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Abstract: This paper presents a novel eight-step iterative algorithm for optimizing the layout of a
neighborhood, focusing on the efficient allocation of houses to strategically placed facilities, herein
referred to as ’points of interest’. The methodology integrates a mixed integer linear programming
(MILP) approach with a heuristic algorithm to address a variant of the facility location problem
combined with network design considerations. The algorithm begins by defining a set of geographic
coordinates to represent houses within a predefined area. It then identifies key points of interest,
forming the basis for subsequent connectivity and allocation analyses. The methodology’s core
involves applying the Greedy algorithm to assign houses to the nearest points of interest, subject to
capacity constraints. The method is followed by computing a Minimum Spanning Tree (MST) among
these points to ensure efficient overall connectivity. The proposed algorithm’s iterative design is a key
attribute. The most promising result of this approach is its ability to minimize the distance between
houses and points of interest while optimizing the network’s total length. This dual optimization
ensures a balanced distribution of houses and an efficient layout, making it particularly suitable for
urban planning and infrastructure development. The paper’s findings demonstrate the algorithm’s
effectiveness in creating a practical and efficient neighborhood layout, highlighting its potential
application in large-scale urban planning and development projects.

Keywords: urban planning optimization; facility location problem; heuristic algorithms; Mixed Integer
Linear Programming (MILP); Geographic Information Systems (GIS); Minimum Spanning Tree (MST);
network design; greedy algorithm; spatial allocation; infrastructure development

1. Introduction

In urban planning and infrastructure development, optimizing the spatial allocation
of resources is a critical challenge [1]. The image shown in Figure 1 showcases a complex
urban layout with white dots as street corners forming the primary structure, and the red
corners are the selected connection points. White dots mark special junctions or interest
points, adding to the complexity. Red roofs and blue house-shaped symbols represent
standard and key residential buildings, respectively. The connectivity is depicted by gray
lines, mainly linking street corners, suggesting a hierarchical road network. The absence
of green lines and the presence of two shades of grey possibly differentiates primary and
secondary roads. Notably, three structures with blue roofs and unconnected black circles
indicate significant buildings and isolated areas. This representation provides a nuanced
view of urban planning, emphasizing diverse elements and their roles.

This paper introduces a novel eight-step iterative algorithm that addresses this chal-
lenge by efficiently allocating houses to strategically identified points of interest within
a neighborhood [2]. Utilizing a Mixed Integer Linear Programming (MILP) framework
combined with a heuristic approach, the algorithm uniquely integrates the facility location
problem with network design principles [3]. The methodology minimizes the distance

Buildings 2024, 14, 213. https://doi.org/10.3390/buildings14010213 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings14010213
https://doi.org/10.3390/buildings14010213
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0002-9319-8815
https://orcid.org/0009-0009-2239-784X
https://orcid.org/0000-0002-0837-0642
https://doi.org/10.3390/buildings14010213
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings14010213?type=check_update&version=1


Buildings 2024, 14, 213 2 of 16

between houses and points of interest and optimizes the overall network length through a
Minimum Spanning Tree (MST) calculation [4]. This approach, conceptualized in founda-
tional work [5], integrates advanced combinatorial optimization techniques to address the
complexities of urban planning.

Selected street corner

Standard houses
Significand buildings

Key houses
Primary network
Streets or roads

Street corners

Figure 1. Georeferenced representation for distribution network planning.

Figure 2 represents an unequivocal escalation in the volume of scholarly publications
in this discipline, indicative of escalated scholarly and commercial engagement. Periods
of intensified publication frequency are concurrent with critical developments in the field
of heuristic algorithms, particularly regarding their application in non-anchored electrical
distribution networks and microgrid integration [6].

Figure 2. Number of papers published over the years.

The examination graph, depicted in Figure 3, reveals insightful patterns regarding the
contributions of the leading authors in the field of heuristic optimization. Zhang Y. and
Li X. led the cohort with seven publications each. Zhang Y.’s main paper focused on efficient
and optimal planning [7], garnering 24 citations [8], indicating a notable impact within the
field. Similarly, Li X. has the research works [9,10], on intelligent GIS for high-dimensional
spatial problems, and the first has 54 citations, reflecting its significance in the domain.

Maréchal F. and Schüler N., each with six papers, follow closely. Maréchal F.’s research
on spatial clustering for district heating was cited 71 times [11], showcasing its pivotal role
in the area. Schüler N., on the other hand, delved into interactive optimization, a paper that
was cited 14 times [12]. Cajot S. is his colleague in the same paper, and Cajot S. also has five
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publications in the analysis, pointing to a focused but influential readership. Torres M.N.
also has five papers, presumably contributing significantly to the discourse in heuristic
optimization [13].

Rodríguez J.P.’s discussions [13,14] and Zhu Z.’s findings collectively enriched the
field [15]. The varying citation counts across these authors highlight the breadth of research
interests and the diverse impact of their scholarly work. The bar graph’s visual representa-
tion stresses the quantitative aspects of research productivity and the qualitative impact,
as inferred from citation counts. This analysis points to a rich tapestry of academic en-
gagement within the field, with each author contributing their thread to the ever-evolving
knowledge network in heuristic optimization.

Figure 3. Top 10 authors by number of publications.

Examination of Table 1 reveals a concentrated interest in applying heuristic algorithms
to urban planning and infrastructure development [16]. The prominence of citations for the
listed works indicates a robust academic engagement with topics such as intelligent cities,
transit network design, and sustainable supply chain networks [17]. This focus underscores
the relevance of optimization techniques and MILP in addressing complex spatial allocation
challenges within the urban development context [18].

Table 1. Top Cited Papers in Urban Planning and Optimization Techniques.

Author Citations References

Planning roadside
infrastructure for information
dissemination in intelligent
transportation systems

184 [16]

Towards a sustainable
hydrogen economy:
Optimisation-based
framework for hydrogen
infrastructure development

167 [17]

Genetic algorithms for
optimal urban transit network
design

157 [18]

A range-restricted recharging
station coverage model for
drone delivery service
planning

134 [19]
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Table 1. Cont.

Author Citations References

A multi-objective relief chain
location distribution model for
urban disaster management

132 [20]

Solving a location-routing
problem with a multiobjective
approach: The design of
urban evacuation plans

130 [21]

Optimization for allocating
BEV recharging stations in
urban areas by using
hierarchical clustering

128 [22]

Towards a sustainable
hydrogen economy:
Optimisation-based
framework for hydrogen
infrastructure development

125 [23]

Multi-hazard probability
assessment and mapping
in Iran

123 [24]

Solving an urban waste
collection problem using ants
heuristics

121 [25]

The article is organized as follows: Section 2 introduces problem formulation. Section 3
presents the simulation results obtained. Lastly, Section 4 concludes the article by offering
recommendations and suggestions for future research.

2. Methodology

The optimization problem, as delineated by the objective function in Equation (1),
represents a sophisticated variant of MILP. This complexity arises from its amalgamation
of facility location dynamics and network design principles, particularly accentuated by
incorporating the MST [26]. The MST’s inclusion heightens the problem’s complexity
and introduces intricate constraints critical for forming a valid spanning tree [27]. These
additional constraints significantly amplify the challenge of finding an optimal solution.

This formulation is particularly pertinent in scenarios where the network’s total length,
including the interconnections between corners, is of paramount importance [28]. Such
scenarios are commonly encountered in large-scale urban planning and infrastructure
development projects. The complexity of this problem necessitates the use of advanced
optimization techniques and, in some cases, the development of custom algorithms [29].
These tools are essential to efficiently navigate the intricate solution space defined by the
objective function and constraints, ensuring optimal and practical solutions in real-world
applications are realized [30].

In this optimization problem, the primary objective is to allocate houses to street
corners efficiently, minimizing the total distance between them while considering the
MST connecting these corners [31]. The cost function, as defined in Equation (1), seeks
to minimize the sum of two components: the cumulative distances between each house
and its assigned corner and the total length of the MST across all corners. This dual focus
ensures a balanced approach, optimizing individual house-to-corner connections and the
overall network structure. The parameters are explained in Table 2.
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Table 2. Description of Parameters.

Parameter Description

N Number of houses
M Number of corners
dij Distance between house i and corner j
xij Binary variable for house–corner assignment
E Set of all possible edges between corners

wuv Weight (distance) of edge between corners u and v
yuv Binary variable for MST edge inclusion
C Maximum number of houses per corner

The problem is constrained by several vital conditions to ensure feasibility and practi-
cality. In Constraint 1 (Equation (2)), variable xij is defined such that xij = 1 if house i is
assigned to corner j, and xij = 0 otherwise. This binary delineation ensures that each house
is uniquely associated with a single corner, facilitating a distinct and unambiguous alloca-
tion within the network. Constraint 2 (Equation (3)) addresses capacity issues, limiting the
number of houses that can be assigned to a single corner. This capacity constraint reflects
limited resources such as water, electricity, or gas, ensuring that no corner exceeds its
ability to sustainably service the assigned houses. The binary nature of the assignment and
MST inclusion variables, as detailed in Constraints 3.1 and 3.2 (Equations (4) and (5)), it is
ensured that the solution space is discrete and manageable. Finally, Constraint 4, depicted
in Equation (6), ensures that connections between corners form a Minimum Spanning Tree
(MST), integral for creating an efficient and cost-effective network. This approach focuses
on maximizing the utility of existing infrastructure and enhancing service distribution
without the need for introducing new nodes or altering the current urban layout. Optimiza-
tion is centered around leveraging the full potential of each corner’s capacity within the
network, thereby streamlining the existing framework to serve urban requirements better.
This comprehensive set of constraints shapes the solution space, guiding the optimization
towards practical and efficient network configurations.

Cost Function. The cost function is defined as

Minimize

 N

∑
i=1

M

∑
j=1

dij · xij + ∑
(u,v)∈E

wuv · yuv

. (1)

Constraints. The problem is subject to the following constraints:

• Constraint 1: assignment constraint. Each house must be assigned to exactly one corner.

M

∑
j=1

xij = 1 ∀i ∈ {1, 2, . . . , N}. (2)

• Constraint 2: capacity constraint. Each corner can be assigned a maximum number
of houses.

N

∑
i=1

xij ≤ C ∀j ∈ {1, 2, . . . , M}. (3)

• Constraint 3.1: Binary Variable constraint house to corner.

xij ∈ {0, 1} ∀i ∈ {1, 2, . . . , N}, ∀j ∈ {1, 2, . . . , M}. (4)

• Constraint 3.2: Binary Variable constraint corner to corner.

yuv ∈ {0, 1} ∀(u, v) ∈ E. (5)
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• Constraint 4: Computation of MST among corners.

yuv ∈ {0, 1}for edges(u, v) ∈ MST. (6)

The algorithm presented in Pseudocode 1 offers a detailed framework for optimizing
the distribution of houses to strategic locations, or corners, within a given urban area.
In the initial stages (Steps 1 and 2), the algorithm focuses on accurately representing
the urban landscape by acquiring geographic coordinates for houses and identifying
crucial intersections or corners. Houses are allocated to corners as they represent the most
accessible points within an urban grid, typically found at the intersection of two streets.
These strategic points are often utilized as service checkpoints for utilities, making them
critical nodes for resource distribution and infrastructure planning. The allocation strategy
takes into account not just proximity, but also the capacity constraints, ensuring a balanced
and realistic approach to service delivery.

Step 3 introduces a critical component of Algorithm 1, calculation of a distance matrix.
This matrix is not just a collection of distances; it embodies the potential connections
between each house and corner, serving as a pivotal element in determining the feasibility
and efficiency of different house-to-corner assignments. As the algorithm progresses to
Step 4, it imposes a practical constraint on the system—the maximum number of houses
that each corner can accommodate. This constraint is reflective of real-world limitations,
such as infrastructure capacity or regulatory guidelines. The Greedy algorithm applied
in Step 5 is then tasked with navigating these constraints to find an optimal assignment
of houses to corners. This step is crucial as it balances the need for proximity with the
limitations of corner capacities, ensuring a fair and efficient distribution.

Algorithm 1 Optimization of House-to-Corner Assignments and MST

1: Step 1: Define House Geographic Scenario
2: Get the geographic coordinates for houses
3: Let N be the number of houses
4: Each house i where i ∈ {1, 2, . . . , N}
5: Step 2: Identify Scenario Corners
6: Define corners as intersections or union points of streets
7: Let M be the number of corners
8: Each corner j where j ∈ {1, 2, . . . , M}
9: Step 3: Calculate Distance Matrix

10: Calculate distances dij between each house i and corner j
11: Initialize objective function value to a large number
12: while Objective function value not minimized do
13: Step 4: Define Restrictions (Constraint 2)
14: Set maximum connections C per corner
15: Constraint: ∑N

i=1 xij ≤ C ∀j
16: Step 5: Apply Greedy Algorithm (Constraint 1 and 3.1)
17: Assign houses to nearest corners respecting C
18: Constraint: ∑M

j=1 xij = 1 ∀i
19: xij ∈ {0, 1}
20: Step 6: Calculate MST (Constraint 3.2 and 4)
21: Compute MST among corners
22: yuv ∈ {0, 1} for edges (u, v) in MST
23: Step 7: Calculate Cost Function and Verify Results
24: Minimize ∑N

i=1 ∑M
j=1 dij · xij + ∑(u,v)∈E wuv · yuv

25: Update objective function value
26: Step 8: Iterative Adjustment and Improvement
27: Adjust C if necessary and repeat
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The incorporation of the MST in Step 6 is a strategic move that extends the algorithm’s
scope from individual assignments to the broader network design. By computing the MST
among the corners, the algorithm ensures that the overall connectivity of the system is
as efficient as possible, reducing infrastructure costs and improving accessibility. Steps 7
and 8 are where the algorithm’s iterative nature comes to the forefront. The algorithm
continuously refines the objective function, which is a harmonious blend of individual
assignments and network efficiency. The algorithm iteratively adjusts the maximum
connections and reassesses the assignments, striving for an optimal balance between the
proximity of houses to corners and the overall network layout. This iterative process is a
testament to the algorithm’s adaptability and its ability to fine-tune the urban layout to
meet specific needs and constraints.

The algorithm’s utility extends beyond mere theoretical constructs, providing a tan-
gible tool for both the planning and evaluation of urban service distributions such as
electricity, gas, and internet infrastructures [32]. It offers planners a proactive means to
design future urban layouts with an optimized network of services, addressing the ’last
mile’ connectivity that is often the most challenging aspect of urban planning. Concur-
rently, it serves as an analytical instrument to assess existing networks, identifying areas
of inefficiency and potential enhancements [33,34]. This dual functionality allows for a
comprehensive approach to urban development, where the algorithm can assist in creating
resilient and robust infrastructures that cater to the dynamic needs of urban populations.
Such a method is crucial for evolving cities, promoting sustainability, and ensuring that the
growing demand for utility services is met with intelligent design and foresight [35,36].

3. Result Analysis and Discussion

In the initial phase of the analysis, as depicted in Figure 4, a scatter plot was generated
to visualize the spatial distribution of randomly generated house locations. This plot,
the Step 1 output in Algorithm 1, is a foundational element for further exploration. The
latitude and longitude coordinates, represented on the x-axis and y-axis, respectively, reveal
a concentrated clustering of points within the defined limits. These limits, set between
[−54.595,−54.589] for latitude and [−25.527,−25.5235] for longitude, encapsulate a specific
geographic area. The density and spread of the points within this range offer insights into
the potential variability and uniformity of data distribution. This initial visualization sets
the stage for a more detailed examination of spatial patterns and their implications in
subsequent stages of analysis.

Figure 4. Initial scenario for experimentation.
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The analysis of the generated graphs, as depicted in Figures 5 and 6, reveals insightful
aspects of the applied algorithms and their implications on the dataset representing end-
user locations. Figure 5 illustrates the outcome of Prim’s algorithm, a classic approach
in graph theory for finding an MST in a weighted undirected graph. The algorithm’s
deterministic nature ensures that, given a specific set of input data, the resulting MST
remains consistent across multiple executions. In this context, the MST effectively links all
nodes (houses) while minimizing the total edge weight corresponding to the aggregate
distance between houses. This optimization is crucial in scenarios where the overall
connectivity cost or distance must be minimized, such as network design or urban planning.

Figure 5. Minimal spannig tree among end users using PRIM’s algorithm.

Figure 6. Minimal spanning tree with shortest path using Dijkstra’s algorithm.
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On the other hand, Figure 6 showcases the application of Dijkstra’s algorithm on the
MST obtained from Prim’s algorithm. Dijkstra’s algorithm, renowned for its efficiency in
finding the shortest path between nodes in a graph, traverses the MST from a predefined
starting node to an ending node. The path highlighted in Figure 6 represents the shortest
route to connect the 1st and the 150th node, traversing through the MST. This path is
particularly significant as it demonstrates the algorithm’s capability to navigate through a
pre-structured network (the MST) while ensuring the shortest route between two points. In
Figure 6, the corner markers are intentionally subdued to emphasize Dijkstra’s algorithm
path, showcasing the most efficient route between the first and last nodes and ensuring the
clarity of the algorithm’s outcome. Combining these algorithms is a powerful tool in spatial
analysis, providing a methodical approach to solving complex routing and network design
problems. The nature of these algorithms, rooted in their deterministic and optimization-
focused design, offers a reliable framework for addressing various logistical and spatial
challenges.

As depicted in Figure 7, the generated graph presents a comprehensive scenario that
includes house locations and grid corners. This visual representation is instrumental in
analyzing the spatial distribution of randomly placed houses against a systematically
structured grid. The grid corners, delineated by red dots, form a 7 × 5 matrix that spans
approximately 90% of the total area under consideration. These corners are aligned along
horizontal and vertical axes, creating a structured network of lines that intersect regularly.
In contrast, the blue dots, representing houses, are randomly scattered, offering a stark
juxtaposition to the orderly grid layout. This contrast highlights the randomness inherent
in the house locations as opposed to deliberate structuring of the grid.

Figure 7. Scenario including house and corners.

The generated graph in Figure 8 illustrates an MST with an integrated shortest path,
encompassing both corner and house locations. This network topology, derived from
a heuristic amalgamation of Prim’s and Dijkstra’s algorithms, reveals an intricate web
of connections that optimize for the shortest total path length. The layout underscores
the potential for efficient communication networks, where such a configuration could
facilitate rapid and direct information transfer. However, it is noteworthy that electrical
networks typically require different considerations such as load balancing and redundancy,
which are not addressed by this method. While effective in this context, the mixed-method
approach highlights the nuanced requirements of different network types and the necessity
for tailored solutions.
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Figure 8. Minimal spanning tree with shortest path for combined data of corners and houses.

The distance matrix calculation, as outlined in Step 5 of Algorithm 1, forms the
foundation for applying the Greedy algorithm to assign houses to the nearest corners. This
matrix, a pivotal algorithm component, quantifies the Euclidean distances between each
house and corner, enabling the algorithm to make informed decisions about assignments. A
notable distribution of houses to corners is observed upon applying the Greedy algorithm
with a constraint of five maximum connections per corner, as depicted in Figure 9. However,
increasing this constraint to seven, shown in Figure 10, alters the distribution pattern. In
Figure 9, specific houses, particularly one in the top right corner of the graph, are connected
to relatively far corners. This outcome highlights a limitation of the Greedy approach,
where the nearest available corner may not always be the closest in absolute terms. While
adhering to the constraints, the assigned links reveal the algorithm’s tendency to prioritize
immediate availability over proximity, leading to some houses being connected to less
optimal corners.

Figure 9. Greedy algorithm based on distance matrix using a number of 6 maximum users.
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Figure 10. Greedy algorithm based on distance matrix using a number of 7 maximum users.

In the context of the MST among corners, as depicted in Figure 11, the application of
Prim’s algorithm (Step 6 of Algorithm 1) reveals insightful patterns in spatial connectivity.
This algorithm, renowned for efficiently constructing an MST, iteratively adds the shortest
edge connecting a new vertex to the tree. The resulting graph underscores the inherent
spatial hierarchy among the corners, highlighting the most cost-effective pathways to
interconnect these nodes. As generated by Prim’s algorithm, the distribution of edges in
the MST reflects a balance between proximity and coverage, ensuring that each corner is
connected with minimal total edge length. The spatial configuration of the corners, coupled
with the algorithm’s preference for shorter connections, leads to a tree structure that is both
compact and comprehensive, providing a fundamental understanding of the underlying
network structure within the given spatial constraints.

Figure 11. Minimal spanning tree among corners.

Figure 12 shows how combining the Greedy algorithm’s specific house-to-corner assign-
ments with the solid structure of the MST offers us a complete picture of how the algorithm
works, and it is the final result of Algorithm 1. It brings together the detailed planning from
the Greedy algorithm with the strong base network of the MST. This figure captures how every
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house is connected to the network, highlighting how individual choices fit within the more
significant, sturdy structure. The image helps us see the careful balance the algorithm achieves
between assigning houses to corners and maintaining a solid overall network.

Figure 12. Implementation for the proposed algorithm, connecting the corners with MST and houses
to corner with Greedy.

The culmination of Algorithm 1 is represented in Figure 13, where the proposed
algorithm integrates an MST for connecting corners and a Greedy algorithm for linking
houses to corners, with an increased constraint of eight maximum connections per corner.
This comprehensive approach ensures that all houses are assigned to a corner, fulfilling
the primary objective of the algorithm. However, an intriguing aspect of the results is
the presence of corners without any assigned houses. This phenomenon underscores the
spatial distribution challenges inherent in such algorithms, where certain corners, despite
being available, are not the nearest option for any house. The algorithm effectively balances
the constraints and reveals the complexity of achieving an optimal distribution where all
corners are utilized.

Figure 13. Implementation for the proposed algorithm, connecting the corners with MST and houses
to corners with Greedy, increasing the condition of maximum available connection.
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Figure 14 showcases the practical application of Algorithm 1 within a German urban
framework, illustrating how residential houses, marked by triangles, are connected to the
electrical grid. The map confirms the algorithm’s capability to handle intricate urban struc-
tures, streamlining the layout of electrical infrastructure. Transformers are represented as
squares, and the service cables connecting them to the houses are depicted in red, outlining
the algorithm’s strategy for optimal placement and connection. The Minimum Spanning
Tree (MST), highlighted in purple, denotes the most efficient distribution routes between
transformers, aimed at enhancing the network’s connectivity. Accurate geographical coor-
dinates anchor the scenario in a realistic context, underlining the algorithm’s real-world
applicability. The color coding is instrumental for clarity: purple for the MST which in-
terlinks high-level infrastructure, and red for the service cables linking houses to the grid.
This visualization affirms the effectiveness of the algorithm in organizing and planning
future urban infrastructure development.
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Figure 14. Optimized house distribution in Germany with geographical coordinates, highlighting the
Greedy algorithm and MST’s roles in designing an efficient urban electrical network.

Figure 15 portrays the application of our algorithm within a UK urban setting, fine-tuning
the electrical grid for optimal performance. The network is presented with Medium Voltage
(MV) transformers, identified by yellow squares, which are interconnected by a Minimum
Spanning Tree (MST) shown in purple, a configuration that promises optimal power distribu-
tion and enhanced resilience of the infrastructure. The power lines, which extend from these
transformers to the residences, are not depicted in blue as previously mentioned but are instead
color-coordinated with the legend for clarity. Dashed lines indicate the streets that are available
for future network extensions, hinting at the growth potential within the urban electrical grid.
This figure transcends simple graphical representation, embodying a real-world example of the
algorithm’s potential to harmonize with the complex geography and infrastructure of urban
systems. The legend provides clear explanations for the color changes and marker symbols,
ensuring the figure’s legibility and its role as a testament to the algorithm’s functionality and
cost effectiveness in urban planning.
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Figure 15. Demonstration of the algorithm’s application in a UK urban landscape, showcasing the
optimized connections between houses and transformers via the MST.

4. Conclusions and Future Works

The proposed methodology integrates a practical approach with a robust mathematical
formulation to optimize the layout of a neighborhood. It begins by generating a realistic
scenario of houses and potential street corners, followed by calculating a distance matrix
to quantify the proximity of each house to these corners. The methodology’s core lies in
applying the Greedy algorithm, guided by constraints on the maximum number of houses
per corner, to efficiently assign houses to the nearest corners. Concurrently, a Minimum
Spanning Tree (MST) is computed among the corners to ensure an efficient infrastructure
layout. The optimization’s objective is to minimize the total distance between houses
and their assigned corners, augmented by the total length of the MST. This dual-objective
function, coupled with capacity and binary variable constraints, forms an MILP problem.
The iterative nature of the process allows for continuous refinement, ensuring an optimal
balance between practicality and efficiency in urban planning and resource allocation.

Algorithm 1 exemplifies a formidable solution to spatial distribution challenges, as
evidenced by its successful application in diverse urban landscapes such as Germany
and the UK. The methodology not only efficiently connects houses to the electrical grid,
but also does so by navigating through intricate constraints. The integration of MST and
Greedy algorithms is instrumental in optimizing the spatial layout, ensuring that the vast
majority of connections are both economical and practical. The case studies reveal the
algorithm’s adeptness in accommodating varying urban geometries, demonstrating its
efficacy in maximizing the use of existing infrastructure. While there is a trade-off with
some underutilized corners, this is overshadowed by the significant benefits of enhanced
network efficiency and adaptability. The tangible outcomes in the German and UK scenarios
attest to the algorithm’s potential to revolutionize urban network systems worldwide.

In conclusion, as detailed in the preceding discussions, the analyses conducted through
various algorithmic implementations offer insightful revelations about spatial distribution
and assignment challenges. Integrating MST and Greedy algorithms, the core methodology
demonstrates a strategic approach to connecting a network of houses to designated corners.
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The results, depicted in the graphs, reveal the algorithms’ effectiveness in adhering to con-
straints like maximum connections per corner while also highlighting inherent limitations.
As seen in the different scenarios, increasing the maximum connections per corner leads
to a more inclusive but uneven distribution, with some corners needing more utilization.
This outcome underscores the trade-offs between maximizing connections and achieving
equitable distribution. The analyses also highlight the Greedy algorithm’s tendency to
prioritize immediate availability over proximity, resulting in some houses being connected
to farther corners. Overall, these studies provide a comprehensive understanding of the
complexities involved in spatial assignment problems and the effectiveness of hybrid
algorithmic approaches in addressing them.
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