responsible person, point of contact, etc.

Contractor text-to-text

• To generate new documents. Examples- proposals,
reports, etc. Contractor text-to-text

• To classify and cluster documents based on project
types, internal departments, sub-contractors, project
phases, document types, materials, supply chain, etc.

Contractor text-to-text

• Generating code to automate tasks. Contractor text-to-text

• Translating documents into different languages. Contractor text-to-text

• To optimize cost estimation workflow Estimator text-to-task

• To help progress tracking and identify safety
concerns with drone integration text-to-task

• To provide customized alerts and notifications on
changes text-to-task

• To help quality control such as comparing completed
tasks to project specifications to identify defects and
deviations

text-to-text

• To generate an optimal schedule path Contractor text-to-text

• Searching specific information on the data lake,
shared folder, project-specific information, etc. Contractor text-to-task

• To generate targeted safety training materials Safety manager text-to-image/text-to-video

• To generate targeted trade training materials Project manager text-to-image/text-to-video
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Table 4. Cont.

Phase Potential GenAI Application Main Beneficiary Model Type Based on the
Output

Operation
and Mainte-

nance
[142–145]

• To create a knowledge management system using a
Q&A chatbot Facility manager text-to-text

• To create a work order from logs Technician text-to-text

• Generative design of replacement parts Technician text-to-3D

• To generate maintenance schedule and predictive
maintenance Facility manager text-to-text/text-to-image

• To generate an energy consumption report Facility manager text-to-text

• Chabot to assist occupants Occupants text-to-text

Any Phase • Information retrieval from nD BIM models Stakeholders text-to-text/text-to-3D

Any Phase
• Updating the nD BIM model using natural language

commands Stakeholders text-to-task/text-to-3D

Any Phase • Robot instruction in natural language Stakeholders text-to-task

Any Phase • To help human-robot interaction Stakeholders text-to-task

Some useful model examples based on their output: Text-to-text models: ChatGPT, LaMDA, PEER, Galactica,
Codex, Claude, Jurassic; Text-to-image models: DALL-E2, Parti, IMAGEN, Craiyon; Text-to-video/3D models:
Imagen, StyleGAN, Phenaki, Magic3D; Text-to-task models: Bard, GPT-4, LaMDA, Jarvis.

4.4. A Conceptual Implementation Framework

In this section, to accomplish identified potential applications in practice, this study
presents a conceptual GenAI implementation framework in construction for early adop-
tion in research and industry application. In the construction industry, there is growing
interest in the powerful capabilities of Large Language Models (LLMs) such as ChatGPT.
These models are capable of answering a wide array of questions, making them extremely
useful. However, individuals and organizations often want to utilize these models on
their private and proprietary data. One approach to achieving this is by training an LLM
with specific data. While training a foundational LLM requires a massive amount of data
and significant computational resources, fine-tuning offers a more efficient route [146].
Fine-tuning involves training an existing LLM on your own data, which can significantly
enhance its performance in specific tasks [147]. This process can provide LLMs with domain
knowledge, improve their specific abilities, enhance the fairness and reliability of their
outputs, and mitigate issues caused by hallucinations [148]. To overcome overfitting in
fine-tuning, we need diverse data sets and carefully chosen validation and test sets. Diverse
data exposes LLMs to a wider range of scenarios, preventing them from overfitting to
specific patterns. And validation sets help us detect overfitting early, allowing to fine-tune
the model and to avoid memorization. In addition, selecting test sets that accurately reflect
variety of real-world construction data ensures LLMs are more generalizable and can be
applied with confidence in different construction contexts.
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In Figure 5, we summarize what fine-tuning is, what it does, why to do it, and the
differences between prompt engineering and fine-tuning, with construction examples.
Fine-tuning involves direct training for refined performance, although it demands more
resources. On the other hand, prompt engineering conditions the model through input
reformulation, offering accessibility and flexibility. A synergistic approach, combining
fine-tuning and prompting, produces greater improvements. While both techniques aim to
improve model performance, they serve different purposes and are not directly comparable.
The model’s performance heavily depends on the input prompt, and even with good
models, poorly constructed prompts can lead to poor outputs.
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The framework for fine-tuning generative LLM comprises three interconnected stages:
selection, fine-tuning, and evaluating and utilization as shown in Figure 6. First, a potential
application is identified based on the requirements and objectives. Next, a model type
that aligns with the desired output and objectives is determined, and then a base LLM is
selected from providers like OpenAI, Meta, etc., that leverage diverse knowledge sources
and model architectures (e.g., GPT-3, Llama). The model may be open source with available
code and data, or proprietary with just API access. Next, domain-specific data are collected
for fine-tuning, such as BIM data, cloud-based data repositories, and various other datasets
in different file formats in construction. The concatenation and tokenization of text prepare
it for fine-tuning. Specifically, the corpus is concatenated into a single document with one
example per line before tokenization converts text into numeric identifiers corresponding
to each token in the model’s vocabulary. The fine-tuning approach is chosen based on the
use case goals and may involve parameter optimization or reward signals to align with
performance objectives. Fine-tuning also involves techniques such as parameter adjustment
and rewards to align the model with the desired objectives, which may include privacy con-
straints and noise reduction to enhance the model’s performance. The resulting fine-tuned
model has knowledge customized for the construction domain. Now, it is necessary to
evaluate the model’s accuracy and performance before deployment. Finally, careful prompt
engineering allows users to query the adapted model’s specialized intelligence through
an interface, obtaining relevant answers or visualizations. This conceptual framework
for fine-tuning LLMs bridges the gap between pre-trained models and enterprise-specific
applications, encouraging adaptability in a wide range of domains.
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5. Challenges of GenAI Implementation in Construction

Generative AI adoption across industries is rapidly growing, driven by the immedi-
ate integration of new technologies like ChatGPT intensifying competitive pressures on
organizations while this novelty presents new risks [76]. Like other industries, the inte-
gration of GenAI in construction is associated with complex challenges. These challenges
comprise various areas, including domain knowledge, the potential for hallucinations in
AI-generated outputs, the crucial aspect of accuracy in AI predictions, the generalizability
of AI models to new situations, the need for frequent model updates and interpretability,
the cost implications of deploying generative AI, and the ethical considerations around
data privacy, bias, and accountability. Furthermore, the construction sector faces spe-
cific regulatory hurdles related to the responsible use of GenAI, prompting the need
for AI skill development and training, liability determination, copyright and intellec-
tual property concerns, and certification protocols. Addressing these multidimensional
challenges requires a proactive and collaborative effort involving industry experts, policy-
makers, and AI researchers to ensure the safe and effective implementation of GenAI in
construction practices.

5.1. Domain Knowledge

The construction industry poses unique difficulties in applying GenAI due to its
vast domain knowledge requirements. Capturing the industry’s complicated technical
engineering expertise across structural, mechanical, electrical, plumbing, and project man-
agement disciplines remains challenging. Construction also relies heavily on physical
situational awareness and spatial reasoning when manipulating materials and navigating
dynamic job site capabilities stretching the limits of AI [39]. Consequently, construc-
tion’s vast knowledge context hinders GenAI’s ability to extract meaningful structure-
activity relationships from industry data. However, promising avenues exist to address
these knowledge gaps. For instance, large language models like GPT require fine-tuning
and contextual input tailored to the construction domain in order to efficiently generate
industry-specific insights [149]. Hybrid reasoning techniques combining top-down onto-
logical, symbolic knowledge with bottom-up neural networks can be beneficial. Therefore,
advancing construction-focused GenAI requires incorporating domain knowledge more
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seamlessly into model architecture and training. This domain knowledge infusion remains
an open research area for unlocking GenAI that can meet construction’s complex and ever-
changing demands.

5.2. Hallucinations

Generative artificial intelligence systems face challenges with hallucination, generating
convincing but false outputs due to limited knowledge [77]. These hallucinations often
result from factors such as inadequate or noisy training data, a lack of contextual under-
standing, or imposed constraints. GenAI systems are particularly notorious for producing
aesthetically pleasing yet inaccurate predictions, often with an unwarranted high level
of confidence. For instance, in the context of a GenAI scheduling system, hallucinations
could lead to the generation of inaccurate timelines for critical paths. In construction-
focused AI, which lacks the capability to perceive and validate real-world complexities
directly, there is a risk of generating hallucinatory outputs that are apart from reality. To
mitigate these potentially unsafe hallucinations, several strategies can be employed. These
include the use of high-quality training data, a strong grounding in engineering and con-
struction knowledge, simulated testing to validate predictions, continuous monitoring
of uncertainty, and the introduction of human oversight throughout the AI’s decision-
making processes.

5.3. Accuracy

Ensuring accuracy is a major challenge for GenAI, as inappropriate outputs can lead
to big failures. Large language models like GPT-3 show these limits, relying on minimal
training data from unverified sources [150]. Lack of fundamental construction engineering
knowledge, such models obtain only superficial statistical associations rather than causal
basics, risking construction decisions through misguided outputs. However, techniques
exist to enhance output validity. Construction-specific fine-tuning with validated datasets
can align models to the complexities of the built environment. Uncertainty indicators
can flag doubtful predictions needing additional verification. Simulated testing enables
early correction of inaccuracies before real-world implementation [151]. Further, prompted
self-improvement may allow models to iteratively refine their outputs [152]. Overall,
connecting robust datasets, uncertainty metrics, simulated validation, and self-correction
procedures can introduce proper engineering causality over statistics, improving construc-
tion GenAI’s accuracy. Advancing fundamental reasoning capabilities remains critical for
developing generative intelligent systems that meet the construction industry’s need for
reliable automation and decision-making.

5.4. Generalizability

Generalizability refers to the ability of a generative AI model to extend its learning
beyond the specific datasets and distributions it was trained on. A GenAI system utilizing
historical data may encounter issues with poor generalization, where the knowledge
derived from training data in the in-sample period does not effectively apply to new, out-
of-sample data in testing. Even if a model fits the training data well, its poor generalization
is unusable for addressing real-world decision-making challenges [153]. For example, a
model pre-trained on fixed historical data may fail to account for unexpected changes
like weather delays, labor availability, or design changes. Models trained on a limited
dataset, unfamiliar inputs, and lack of a casual understanding mechanism in the model
are the major challenges that contribute to the generalizability problem. Collecting diverse
training data and testing models on novel inputs helps the construction GenAI better
generalize [154]. Leveraging simulation, causal reasoning, and common-sense checks also
improves generalization by teaching strong process knowledge. And continual learning
enables adaptation to new data over time. Together these solutions improve generalization.
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5.5. Model Updates and Interpretability

Model updating is a key challenge for deploying generative AI in construction. Train-
ing data can quickly become outdated as materials, methods, and regulations frequently
change. Without recent data, models will miss new innovations and provide unreliable
guidance. For example, an AI chatbot trained before the pandemic may overlook the
impacts of supply chain disruptions and labor shortages. Regularly retraining models
on new data are essential, but costly and complex at scale. Potential solutions include
modular model architectures to simplify updating, simulations to generate fresh synthetic
training data, and lightweight model adaptation techniques like transfer learning. How-
ever, balancing model accuracy and update will remain an obstacle. User oversight and
paired human-AI collaboration are recommended when utilizing construction generative
AI. In addition, another limitation of deep generative models is their black-box nature, the
internal workings are not transparent or easily interpretable. This is problematic for critical
construction applications where explainability is important [155,156]. The opaque processes
by which generative AI systems produce outputs create uncertainties around reliability
and trustworthiness. Users cannot validate which parts of the model’s knowledge base
are being leveraged. Therefore, more research is needed to develop interpretable model
architectures and training techniques, making the decision-making logic clear. Progress
in the construction of explainable AI will be key to wider adoption by explaining the
reasoning behind outputs and establishing confidence in the technology.

5.6. Cost

Training and operating generative AI models require significant costs, presenting
challenges for widespread construction industry adoption. The training phase alone
demands massive computing resources and time to produce capable generative capacity.
Ongoing operating expenses also accumulate from the energy required to run large models
and web-serving infrastructure [2]. Initial application development leveraging these models
is expensive upfront too. The considerable resource demands and ongoing costs act as
barriers, especially for smaller construction companies with limited budgets [157]. Further
optimizations to reduce the computing power, energy, and data needs of generative models
would support feasibility. More cost-effective scaling solutions tailored for construction use
cases could also expand access. Overcoming these cost challenges requires a well-balanced
approach, considering the long-term benefits of GenAI integration against the upfront
investments needed to tie together its capabilities effectively.

5.7. Ethical Challenges

The adoption of generative AI models also raises ethical issues around data privacy,
bias, and accountability that the construction industry must proactively address. These
data-intensive models can utilize sensitive project information and personal details lack-
ing proper consent, presenting risks of confidentiality breaches and intellectual property
violations. Researchers and the industry should implement data privacy safeguards and
anonymization measures. For example, OpenAI’s ChatGPT explicitly acknowledges its
potential to generate inaccurate information about individuals, locations, or facts, under-
lining the need for researchers to be aware of this limitation and ethical challenges when
incorporating ChatGPT in scientific works. This includes essential considerations regarding
data privacy, confidentiality, and informed consent [158]. The handling of sensitive data
by ChatGPT introduces vulnerabilities that may be exploited for unauthorized access or
misuse, thereby posing substantial privacy and security risks [76]. Also, the adoption of
LLMs raises concerns about creating potential biases [159]. The utilization of confidential
construction data like cost, schedule, safety records, contract documents, and BIM model
information may potentially trespass upon intellectual property rights and give rise to ethi-
cal and legal difficulties. Therefore, establishing clear accountability for errors or accidents
caused by AI-generated outputs remains a complex issue needing careful consideration, in
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order to develop ethically responsible frameworks for implementing generative AI within
the construction industry.

5.8. Construction Regulatory Challenges

In the construction sector, the integration of GenAI poses several complex regulatory
challenges. Successful implementation requires AI understanding, skillsets, and train-
ings so that industry experts can properly utilize these models. One of the major skills
required is proficiency in “prompt engineering”, optimizing prompts to maximize model
efficacy [149,160]. However, overreliance on automation risks in reduction in human ex-
pertise and the potential for errors in cases of AI malfunction or erroneous information
provision [74]. As generative models become capable of autonomously producing compre-
hensive deliverables, for example, a detailed site safety plan, a serious concern emerges
regarding accountability in the event of a failure. Determining liability in such instances,
wherein something goes wrong, becomes a complex matter. Who bears responsibility in
the event of a failure—is it the developer of the AI system, the construction company imple-
menting it, or the safety manager who approved the final AI-generated plans? Additionally,
the independent origination of new content by AI raises questions about copyrights and
intellectual property. The ownership of AI-generated content requires a clear legislative
definition. To maintain expertise and safety standards, construction companies could intro-
duce certification protocols for AI training and deployment. Moreover, close cooperation
between industry experts, policymakers, and AI researchers is essential to navigate these
regulatory challenges.

5.9. What Challenges Are Perceived by Construction Industry Practitioners?

The challenges obstructing GenAI adoption in construction are associated with both
technological and human factors. A recent LinkedIn poll of 48 AEC professionals inves-
tigated the frequency of generative AI usage in their work, finding 40% have never tried
it, 33% use it sometimes, 19% use it often, and 8% use it all the time [161]. This reveals
that most AEC professionals are in the early stages of generative AI adoption, though
a segment has integrated these tools into their regular workflows. And, another poll of
16 AEC professionals examined whether their organizations have policies regarding the
use of commercial GenAI tools, finding 63% do not, 31% do, and 6% are unsure [161]. This
indicates that most companies currently lack formal guidelines on GenAI usage, present-
ing an opportunity to implement policies and controls given the rise of technologies like
ChatGPT. The analysis of perspectives shows key themes around security, governance,
awareness, and adaptation as mentioned below. Construction companies must proactively
address these multifaceted challenges to unlock their potential. This requires strategic
approaches customized to the construction industry’s distinct needs within this rapid
innovation. A thoughtful, industry-centered path can help overcome obstacles and realize
GenAI’s potential.

• Proactive Approach Needed: The implementation of GenAI in construction requires a
proactive approach to security and governance. Addressing these challenges is vital to
unlock the potential for improved productivity and creativity during the industry’s
technological transformation.

• Strategic Adoption: The adoption of GenAI within construction companies requires a
strategic approach to manage security, risks, and governance effectively. The practical
procedures allow responsible and ethical utilization while maintaining standards of
security, safety, and compliance. The guidance from construction technology experts
can support in setting up a successful generative AI program.

• Implementation Challenges: GenAI systems help a comprehensive analysis of trade-
offs in construction projects, including physical, financial, and sustainable aspects.
However, addressing implementation challenges, such as increasing awareness and
understanding, is essential to drive broader adoption and establish convincing busi-
ness cases for technology investments.
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• Limited Awareness: The construction industry is facing difficulties in building an
efficient business case for investments in software, hardware, training, and infras-
tructure due to limited awareness. These challenges related to accessing and sharing
big data hinder the effectiveness of GenAI models. Moreover, regulatory and legal
complexities, particularly concerning intellectual property rights, add compliance
concerns when deploying GenAI in visualizations or renderings.

• Expectation of Mature Technologies: The construction market expects mature tech-
nologies ready for immediate use, focusing on solutions designed to the industry’s
distinctive challenges. However, this expectation leads to a deeper exploration of
automation and AI in construction, recognizing the need for specialized solutions.

• Risk Mitigation and Ethical Governance: To effectively implement GenAI in the con-
struction industry, it is important to apply comprehensive risk mitigation strategies.
These include various measures such as data encryption, strict access controls, and
secure data storage practices. Furthermore, to safeguard AI-generated outcomes,
addressing intellectual property concerns through well-defined guidelines and con-
tractual agreements is essential.

• Novelty Challenge: Another challenge in applying GenAI lies in its novelty. For
example, many traditional schedulers are familiar with long-standing tools and may
hesitate to embrace newer, more advanced solutions.

6. Recommendations and Future Directions

In Section 4.3, we explain various potential applications that serve as a foundation for
future research directions. We structured this section into two subsections: (1) recommen-
dations: short-term and long-term adaption strategies and; (2) future research directions:
major future research questions. These sections show the directions for studies aimed at
facilitating the effective integration of GenAI within the industry.

6.1. Recommendations

We recommend the following short-term and long-term strategies for adapting GenAI
in construction:

• Fine-Tuning LLMs: The recommended initial approach for the integration of GenAI
into the construction industry involves the fine-tuning of available powerful pre-
trained language models using construction-specific data. Construction companies
have the opportunity to curate datasets comprising various resources such as design
documents, building codes, contractual documents, technical documents, and BIM
data. These data are helpful in informing the selected LLM about specialized vocabu-
lary and contextual nuances of the construction. Starting with modest datasets and
focusing on strongly defined tasks can simplify the process of prompt engineering
that enables the GenAI systems for construction needs.

• Human Oversight: GenAI systems require human oversight to validate quality and
accuracy while capable of automating tasks., or giving ratings to refine LLM outputs,
humans directly direct learning closer towards intended needs and quality standards,
resulting in improved future. Studies [162,163] indicated that humans have a much
richer understanding of context, subtext, culture, and real-world knowledge that LLMs
may lack exposure to or have difficulty comprehending. In addition, human feedback
provides situational context to enhance the LLMs’ understanding by interactively
editing, providing examples, and specifying constraints. Therefore, model outputs
should be reviewed, and feedback can be provided to improve performance. Thus,
human-in-the-loop approaches that combine AI generation with human judgment can
improve the strengths of both.

• Evaluating Business Impact: It is recommended to assess the business impacts of
GenAI using experiments measuring key performance indicators. Pilot studies could
evaluate model influence on metrics such as productivity, cost, time, risks, etc. The
measurement as a model integrates more data and provides insight into returns
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over investment. This can help to quantify the benefits of GenAI investment for the
organization.

• Developing Custom LLMs: In the long run, collaborative efforts between the AEC
industry and researchers can focus on designing specialized language model archi-
tectures for construction-related tasks. This involves compiling extensive datasets
from the AEC domain. The fundamental approach is to establish a secure central
data repository, with contributions from construction companies and consultants.
Training models on these data, with the support of AI researchers, will allow domain
expertise and innovation. However, it is important to understand the challenges
including data labelling, computational power, potential biases, overfitting risks, and
evaluation difficulties.

6.2. Future Research Directions

We present the following major future research questions for adapting GenAI
in construction:

• How can we develop GenAI models that can accurately extract detailed project infor-
mation from a variety of construction documents and BIM models? This could help
improve productivity.

• What techniques can enable GenAI models to automatically generate feasible build-
ing designs based on requirements? Generative design could help with time and
cost savings.

• How can we build AI assistants that can have natural conversations with human
stakeholders to refine project details, requirements, and reports in different phases of
the building lifecycle? Conversational AI could help project stakeholders.

• What GenAI techniques can enable the automated generation of 3D visualizations,
videos, and images from text descriptions? This could help in better communication.

• How can we develop AI systems to accurately evaluate construction progress, safety,
and quality using visual data? Computer vision integration could be key to
achieving this.

• What GenAI techniques can optimize construction scheduling, logistics, and cost
estimating? This could help in construction project management.

• How can we build AI assistants that can understand BIM model information, extract
that information, and update BIM models based on prompts? This could help to
accelerate the BIM execution process for general contractors.

• How can we integrate robotics with natural language AI to enable easy human-
robot interactions? Future studies on challenges and methodology development are
recommended. This could help improve the usability, and accessibility of robotic
systems, leading to improved collaboration.

• What machine learning techniques can support accurate automatic code generation
for construction tasks and changes in scope? This could help to track changes and
troubleshoot issues.

• How can we build GenAI models that learn continuously from construction data to
improve predictions and decision-making over time? Further exploration studies on
adaptive algorithms, LLMs learning frameworks, and other relevant methodologies
to improve the continuous learning aspect of GenAI models within the construction
domain is recommended. This could help in the overall success of an organization,
and future project forecasting.

7. Conclusions

This study makes important contributions by identifying potential application op-
portunities and challenges of GenAI in the construction industry, developing an imple-
mentation framework for early adoption of GenAI in the construction, and proposing
future research questions and recommendations to advance future exploration in this area.
Through a detailed literature review, we identified the limitations of traditional AI methods
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and examined the recent use cases of GenAI models. We also investigated the industry
practitioners’ insights, using sentiment analysis and theme-based interpretation, into the
perceived application potential and barriers to adopting GenAI in the construction sector.
Synthesizing these findings, we identified potential applications and proposed a conceptual
framework to guide researchers and practitioners in implementing GenAI in construction.
The mapping of different GenAI model types to various construction tasks suggested po-
tential future applications of text-to-text, text-to-image, text-to-3D/Video, and text-to-task
models for applications across project feasibility, design, procurement, construction, and
operation phases. However, our study also highlights significant GenAI implementation
challenges around domain knowledge, hallucinations, model accuracy, generalizability,
interpretability, cost, ethical, and regulatory challenges that must be addressed before
executing the proposed framework. Recommendations provided in this study are expected
to help construction stakeholders with strategies for initiating GenAI adoption and plan for
long-term application while mitigating risks. The future research questions identified can
direct the construction research community to focus on the practical applications of GenAI
capabilities. Moreover, this study provides a strong literature foundation for realizing the
capacity and challenges of GenAI in this industry. Further validation studies implementing
the proposed framework and developing real construction applications would be a natural
extension of this research.

While our study lays a strong literature foundation for the initial phase of implement-
ing GenAI in construction, certain limitations exist and present opportunities for refinement
in future investigations. Primarily, our word cloud and frequency analysis are limited to
the perspectives of 32 individuals and a dataset encompassing 63,778 words. As GenAI
technology matures and gains broader application, a larger sample size derived from
an expanded pool of experiences would facilitate a more comprehensive and insightful
exploration. Additionally, despite our efforts to mitigate bias through random sampling,
incorporating data from diverse sources and backgrounds within the construction do-
main in future studies could further enhance the study’s representativeness and reduce
potential biases.
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