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Abstract: The region of the RC slab–column connection is subject to complex forces and is susceptible
to localized damage, leading to progressive collapse incidents, which has raised considerable concern
among the engineering community. At present, the research on slab–column connections exhibits
several shortcomings, including a limited number of specimens, incomplete consideration of various
factors, and unclear boundaries in defining failure modes. A comprehensive consideration of the
punch–span ratio (a/h0) and longitudinal reinforcement eigenvalues (ρƒy/ƒc) is lacking, and the
calculation formula for load bearing is not subdivided based on distinct failure modes. In this study,
finite element software is utilized to construct 42 models of slab–column connections. The variables
considered encompass three factors: the punch–span ratio, the longitudinal reinforcement ratio, and
concrete strength. The examination and evaluation encompass the analysis of the load–displacement
curve, reinforcement stress change curve, section crack distribution pattern, and stress contour map
obtained through model loading. The primary parameters defining the boundaries of the three failure
modes in the slab–column connection are the punch–span ratio and longitudinal reinforcement
eigenvalues. Utilizing the punch–span ratio and longitudinal reinforcement eigenvalues as key
parameters, a punching and flexural failure model for slab–column connections without abdominal
bars is formulated. The calculation formula for bearing capacity, encompassing flexural, flexural and
punching, and punching shear failure, is derived. A comparison between the revised formula and the
standard formulas from major countries indicates that the revised formula is more comprehensive,
providing a more accurate and secure prediction within the scope of this study.

Keywords: eigenvalues of longitudinal reinforcement; nonlinear finite element; punching and flexural
capacity; punch–span ratio; slab–column connections

1. Introduction

The RC slab–column structure, comprising interconnected slabs and columns, rep-
resents a two-way stress structural system [1]. With advantages such as flexible spatial
arrangement and expedited, straightforward construction, it has widespread applications
in engineering projects [2]. However, in structural design, slab–column connections are
often subject to combined flexural moments and shear forces, making them prone to lo-
calized shear failure, leading to potential instances of progressive collapse accidents [3].
Investigating the structural performance of slab–column connections holds significant
importance for engineering structures [4].

The current research on slab–column connections can be broadly categorized into
two main aspects: failure modes and load-bearing capacity [5]. Based on the distinct
mechanisms of failure and crack propagation during loading, failure modes can be clas-
sified into punching, flexural–punching, and flexural failure. The calculation methods
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for load-bearing capacity primarily rely on empirical formulas derived from experimen-
tal data. The key influencing factors on the punching shear resistance of slab–column
connections include the punch–span ratio, concrete strength, and the longitudinal rein-
forcement ratio [6,7]. However, a comprehensive consideration of these three factors is
required. Conventional experiments often suffer from limitations such as a limited num-
ber of specimens and insufficient consideration of factors, leading to unclear distinctions
in failure modes under different parameters. The load-bearing capacity of slab–column
connections is closely related to the inclination angle of the failure surface. Scholars both
domestically and internationally have not yet reached a unanimous consensus on the
fitting formula for the inclination angle [8]. Given the significant deviation between the
inclination angles obtained from estimation formulas and experimental values, achieving
an ideal fit involves placing the inclination angle separately on the axes of longitudinal
reinforcement eigenvalues and the punch–span ratio [9–13]. The commonly used stan-
dardized methods for load-bearing capacity calculations exhibit clear limitations, as they
do not differentiate between the different failure modes of slab–column connections and
fail to comprehensively consider the combined influence of the punch–span ratio and the
longitudinal reinforcement characteristic value.

In this study, a three-dimensional solid-to-shell degeneration virtual layer nonlinear
finite element program [14] was utilized to establish 42 models of slab–column connec-
tions. Considering the combined influence of the punch–span ratio and longitudinal
reinforcement eigenvalues, the analysis and assessment of the destructive performance
of slab–column connections were conducted. Taking the punch–span ratio and longitu-
dinal reinforcement eigenvalues as parameters, discriminative patterns for three failure
modes—flexural, flexural–punching, and punching—were established. Based on experi-
mental data on the inclination angles of the failure surfaces, a formula for the inclination
angle related to the punch–span ratio and longitudinal reinforcement eigenvalues was fit-
ted. Integrating the beam shear failure [15], the modified pressure field theory [16], and the
plastic hinge line theory [17], a non-mesh-reinforced slab–column connection failure model
considering the punch–span ratio, concrete shear zone height, and compression–shear
interaction was developed. Formulas for calculating the bearing capacity were established
according to the different failure modes of slab–column connections. Upon comparison
with standard formulas, the results indicated that the proposed formula in this study con-
siders comprehensive factors, exhibits higher accuracy and better safety, and can effectively
predict the punching shear capacity of slab–column connections.

2. Simulation Methods and Comparison with Experiments
2.1. Simulation Methodology

In this paper, the three-dimensional solid-degraded virtual laminated unit nonlinear
finite element VFEAP procedure was used [18] for modeling and analysis. The finite
element theory incorporated in this program adequately addresses the spatial effects and
failure modes of structures, concurrently enhancing the computational efficiency.

The solid degeneration element is essentially an improved 8–20-node spatial isopara-
metric element as Figure 1. By dividing the cubic parent element into several blocks, it is
assumed that each block is a hexahedron (either straight or curved) defined by 8–20 vertices
to represent its geometric shape. The natural coordinates within the block are obtained
using the unit coordinate interpolation method.

ζ =
nk

∑
i=1

Ni(ξ
′, η′, ζ ′)ζi

k (1)

η =
nk

∑
i=1

Ni(ξ
′, η′, ζ ′)ηi

k (2)
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ζ =
nk

∑
i=1

Ni(ξ
′, η′, ζ ′)ζi

k (3)

where nk represents the number of fixed points required to describe the first k block, with
a range of values from 8 to 20, and ξ ′ ∈ [−1, 1], η ∈ [−1, 1], ζ ′ ∈ [−1, 1] are the natural
coordinates of the parent blocks. The coordinate transformation between the parent block
and each block is based on the Jacobi matrix:

J′ =

ξξ ′ ηξ ′ ζξ ′

ξη′ ηη′ ζη′

ξζ ′ ηζ ′ ζζ ′

 (4)
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Figure 1. Twenty-node isoparametric element.

The solid degeneration virtual layer composite element is developed by appropriately
introducing the fundamental assumptions of beams, slabs, and shells based on the spatial
isoparametric element as Figures 2 and 3. Simultaneously, relative displacement parameters
are introduced, and the stiffness matrix is modified to construct a degenerated series of
beam, slab, and shell elements. The concept of “virtual nodes” and “virtual regions” is
introduced, defining different blocks within the same element and assigning them distinct
material properties. This allows the blocks representing different materials and geometric
shapes to coexist within the same element. This method significantly improves upon
deficiencies in conventional finite element simulation methods, enabling the precise and
efficient simulation of irregular shapes, nonlinear displacements, and a large number
of elements.
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Figure 3. Blocks within the 3D solid degeneration virtual composite element.

The three-dimensional solid degeneration virtual layer composite nonlinear finite
element program used in this paper considers dual nonlinearity, encompassing both geo-
metric and material nonlinearity. Geometric nonlinearity employs a complete Lagrange
format for calculating the ultimate bearing capacity, while material nonlinearity introduces
the multiaxial reinforced plasticity constitutive model based on Ohtani and Chen [19] to
simulate concrete materials. The ideal uniaxial stress–strain curve and the ideal biaxial
compression stress–strain curve of the three-dimensional generalized reinforced plasticity
concrete constitutive relationship are shown in Figure 4.
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Figure 4. Constitutive relation of reinforcement: (a) ideal uniaxial stress–strain relationship; (b) ideal
iso-biaxial compression relationship.

The constitutive model for reinforcing bars adopts the elastic reinforcement model
proposed by scholar Guo Zhenhai [20], as shown in Figure 5. The stress–strain model of the
rebar is divided into two stages: After linear elasticity, the bars yield, followed by a fixed
slope (E′

S = 0.01 ES) incline that rises to the ultimate strength. The simulation of reinforcing
bars employs three-node input for localization (midpoint of the bar and two endpoints).
The material properties of the bars are defined by setting parameters such as the elastic
modulus, bar density, and cross-sectional area.
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Concrete cracks are considered using an orthogonal distribution model, taking into
account cracking in different directions at an integration point. The concrete failure criterion
adopts the ultimate strain failure condition proposed by Ohtani and Chen [21].

During the computational solution process, the system of nonlinear equations of
the 3D solid degeneration virtual laminated element analysis method is solved using the
iterative incremental solution method of the m-N-R [22] solution. The loading procedure
employs the current stiffness method [23] to apply force load onto the structure for analysis:
Initially, during the force application, the structure is in the linear elastic loading phase
with a relatively large load increment; in the later stages, when the structure undergoes
significant deformation, it enters the nonlinear loading phase with smaller load increments.
When the load increment is small and the structure deformation undergoes a sudden
change, it is assumed that, at this point, the load is the ultimate load that the structure
can withstand. The finite element method used in this paper has been widely proven and
applied in civil engineering, bridge construction, and geotechnical and high-rise structure
analyses [24–29].

2.2. Comparison with Experiments

The finite element simulation results were compared with the experimental results
obtained by scholars such as Yi Weijian and Hong Feng [30]. Five specimens of slab–column
connections with a punch–span ratio of 7 were fabricated in the experiments. Two crucial
parameters, concrete strength and longitudinal reinforcement ratio, were considered as
variables. Using the method of controlling variables, the concrete strength grades and
longitudinal reinforcement ratios were varied independently to investigate the influence
of these two important parameters on the punching shear failure performance of the
slab–column connections.

The detailed parameters of the slab–column connection components designed by Yi
Weijian et al. are presented in Table 1. The specimen number is represented as follows: the
digit following the letter “C” indicates the punch–span ratio, the middle digit signifies the
concrete strength grade, and the final digit represents different reinforcement ratios.

Table 1. Detailed design parameters of the specimens.

Specimen h0/mm h/mm L/mm c/mm Concrete
Grade

Longitudinal
Reinforcement ρ

C7-30-3

150 180

2550

250

C30 14@60 1.73%
C7-50-3 2550 C50 14@60 1.73%
C7-70-3 2550 C70 14@60 1.73%
C7-50-2 2550 C70 14@80 1.28%
C7-30-1 2550 C70 14@120 0.86%

h0: effective thickness of the slab; h: thickness of the slab; L: length of the slab; c: the dimensions of the column; ρ:
longitudinal reinforcement ratio.
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These specimens consisted of reinforced concrete slabs and short square–section
columns. The concrete slabs had dimensions of 2550 mm × 2550 mm × 180 mm, and
the short square-section columns were centrally positioned on the slabs, each measuring
250 mm × 250 mm. A concentrated load was applied to the column head (Figure 6), and
displacement points were strategically placed on the surface of the reinforced concrete
slabs. This arrangement facilitated the observation of surface deformations during the
loading process, allowing for a comparison to be made with the deformation and damage
states of the slabs. By analyzing the morphological changes in the damage process of
the slab–column connection through the comparison and observation of the slab surface
deformations, we aimed to gain insights into the loading process and damage evolution.
The arrangement of the displacement measurement points on the specimen is illustrated in
Figure 7.

Buildings 2024, 14, x FOR PEER REVIEW 6 of 22 
 

column connection through the comparison and observation of the slab surface defor-

mations, we aimed to gain insights into the loading process and damage evolution. The 

arrangement of the displacement measurement points on the specimen is illustrated in 

Figure 7. 

Table 1. Detailed design parameters of the specimens. 

Specimen h0/mm h/mm L/mm c/mm 
Concrete 

Grade 

Longitudinal  

Reinforcement 
ρ 

C7-30-3 

150 180 

2550 

250 

C30 14@60 1.73% 

C7-50-3 2550 C50 14@60 1.73% 

C7-70-3 2550 C70 14@60 1.73% 

C7-50-2 2550 C70 14@80 1.28% 

C7-30-1 2550 C70 14@120 0.86% 

h0: effective thickness of the slab; h: thickness of the slab; L: length of the slab; c: the dimensions of 

the column; ρ: longitudinal reinforcement ratio. 

 

Figure 6. Schematic diagram of loading of members. 

 

Figure 7. Layout of displacement measurement points and numbering of specimens. 

In the simulation modeling of the slab–column component, the elements were di-

vided based on the component dimensions and displacement measurement points. Com-

ponents such as the slab, column, and supports were defined according to the different 

material properties in the finite element software(Virtual Fortran 6.5) as Figure 8. The 

model specified that the supports were fixed to the ground, with lateral supports fixed in 

the X and Z directions of the main structural model, and vertical supports fixed in the Y 

and Z directions. A reinforcement was positioned using three-node input (midpoint and 

two endpoints), and its material properties were defined by seBing parameters such as the 

elastic modulus, density, and cross-sectional area. The longitudinal reinforcement ratio 

Figure 6. Schematic diagram of loading of members.

Buildings 2024, 14, x FOR PEER REVIEW 6 of 22 
 

column connection through the comparison and observation of the slab surface defor-

mations, we aimed to gain insights into the loading process and damage evolution. The 

arrangement of the displacement measurement points on the specimen is illustrated in 

Figure 7. 

Table 1. Detailed design parameters of the specimens. 

Specimen h0/mm h/mm L/mm c/mm 
Concrete 

Grade 

Longitudinal  

Reinforcement 
ρ 

C7-30-3 

150 180 

2550 

250 

C30 14@60 1.73% 

C7-50-3 2550 C50 14@60 1.73% 

C7-70-3 2550 C70 14@60 1.73% 

C7-50-2 2550 C70 14@80 1.28% 

C7-30-1 2550 C70 14@120 0.86% 

h0: effective thickness of the slab; h: thickness of the slab; L: length of the slab; c: the dimensions of 

the column; ρ: longitudinal reinforcement ratio. 

 

Figure 6. Schematic diagram of loading of members. 

 

Figure 7. Layout of displacement measurement points and numbering of specimens. 

In the simulation modeling of the slab–column component, the elements were di-

vided based on the component dimensions and displacement measurement points. Com-

ponents such as the slab, column, and supports were defined according to the different 

material properties in the finite element software(Virtual Fortran 6.5) as Figure 8. The 

model specified that the supports were fixed to the ground, with lateral supports fixed in 

the X and Z directions of the main structural model, and vertical supports fixed in the Y 

and Z directions. A reinforcement was positioned using three-node input (midpoint and 

two endpoints), and its material properties were defined by seBing parameters such as the 

elastic modulus, density, and cross-sectional area. The longitudinal reinforcement ratio 

Figure 7. Layout of displacement measurement points and numbering of specimens.

In the simulation modeling of the slab–column component, the elements were divided
based on the component dimensions and displacement measurement points. Components
such as the slab, column, and supports were defined according to the different material
properties in the finite element software(Virtual Fortran 6.5) as Figure 8. The model
specified that the supports were fixed to the ground, with lateral supports fixed in the X
and Z directions of the main structural model, and vertical supports fixed in the Y and
Z directions. A reinforcement was positioned using three-node input (midpoint and two
endpoints), and its material properties were defined by setting parameters such as the
elastic modulus, density, and cross-sectional area. The longitudinal reinforcement ratio was
determined by changing the spacing between the longitudinal reinforcements. The plan,
section, and reinforcement details of component C7-70-1 are shown in Figure 9. Uniform
loads were applied on the top surface of the column. To avoid local failure phenomena
during loading in the finite element software, an elastic block with a thickness of 20 mm
was added on the top surface of the column. The finite element model of the slab–column
connection is shown in Figure 8. To minimize errors, displacement values were measured
multiple times, and the average values were used to plot the required curves.
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Figure 9. C7-70-1 plan, section, and reinforcement diagrams.

The comparison graph in Figure 10, depicting the deflection curves at the load point
on the slab center, reveals similar trends in the experimental curves of the five specimens
and the numerical simulation curves. This observation suggests that the finite element
method employed in this study effectively simulated the loading process of the slab–column
connection components. The only notable difference was that during the experimental
process, there was a significant drop in the deflection curve after reaching the ultimate
state during unloading, a phenomenon that the software could not replicate; therefore, no
declining segment was observed in the simulation.
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The comparison of the deflection curves at the load point on the center of the slab also
indicated good agreement between the simulated and experimental values. The change in
deflection showed a close match, with similar curve shapes. The differences between the
maximum load and the ultimate bearing capacity were relatively small, demonstrating the
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software’s capability to accurately simulate the deformation during the loading process of
the slab–column connection. A comparison graph of the deflection curves at the load point
on the center of the slab is illustrated in Figure 11.
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Observing the failure mode diagram of the test slab, at the state of ultimate loading,
radial cracks radiated along the corners of the slab, and a ring-shaped crack appeared
near the slab–column connection. Comparing this with the stress contour map generated
through simulation under the same conditions as Figure 12 it is evident that stress was
concentrated near the column head, forming a distinct closed loop. The stress was concen-
trated in strip-shaped regions extending from the column corner to the slab corner in four
directions. This indicates that the location of the stress concentration on the slab surface
corresponds to the location of crack initiation.
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(a) Experiment failure mode; (b) Stress contour map.

3. Parametric Simulation Analysis of Impact and Flexural Performance
3.1. Model and Parameters

In order to study the combined effects of the punch–span ratio and longitudinal
reinforcement eigenvalues on the damage mode of the reinforced concrete slab–column
connections, and to explore the critical problems of flexural, flexural–punching, and punch-
ing damage, 42 slab–column connection models were designed. The parameters included
the punching span ratio (3 to 15), the reinforcement ratio (0.86%, 1.28%, and 1.73%), and
concrete strength (C30 and C50). All models had a slab thickness of 180 mm, an effective
thickness of 150 mm, and square columns with a side length of 250 mm. The specimen
parameters and numbers are shown in Table 2 below. The model was built using the
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common finite element method in the validation of the examples; the model specimen
reinforcement was HRB400 rebar, and the bottom of the slab was arranged in a single layer
in both directions. The yield strength of the reinforcement and the concrete strength were
both based on the design values [31].

Table 2. Specimen numbers and their parameters.

Specimen L/mm ρfy/fc
Concrete

Grade
Longitudinal

Reinforcement ρ λ Failure Mode

C3-30-1 1350 0.217 C30 14@120 0.86% 3 punching
C3-30-2 1350 0.322 C30 14@80 1.28% 3 punching
C3-30-3 1350 0.436 C30 14@60 1.73% 3 punching
C3-50-1 1350 0.134 C50 14@120 0.86% 3 punching
C3-50-2 1350 0.199 C50 14@80 1.28% 3 punching
C3-50-3 1350 0.270 C50 14@60 1.73% 3 punching
C5-30-1 1950 0.217 C30 14@120 0.86% 5 punching
C5-30-2 1950 0.322 C30 14@80 1.28% 5 punching
C5-30-3 1950 0.436 C30 14@60 1.73% 5 punching
C5-50-1 1950 0.134 C50 14@120 0.86% 5 flexural and punching
C5-50-2 1950 0.199 C50 14@80 1.28% 5 punching
C5-50-3 1950 0.270 C50 14@60 1.73% 5 punching
C7-30-1 2250 0.217 C30 14@120 0.86% 7 punching
C7-30-2 2250 0.322 C30 14@80 1.28% 7 punching
C7-30-3 2250 0.436 C30 14@60 1.73% 7 punching
C7-50-1 2250 0.134 C50 14@120 0.86% 7 flexural and punching
C7-50-2 2550 0.199 C50 14@80 1.28% 7 punching
C7-50-3 2250 0.270 C50 14@60 1.73% 7 punching
C9-30-1 3150 0.217 C30 14@120 0.86% 9 punching
C9-30-2 3150 0.322 C30 14@80 1.28% 9 punching
C9-30-3 3150 0.436 C30 14@60 1.73% 9 punching
C9-50-1 3150 0.134 C50 14@120 0.86% 9 flexural and punching
C9-50-2 3150 0.199 C50 14@80 1.28% 9 flexural and punching
C9-50-3 3150 0.270 C50 14@60 1.73% 9 flexural and punching
C11-30-1 3750 0.217 C30 14@120 0.86% 11 flexural
C11-30-2 3750 0.322 C30 14@80 1.28% 11 flexural and punching
C11-30-3 3750 0.436 C30 14@60 1.73% 11 punching
C11-50-1 3750 0.134 C50 14@120 0.86% 11 flexural
C11-50-2 3750 0.199 C50 14@80 1.28% 11 flexural
C11-50-3 3750 0.270 C50 14@60 1.73% 11 flexural and punching
C13-30-1 4350 0.217 C30 14@120 0.86% 13 flexural
C13-30-2 4350 0.322 C30 14@80 1.28% 13 flexural
C13-30-3 4350 0.436 C30 14@60 1.73% 13 flexural and punching
C13-50-1 4350 0.134 C50 14@120 0.86% 13 flexural
C13-50-2 4350 0.199 C50 14@80 1.28% 13 flexural
C13-50-3 4350 0.270 C50 14@60 1.73% 13 flexural
C15-30-1 4350 0.217 C30 14@120 0.86% 15 flexural
C15-30-2 4350 0.322 C30 14@80 1.28% 15 flexural
C15-30-3 4350 0.436 C30 14@60 1.73% 15 flexural
C15-50-1 4350 0.134 C50 14@120 0.86% 15 flexural
C15-50-2 4350 0.199 C50 14@80 1.28% 15 flexural
C15-50-3 4350 0.270 C50 14@60 1.73% 15 flexural

ρƒy/ƒc: longitudinal reinforcement eigenvalues; concrete grade: design strength; λ: punch–span ratio, λ = a/h0,
a = (L0 − c)/2.

3.2. Analysis of Failure Modes
3.2.1. Three Failure Modes

The failure mode of a slab–column connection can be roughly divided into three
types: flexural, punching, and flexural–punching failure [32]. During flexural failure, the
connection exhibits significant ductility, with substantial flexural deformation in the slab.
The longitudinal reinforcement near the column head yields, and overall, the load-carrying
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capacity of the slab–column connection is relatively low. Flexural failure typically occurs
in components with low reinforcement ratios or high punch–span ratios, resulting in a
limited number of conspicuous main cracks forming along the perimeter, dividing the
specimen into distinct sections. Punching failure is a distinct brittle failure mode where
the structural deformation of the slab–column connection is minimal. Radially oriented
fine cracks appear on the slab surface, and there is a higher quantity of fine, radial cracks
with relatively small variations in crack widths. These cracks propagate from radial cracks
to the surrounding areas. Concurrently, diagonal shear cracks originating from the center
of the slab extend toward tension and compression zones, forming a ring. This type of
failure occurs in specimens with high reinforcement ratios, significant yield strength of
the steel reinforcement, and smaller punching spans. Flexural–punching shear failure
is an intermediate failure mode that shares similarities with flexural failure. The main
difference lies in the fact that, after the yield of the tension reinforcement, the development
of diagonal shear cracks results in a reduction in the height of the concrete shear zone,
leading to punching shear failure. This forms a conical failure shape with the column
head. The entire failure process exhibits a brittle failure pattern. This type of failure
typically occurs in components with moderate reinforcement ratios, where the tension
reinforcement reaches the yield strength, causing the development of shear cracks and
subsequent punching shear failure, forming a conical failure shape.

In this paper, the load–deflection curve of the slab–column connection, the stress curve
of the reinforcement near the column head, the stress contour map, the crack pattern map
of the profile, and the stress change map of the reinforcement at 45◦ in the punching cone
were plotted using the finite element method to comprehensively identify the three failure
modes of the slab–column connection as shown in Table 3.

Table 3. Discriminant table of damage patterns of slab–column connections.

Load–Deflection Curve
(Figure 13)

Stress Contour Plot
(Figure 14)

Column Head
Reinforcement

Stress Change in Rebar at
45◦ (Figure 15) Failure Mode

Formation of a plateau
with a significant change
in slope and greater
ductility

Formation of distinct
plastic hinge lines Early yielding Multiple rising segments in

rebar stress Flexural

Slight change in slope,
slightly more ductile

No plastic hinge line
formed Late yielding

Rebar stresses did not
show multiple rising
segments

Flexural–punching

The slope hardly changes
and the brittleness
phenomenon is obvious

No plastic hinge line
formed Unyielding No rise in rebar stress Punching
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Figure 14. Stress contours of slab–column connections under different failure modes: (a) flexural
failure stress contours; (b) flexural–punching failure stress contours; (c) punching–cutting failure
stress contours (the plastic hinge lines are clearly evident).
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different failure modes and plan view: (a) stress variation curve; (b) stress point location.

The internal development of the component was studied using the crack distribution
maps extracted from the crack.out file obtained from the model calculations as Figure 16.
The crack.out file reflects the quantity and development of cracks within each element
and block of the slab–column connection under different loadings. A snippet of the crack
file data is shown in Figure 16, with nfail representing the crack type: −1000 for uniaxial
tensile crack, −2000 for biaxial tensile crack, −3000 for triaxial tensile crack, and 3000 for
triaxial compressive crack. Ielem represents the element number, and ibloc represents the
block number, where the direction cosines indicate the direction perpendicular to the crack
propagation direction.
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Different types of cracks are filled with different colors as Figure 17: Pure red repre-
sents uniaxial tensile cracks (−1000), blue represents biaxial tensile cracks (−2000), green
represents triaxial tensile cracks (−3000), and purple represents triaxial compressive cracks
(3000). The crack angles (θ) were approximately calculated based on this coloring scheme.
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3.2.2. Influence of Punch–Span Ratio and Longitudinal Reinforcement Eigenvalues on
Failure Modes

Based on the failure modes observed during the loading process of the slab–column
connections and numerical analysis, their failure modes were determined. Considering
the identified influencing factors on the failure modes of the slab–column connections,
which are primarily the punch–span ratio and longitudinal reinforcement eigenvalues, a
discriminant diagram for the failure modes of the slab–column connections was plotted
with the punch–span ratio and longitudinal reinforcement eigenvalues as parameters.

λ ≤ 3, 0.134 < ρ fy/ fc ≤ 0.436, punching;
3 < λ ≤ 7, ρ fy/ fc ≤ 0.134, flexural-punching, 0.134 < ρ fy/ fc ≤ 0.436, punching
7 < λ ≤ 9, ρ fy/ fc ≤ 0.270, flexural-punching, 0.270 < ρ fy/ fc ≤ 0.4366, punching

9 < λ ≤ 11, ρ fy/ fc ≤ 0.217, flexural; 0.217 < ρ fy/ fc ≤ 0.322, flexural-punching, 0.322 < ρ fy/ fc ≤ 0.436, punching
11 < λ ≤ 13, ρ fy/ fc < 0.322, flexural; 0.322 ≤ ρ fy/ fc , flexural-punching,

13 < λ, 0.134 ≤ ρ fy/ fc ≤ 0.436, flexural;

(5)

For all simulation experiment models of the slab–column connections, the longitu-
dinal eigenvalues of reinforcement ρƒy/ƒc were within the range of 0.134 to 0.436, and
the punch–span ratios λ were from 3 to 15. When λ < 3 and 0.134 ≤ ρƒy/ƒc ≤ 0.436,
all of the slab–column connections exhibited pure punching failure. For 3 < λ ≤ 7, if
ρƒy/ƒc ≤ 0.134, the failure mode was flexural–punching, and when 0.134 < ρƒy/ƒc ≤ 0.436,
the failure mode was punching failure. When 7 < λ ≤ 9, if ρƒy/ƒc ≤ 0.270, the fail-
ure mode was flexural–punching, and when 0.270 < ρƒy/ƒc ≤ 0.436, the failure mode
was punching failure; when 9 < λ ≤ 11, if ρƒy/ƒc ≤ 0.217, the failure mode was flexu-
ral failure; for 0.217 ≤ ρƒy/ƒc ≤ 0.322, the slab–column connections exhibited flexural–
punching failure; and for 0.322 < ρƒy/ƒc ≤ 0.436, the failure mode was punching fail-
ure. When 11 < λ ≤ 13 and ρƒy/ƒc < 0.322, the failure mode was flexural failure. When
0.322 ≤ ρƒy/ƒc, the slab–column connections exhibited flexural–punching failure. When
13 < λ and 0.134 ≤ ρƒy/ƒc ≤ 0.436, the slab–column connections exhibited pure flexural
failure. As shown Figure 18.
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The failure mode discriminant diagram illustrates that as the punch–span ratio in-
creases, and the longitudinal reinforcement eigenvalues decrease, the failure mode of
slab–column connections gradually transitions from brittle failure to ductile failure. Within
a specific punch–span ratio range, if the ratio is either small or large, the failure mode
remains unchanged with variations in the longitudinal reinforcement eigenvalues. How-
ever, within a moderately sized punch–span ratio range, the following characteristics are
observed: a smaller longitudinal reinforcement eigenvalue makes the slab–column connec-
tion more prone to ductile failure, predominantly exhibiting flexural–punching or flexural
failure; conversely, a larger longitudinal reinforcement eigenvalue makes the connection
more susceptible to brittle failure, primarily manifesting as punching shear failure.

3.3. Analysis of Ultimate Bearing Capacity
3.3.1. Effect of Punch–Span Ratio

Observing the numerical simulation of slab–column components with different punch–
span ratios as Figure 19, constant concrete strength, and longitudinal reinforcement ratio,
the model’s ultimate load decreases and the ultimate displacement increases with the
increase in the punch–span ratio. The slab–column connection transitions from brittle
failure to ductile failure as the punch–span ratio increases. In a punch–span ratio range of
less than 7, the load reduction between the different punch–span ratios is approximately
110 KN. However, in a punch–span ratio range greater than 7, the load reduction between
the different punch–span ratios is approximately 50 KN. This indicates that the influence of
the punch–span ratio on the load-bearing capacity varies with different punch–span ratio
ranges, with a greater impact when the punch–span ratio is less than 7.
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3.3.2. Effect of Longitudinal Reinforcement of Eigenvalues

The longitudinal reinforcement eigenvalue, which encompasses the yield strength of
longitudinal reinforcement, reinforcement ratio, and concrete strength, is a comprehensive
factor influencing the punching shear capacity of slab–column connections. The relationship
between the longitudinal reinforcement eigenvalue and the ultimate load forms a curve as
Figure 20, indicating that, under the same punch–span ratio, an increase in the longitudinal
reinforcement eigenvalue due to an increase in the reinforcement ratio leads to an increase
in the punching shear capacity of the slab–column connection. Concrete strength also
affects the ultimate punching shear capacity of the slab–column connection, with a decrease
in concrete strength resulting in a decrease in punching shear capacity. However, the
impact of the reinforcement ratio on punching shear capacity is greater than the impact of
concrete strength.
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of slab–column connections.

4. Calculation Formula for Ultimate Load Capacity
4.1. Model of Anti-Shear and Formulation of Bearing Capacity

The load-carrying capacity calculation formula for the slab–column connection should
be differentiated based on the different failure modes. For flexural failure, it can be cal-
culated using the plastic hinge line theory. For punching shear and flexural–punching
failure, which is similar to shear failure in beams, the ultimate load-carrying capacity
can be considered as the combined contribution of the uncracked concrete in the shear
compression zone, the aggregate interlock force in the critical inclined crack zone, and the
dowel action of the reinforcement. The shear capacity Vc provided by the concrete in the
shear–compression zone and the shear capacity Vcs provided by the concrete in the critical
diagonal crack zone are superimposed to form a failure model, as shown in Figure 21.
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Figure 21. Model of punching and flexural failure: (a) sectional view of the slab–column connection;
(b) punching failure cone.

In the calculation of punching and flexural–punching capacity, the anchorage effect
of the reinforcement is typically neglected. This is due to the sudden occurrence of shear–
punching failure, where the reinforcement may not have time to engage before failure.
Additionally, neglecting the anchorage effect simplifies the calculations and enhances the
safety margins. The flexural capacity is mainly supported by the bending resistance of
the reinforcement, and the concrete’s shear effect in flexural failure is not significant. In
order to unify the three failure modes, the ultimate capacity formula for the slab–column
connection can be expressed as Vu = Vc + Vcs + P, where Vc represents the shear capacity
provided by the concrete in the shear pressure zone, and Vcs represents the shear capacity
provided by the concrete in the critical diagonal crack zone. P represents the ultimate
capacity of the slab–column connection when a flexural failure occurs. hc represents the
height of the compression zone, hs represents the height of the shear zone, and θ represents
the inclination of the critical diagonal crack.
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The shear capacity Vc provided by the concrete in the shear compression zone can be
referenced from the shear calculation method for beams, as described in the literature [15]:

Vc = 0.5c fc
′hc

(
hs

hc

)2
(6)

The relative shear zone height is determined using the following equation:

hs

h0
=

1 + 0.27 cot2 θ

1 + cot2 θ

hc

h0
(7)

(
hc

h0
)

2
+ 600

ρ

fc ′
hc

h0
− 600

ρ

fc ′
= 0 (8)

The aggregate interlock force in the critical inclined crack zone can be derived based
on the modified compression field theory (MCFT) proposed by Vecchio and Collins [16].

The aggregate interlock force in the critical inclined crack zone can be obtained
from Vcs:

Vcs = τciS =
1
2
×

0.18
√

fc ′

0.31 + 24ω/(ag + 16)
[2c + 2(h − hs) cot θ](h − hs) (9)

where S represents the shear stress projection area in the critical inclined crack.
Therefore, the anti-punching shear capacity of the slab–column node (sum of the four

shear planes) is given with the following formula:

Vu = 2 fc
′chs(

hs

hc
)

2
+

0.36
√

fc ′

0.31 + 24ω/(ag + 16)
[2c + 2(h − hs) cot θ](h − hs) (10)

The formula for the load-carrying capacity of the slab–column connection is closely
related to the failure angle θ. Based on the experimental data in this paper, a linear
regression was performed using SPSS(SPSS.26), with ρ fy/ fc, and λ as the parameters for
the failure angle θ.

Based on the regression analysis as Figures 22 and 23, it is observed that R = 0.913,
R2 = 0.833, and the adjusted R2 = 0.823. The Durbin–Watson coefficient is 1.343, and
the standard estimated error is 10.18533, indicating a good fit of the model. The sum
of squares for regression is 17,626.566, the residual sum of squares is 3527.195, and the
total sum of squares is 21,153.761. The F-value for the regression equation is 84.955, with
a significance coefficient of 0.000. The coefficient table shows that the most significant
coefficient in the regression equation is 0.008, which is less than 0.05. The VIF is less
than 5, indicating that there is no multicollinearity between the variables. Overall, the
independent variables have a significant impact on the dependent variable, suggesting a
strong linear relationship. Thus, the correlation expression between the inclination angle θ
of the slab–column connection and the punch–span ratio λ and reinforcement eigenvalue
ρ fy/ fc is obtained:

θ = 48.183ρ fy/ fc + 1.080λ (11)

Bring θ into Vu:

Vu = 2 fc
′chs(

hs

hc
)

2
+

0.36
√

fc ′

0.31 + 24ω/(ag + 16)
[
2c + 2(h − hs) cot(48.183ρ fy/ fc + 1.080λ)

]
(h − hs) (12)
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Figure 23. Data scatter plot.

4.2. Flexural (Punching) Models and Their Load-Bearing Capacity Expressions

The ultimate bearing capacity of the slab–column connection under flexural failure
can be calculated using the plastic hinge line theory formula [32].

P = 8ρ fyh0
2(1 − 0.5ρ fy/ fcm)

[
c

L0 − c
+ 2(

√
2 − 1)

L − c
L0 − c

]
(13)

4.3. Fitting and Analysis of the Formulas for Calculating Punching and Flexural Failure Capacity

The suggested calculation formulas for the three failure modes of the slab–column
connection can be expressed in segments: when ψ = 0, it is punching or flexural–punching
failure; when ψ = 1, it is flexural failure as shown in Figure 24.



Buildings 2024, 14, 208 17 of 21
Buildings 2024, 14, x FOR PEER REVIEW 18 of 22 
 

 

Figure 24. Flexural failure model. 

ψ ρ λ
ω

ψ ρ ρ

 
   = + + − + −   + +
 

 −− + − − − 

）

+( 1- )

'
' 2

)

2
0

0 0

0.36
2 ( ) 2 2( )cot 48.183 / 1.080 (

0.31 24 / ( 16)

8 (1 0.5 / ) 2( 2 1)

cs
u c s s y c s

c g

y y cm

fh
V f ch c h h f f h h

h a

c L c
Lf h f f

L c L c
 

(14) 

  

Of which  

0 9 11 / 0.217

0 13  0.134 / 0.436

1 others

y c

y c

f f

f f

λ ρ
ψ λ ρ

 < ≤ ≤
= < ≤ ≤



， ，

， ，

，

  

The suggested formulas were refined based on the numerical simulations of the com-

ponents and 27 sets of data from the slab–column connections without anti-punching re-

inforcement, extracted from the relevant literature, including the studies of Elstner et al. 

[33] and Weijian Yi et al. [34] As shown in Table 4. The K-S test was conducted to validate 

these formulas, assuming that the anti-punching shear capacity V follows a normal distri-

bution. A model σ
∧

=V V  was employed to determine the deterministic results of the slab–

column connections’ anti-punching shear capacity. 
∧
V  represents the stochastic variable to 

account for cognitive uncertainties. 

Table 4. Sources of experimental data. 

Data Sources Sample Size Range of � Range of Eigenvalues Range of �� Range of Column Size  

Elstner et al. [33] 18     

Weijian Yi et al. [34]  9 3~13 0.074~0.929 12.8~55.4 MPa 250~354 mm 

Numerical simulation 

in this paper 
36     

The statistical histogram of the random variable σ  is obtained as Figure 25, which 

intuitively shows that it approximately obeys a normal distribution. Through the statisti-

cal analysis, the sample size is n = 63; the maximum value of observation is 

Figure 24. Flexural failure model.

Vu = ψ

[
2 fc

′chs(
hs
hc
)

2
+

0.36
√

fc ′

0.31+24ω/(ag+16)

[
2c + 2(h − hs) cot

[
48.183ρ fy/ fc + 1.080λ

]]
(h − hs)

]
+(1 − ψ)8ρL fyh0

2(1 − 0.5ρ fy/ fcm)
[

c
L0−c + 2(

√
2 − 1) L−c

L0−c

] (14)

Of which

ψ =


0, 9 < λ ≤ 11, ρ fy/ fc ≤ 0.217
0, 13 < λ, 0.134 ≤ ρ fy/ fc ≤ 0.436
1, others

The suggested formulas were refined based on the numerical simulations of the
components and 27 sets of data from the slab–column connections without anti-punching
reinforcement, extracted from the relevant literature, including the studies of Elstner
et al. [33] and Weijian Yi et al. [34] As shown in Table 4. The K-S test was conducted to
validate these formulas, assuming that the anti-punching shear capacity V follows a normal

distribution. A model
∧
V = σV was employed to determine the deterministic results of

the slab–column connections’ anti-punching shear capacity.
∧
V represents the stochastic

variable to account for cognitive uncertainties.

Table 4. Sources of experimental data.

Data Sources Sample Size Range of λ Range of Eigenvalues Range of fc Range of Column Size

Elstner et al. [33] 18
Weijian Yi et al. [34] 9 3~13 0.074~0.929 12.8~55.4 MPa 250~354 mm

Numerical simulation
in this paper 36

The statistical histogram of the random variable σ is obtained as Figure 25, which intuitively
shows that it approximately obeys a normal distribution. Through the statistical analysis, the
sample size is n = 63; the maximum value of observation is D63 = 0.1649 < D0.05

63 = 0.171; the
mean value of the random variable σ is obtained as 1.444; and the standard deviation is 0.1649.
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The following value is obtained:

∧
V = V(1.44 − 0.1649 × 3.27) = 0.9V (15)

and therefore,

Vu = 0.9ψ

[
2 fc

′chs(
hs
hc
)

2
+

0.36
√

fc ′

0.31+24ω/(ag+16)

[
2c + 2(h − hs) cot

[
48.183ρ fy/ fc + 1.080λ

]]
(h − hs)

]
+0.9(1 − ψ)8ρL fyh0

2(1 − 0.5ρ fy/ fcm)
[

c
L0−c + 2(

√
2 − 1) L−c

L0−c

] (16)

of which,

ψ =


0, 9 < λ ≤ 11, ρ fy/ fc ≤ 0.217
0, 13 < λ, 0.134 ≤ ρ fy/ fc ≤ 0.436
1, others

The fitting of the modified formula values to the experimental values shows that the
calculated values from the modified formula are consistently lower than the experimental
values, indicating high safety and low variability. As shown in Figure 26. A comparison
with the predictions from the Chinese standard GB50010-2010 [31], the American standard
ACI318-19 [35], and the European standard EN 1992-1-1:2004 [36] reveals that the GB50010-
2010 standard generally underestimates the capacity of the slab–column connections in
flexural failure mode, and it may not encompass certain scenarios. Additionally, it is not
suitable for calculating the capacity of slab–column connections under varying punch–
span ratios. The predictions from the ACI318-19 and EN 1992-1-1:2004 standards show
high variability and are less applicable to various influencing factors. In contrast, most
data points from the proposed formula are located near the y = x line, with calculated
values consistently lower than the experimental values, indicating high safety and strong
applicability. The coefficient of variation for the modified formula is 0.130, which is lower
than values from other standards as Table 5, demonstrating that the formula developed in
this study can effectively predict the punching shear capacity of slab–column connections
and is superior to the calculation formulas in GB 50010-2010, as well as ACI 318-19 and EN
1992-1-1:2004.
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Table 5. Analysis of the ratio of tested to calculated load-carrying capacity values.

GB 50010-2010 [31] ACI 318-1 9 [35] EN 1992-1-1:2004 [36] The Formula for this Article

average value 0.513 1.355 1.341 0.889
coefficient of variation 0.301 0.266 0.344 0.130

5. Conclusions

1. The three-dimensional entity degeneration virtual laminated nonlinear finite ele-
ment program VFEAP can accurately realize the simulation of the punching and flexural
performance of slab–column connections. The test data are in good agreement with the
simulated data, which indicates that the program is suitable for simulating the load-bearing
performance of slab–column connections.

2. The punch–span ratio and the longitudinal reinforcement eigenvalues have a
significant influence on the failure mode of slab–column connections. When ρƒy/ƒc ≤ 0.436,
λ ≤ 3, all of the slab–column connections show punching failure; when λ ≥ 13, all show
flexural failure; when 3 ≤ λ ≤ 13, the three types of failure modes may all occur. However,
as the punch–span ratio increases, it becomes more prone to flexural failure with a lower
reinforcement ratio. Conversely, as the punch–span ratio decreases, it is more susceptible
to punching failure, with a higher reinforcement ratio. Intermediate conditions may also
lead to a flexural and punching failure.

3. The capacity calculation formula for slab–column connections should be differ-
entiated based on different failure modes. A model for the punching shear capacity of
slab–column connections was proposed, considering the shear force, the critical diagonal
crack aggregate interlocking force, and the flexural resistance of the reinforcement. A
segmented functional capacity calculation formula was established to encompass the three
different failure modes. Based on the simulated analysis data from the model, numerical
fitting was performed using SPSS software to derive a formula for the failure surface inclina-
tion angle related to the punch–span ratio and longitudinal reinforcement eigenvalues. By
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incorporating this formula, a comprehensive capacity calculation formula for slab–column
connections covering the three failure modes was obtained. The results of the experimental
and simulation analysis data fitting indicate a good correlation between the proposed
formula and the failure modes of the slab–column connections. Specifically, punching shear
failure exhibited the highest capacity, followed by flexural–punching failure, with flexural
failure having the lowest capacity.

4. A comparison between the modified formula and the code-based calculation formu-
las reveals that the capacity calculated using GB 50010-2010 tends to be underestimated,
showing a certain deviation from the experimental values. In the graph, some points
deviate from the line, indicating potential safety issues when predicting the capacity under
the flexural failure mode, and the formula fails to consider the influence of punch–span
ratio variation on the slab–column connection capacity. The predictions from ACI 318-19
and EN 1992-1-1:2004 exhibit significant data dispersion and lower safety levels, indicating
limited applicability. In contrast, the formula proposed in this study shows a high degree of
fitting, with the calculated values being lower than the experimental values, demonstrating
superior safety and minimal dispersion. The coefficients of variation are smaller than
those of other codes, indicating the effectiveness of the proposed formula in predicting the
punching and flexural capacity of unreinforced slab–column connections. It outperforms
GB50010-2010, and it is superior to ACI 318-19 and EN 1992-1-1:2004.
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