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Abstract: The stochastic modeling of geometrically imperfect steel frame structures requires statistical
inputs for imperfection parameters, often with specific mutual correlations. The stochastic input
values of geometrical imperfections are derived from European Standard EN 1090-2:2018 tolerance
criteria. Two advanced stochastic methods, #RSS (random storey sway) and #RSP (random storey
position), are developed based on these criteria. This paper presents a verification study, using
random sampling simulations, for these two stochastic methods (#RSS and #RSP) to directly model
the initial global geometrical imperfections of steel frame structures. The proposed methods have
been verified for structures with equidistant storey heights and for those comprising up to 24 storeys,
making them applicable to a wide range standard steel frame structures. It has been found that the
performance of the #RSS method is satisfactory. An advantage of #RSS is that the random parameters
are statistically independent. On the other hand, the #RSP method requires the definition of these
mutual correlations in order to satisfy the criterion that 95 percent of random realizations of initial
imperfections fall within the tolerance limits of the corresponding European Standard. The #RSP
method, however, might have certain advantages for structures with a larger number of storeys
(above 24), as closely discussed in this study. Additionally, this study provides useful provisions for
the advanced numerical analyses of multi-storey steel frames of various geometries.

Keywords: correlations; erection tolerances; first order reliability method; initial geometrical imperfections;
multi-storey steel frames

1. Introduction

Steel frame structures exhibit initial imperfections, which can be classified into three
main categories: geometrical, material, and structural imperfections [1,2]. The consideration
of initial imperfections is crucial for the analysis of steel structures, as imperfect geometry
along with other imperfections can significantly reduce load-carrying capacity [3–5] and
increase deflections [6,7]. Understanding and addressing these imperfections is crucial for
ensuring the reliability of steel structures, as shown in [8–10].

The focus of this paper is on geometrical imperfections, specifically the steel frame
geometry (not the imperfections of the column and beam cross-sectional geometries).
Imperfections arise during manufacturing and erection, with tolerances defined in design
standards such as EN 1090-2:2018 [11]. Geometrical imperfections include local (bow
imperfections in vertical members) and global (out-of-plumb sway of the entire floor)
imperfections. The paper introduces two entirely new stochastic methods for addressing
global imperfections (sways of the frame floors).

Several recent studies focus on the investigation of the optimal methods or proper
values of the initial geometrical imperfections of the steel frame structures [12,13]. For
example, Terrestrial Laser Scanners have been used to measure the initial imperfections of
steel frames, intended to be used in subsequent geometrically nonlinear analysis [14].
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Eurocode standards employ methods for introducing initial imperfections [15,16],
often treated deterministically in standard computational models as the “worst-case sce-
nario” [17]. However, this deterministic approach may be overly conservative, leading
to uneconomical designs [17]. The various approaches of initial geometrical imperfection
consideration include scaling elastic buckling modes (EBM) [18,19], the notional horizontal
forces method (NHF) [20], member stiffness reduction [21], and direct modeling of imper-
fections [22]. The US standard AISC-360 [23] introduces similar approaches, but directly
comparing with EC3 [20] is challenging due to differing design philosophies regarding
limit state and allowable stress concepts [24].

The EBM approach [18,19] relies on linear elastic buckling results, scaling the first
mode for frame imperfect geometry. It is assumed that the most critical geometry is
represented by the first buckling mode. However, it may lack conservatism if the critical
loads of the first and second modes are close [25], and the final failure shape may deviate
from the scaled buckling mode. An adapted EBM for special cases considers unique global
and local initial geometrical imperfections [26].

The NHF method introduces equivalent horizontal forces for each storey as an alter-
native to global sway imperfections. This method, used in a study [27] and allowed by
steel design standards [20], treats geometric imperfections indirectly through equivalent
loads. However, it may lead to overly conservative designs due to the consideration of
imperfections in the most unfavorable direction and form [16].

Another approach involves decreasing member stiffness [21] by 15%, calibrated by
plastic zone analyses. While easy to use, full probabilistic verification is pending [17], and
practical verification for all possible geometries may be challenging.

In the article presented here, the advanced studies investigate direct modeling, a
methodology that facilitates the integration of probabilistic techniques into reliability anal-
ysis [28]. This approach is highly regarded for its realism, treating all initial imperfections,
including frame sways, as random variables. However, a significant gap exists in detailed
stochastic models for global imperfections in 3D frames. While probabilistic and reliability
analyses often concentrate on individual components such as compressed columns [29,30]
or bent beams [31,32], sensitivity analysis reveals that the load-carrying capacity of the
frame is more affected by global imperfections than local ones [33]. The latest research
involves the application of probabilistic methods to entire 3D frames, including sway im-
perfections [34]. Although more complex due to numerous random inputs, this approach
offers a more accurate representation of real-world structures.

Using the standard EN 1090-2:2018 [11], statistical values of initial geometric imperfec-
tions can be determined, assuming compliance with building tolerance criteria. However,
this standard defines two different tolerance criteria for two mutually dependent param-
eters: sways of each floor and cumulative deviations of each floor relative to the base
position. As a result, two methods, labeled #RSS (random storey sway) and #RSP (ran-
dom storey position), are derived to account for stochastic input parameters related to
global geometrical imperfections. The #RSS method utilizes input parameters representing
sways of each floor (rotations of columns out of verticality between floors), while the
#RSP method focuses on defining floor positions relative to the base. This paper aims to
statistically validate, compare, and discuss the potential advantages and disadvantages of
these two methods. The verification of stochastic models is carried out by determining that
95 percent of random realizations of initial imperfections fall within the tolerance limits of
standard EN 1090-2:2018 [11].

Both of the proposed methods, #RSS and #RSP, use statistical values (mean value
and standard deviation) derived from the tolerance criteria defined in the standard for
the execution of steel structures EN 1090-2:2018 [11], hence the used values are supported
by the standard. These statistical values are similar to real measurements of the existing
structures [35], hence the values might be considered as rather realistic (not overly con-
servative). The utilization of the proposed approach to define initial imperfections for
numerical analyses is rather complex (requires the analysis of a sufficiently large number
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of random realizations), but on the other hand, is more realistic than the other available
approaches (EBM approach [18], NHF method [20] or the member stiffness reduction [21]).
The presented probabilistic methods might also be feasibly used to verify all the other
deterministic approaches to consider the initial imperfection.

The utilization of probabilistic methods to model the initial geometrical imperfections
in 3D structures provides a more accurate representation of real-world structural geometries.
Other imperfections, such as material imperfections, can also be considered as random factors
in the probabilistic analysis of reliability, and most of them (yield strength, Young modulus)
can be assumed to be uncorrelated with geometrical imperfections. This paper exclusively
focuses on two models, #RSS and #RSP, for representing initial geometrical imperfections.

2. Steel Frames Erection Tolerances: Stochastic Methods #RSS and #RSP

The statistical values (mean value µ and the standard deviation σ) of input parameters
(global geometrical imperfections) that are required for stochastic analyses of the FORM
method [28] are derived from the European standard that defines the erection tolerances
criteria, EN 1090-2:2018 [11]. Alternatively, these statistical values (µ and σ) might be
obtained from a large sample of real measurements directly from construction sites, for
example those summarized by Lindner and Gietzel [35]. Similar values have also been
used by Shayan et al. [17]. The values in this study are derived from the erection tolerance
standard, as the differences from the direct measurements are rather negligible.

2.1. Eurocode Standard Requirements—Tolerance Criteria

The erection tolerances of multi-storey steel buildings are considered according to
Table B.18 of the Annex B of standard EN 1090-2:2018 [11]. In this table, values for two func-
tional tolerance classes are provided. Class 2, the stricter one, can be required if a glazed
façade is to be installed between the structural members, as mentioned in chapter 11.3.2 of
the EN [11]. Otherwise, tolerances of Class 1 are sufficient, and should be applied unless
otherwise required by the execution specification. Therefore, in this study, the functional
tolerances defined by Class 1 are also considered for all the erection tolerances.

The maximal permitted deviation ∆i (here also noted as the cumulative tolerance) for
the location of the whole storey level, which is located i levels above the base relative to the
base position, is expressed as:

|∆i| =
∑i

j=1 hj

300
√

i
, (1)

where hj is the height of the j-th storey (in this study all the storeys are considered of the
same height) [11].

Another functional tolerance defines the criterion of the maximal column inclination
between two adjacent storey levels, i − 1 and i, marked as ∆dif,i,i−1 in this study, also noted
as the i-th storey sway, swayi (or by abbreviation swi). The criterion is stated as:

swayi =
∣∣∣∆di f ,i,i−1

∣∣∣ ≤ hi
300

, (2)

where hi is the storey height (column height) between these two adjacent storeys at the
levels i − 1 and i [11].

These two parameters, swayi and ∆i, are mutually dependent, hence the statistical
values of the mean value and standard deviation for further stochastic analyses might
be derived either from Equation (1), with the subsequent verification of Equation (2)’s
requirements, or vice versa.

The standard [11] also defines the tolerance for the straightness of a continuous col-
umn between adjacent storey levels, so-called local imperfection, also known as the bow
imperfection of the column [36,37]. This is marked as LIk, which is limited to the value:

|LIk| ≤
hk

1000
, (3)
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where hk is the height of the column k, hence the height of the storey i in which the column
is located. However, this criterion is not influenced by any other erection or manufacturing
tolerance criterion, and mutual dependency would occur as between Equations (1) and (2).
Therefore, this criterion is not further discussed in this paper.

These three criteria are graphically depicted in the schema for the m-storey structure
in Figure 1, with floors numbered by i from 1 to m, and columns marked by k. An example
showing the x-axis direction of the global coordinate system is provided, and this direction
is stated in the index behind the parameter symbols. Analogical notation would be used
for the imperfections in the global y-axis direction.
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2.2. Two Stochastic Methods for Statistical Parameters of Frame Imperfections

The so-called 2 sigma (2σ) rule might be utilized in order to achieve the maximum of
5% of random realizations not fulfilling the considered tolerance criterion, in case the frame
geometry is to be considered stochastically for the subsequent numerical analyses. The
2σ rule has been applied in many studies, e.g., [32], based on the results of experimental
research. For example, for the local imperfection of the k-th column, the mean value of
the imperfection would be 0, and the standard deviation 1/2000 of the column height, as
derived from the Equation (3).

It is not a condition, but a stochastic model typically assumes that the mean value is
the characteristic value of the considered random variable—see Figure 2. The probability
density function of geometric imperfections can be considered as Gaussian, which is an
approach commonly used in conventional stochastic models [2,32,38]. A more sophisticated
representation of imperfections is often based on Gaussian random fields, e.g., [39–41].

The imperfections in the bows can be treated as statistically independent variables.
However, the random characteristics of sway imperfections are more complex due to
mutual dependencies arising from the interaction between individual floors. Because there
are two standard criteria for storey positions that are mutually dependent, two different
ways for determining stochastic values may be used.
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2.2.1. #RSS Method (Random Storey Sway)

The first approach is to consider the random input of sways for each storey, based on
Equation (2). The sways are considered as angles of declination from the vertical direction, and
the mean value of each storey sway would be 0, with the standard deviation of 1/600 radians.

In this approach, it appears to be useful to conduct a verification using the criterion
of the Equation (1), and thus to check the number of random realizations that violate
the maximal value of storey deviation relative to the base position, verified for each
storey separately. Ideally, there should be approximately 5% of these violations for each
corresponding storey.

This approach is further noted as the “random storey sways” method, or #RSS, as the
stochastic inputs are the sways of each i-th storey (swayi, or shorter notation swi). A certain
limit for the location of each storey relative to the base position (the criterion of Equation (1)
to be verified) is already partially indirectly incorporated in the logic of what is considered
as the random parameters for input due to the fact that the geometry of each storey is
bonded to the position of the storey below. It is questionable whether, for greater numbers
of storeys, the number of random realizations that would violate the criteria for the locations
of the uppermost stories relative to the base would still be approximately 5%, and what the
influence would be on the structural resistance determined by statistical methods.

2.2.2. #RSP Method (Random Storey Positions)

The second approach would be to consider the mean values of each i-th storey devia-
tion relative to the position of the base ∆i (Figure 1) as 0 mm, and the standard deviations
would be derived for each storey based on Equation (1). Hence, different standard devia-
tions are given for each i-th storey, and larger values are yielded with increasing levels of
the corresponding storey.

Subsequently, the maximal mutual deviations of each set of two adjacent storeys
(sways) needs to be verified—Equation (2)—as does whether a maximum of 5% of random
realizations are violating the considered criterion. In this case, certain correlations (positive)
between the input ∆i parameters (storey deviations relative to the base position) need to be
introduced, mainly for multiple storey structures. Otherwise, this approach would lack
any relation between two adjacent storeys, resulting in too many realizations violating the
tolerance criteria for storey sways (Equation (2)).

This approach will be further noted as the “random storey position” method (approach
#RSP), as the inputs are deviations relative to the base position ∆i (Figure 1). The question
is, what values of the mutual correlations should be used.

3. Verifications of the Stochastic Methods of #RSS and #RSP

In both approaches, the Advanced Latin Hypercube Sampling (ALHS) method has
been used to generate the random realizations. In this method, the correlation errors are
minimized by the stochastic evolution strategies [42]. The representation of the specified
input distributions and the input correlations is also very accurate when the standard Latin
Hypercube Sampling (LHS) method [43] is used, whereby a method to minimize the undesired
correlations is implemented (Iman and Conover) [44]. Furthermore, it is easier to work with
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sampling methods when there is a correlation between parameters, e.g., [45–47]. ALHS has
been preferred, as it is recommended for not so large numbers of input parameters [48]. To
manage ALHS sampling, the OptiSLang version 7.4.1 software [48] has been used.

3.1. Random Storey Sway (#RSS) Method Verification

In order to verify the number of violated tolerances for each floor, a 24-storey structure
is considered, with an equidistant storey height of h (h was considered as 4.5 m for the
verification, but the value itself does not matter as long as the storeys are equidistant).
Here, 10,000 random realizations of sways are generated for set of 24 storeys (sets noted
as A, B, C, . . . X), with the mean value of 0 and standard deviation of 1/600 radians for
each storey. The standard Gauss distribution is considered. Each storey-set (A, B, C,
. . . X) of 10,000 random sway realizations then might be considered as a set of random
sways of any storey number (1, 2, 3, . . . 24), hence 30 random permutations (I., II., III., . . .
XXX.) of the storey-set to storey number assignments have been considered (the order of
random realizations within the 10,000 random realizations of each set A, B, C, . . . X is kept).
Examples of 3 of these 30 permutation assignments are depicted in a matrix in Table 1. For
example, the I. permutation considers all the 10,000 random sways of set A as sways of the
first floor, sways of the set B as sways of the second floor, etc. All the other permutations
(II.–XXX.) are then randomly mixed, e.g., in permutation II., the set of random sways A
is considered as random sways of the 15th floor. This approach has been used in order to
reduce the amount of data used for statistical post-processing (instead of 30 × 24 sets of
10,000 random realizations, only 24 such sets have been created).

Table 1. Example of the permutation assignments.

Assigned
Permutation

Storey-Set

A B C D E F G H I J K L M N O P Q R S T U V W X

I. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
II. 15 8 13 23 19 24 20 9 12 10 4 18 21 2 1 22 5 7 6 3 14 17 16 11
III. 6 21 1 11 9 10 24 16 22 3 19 18 4 13 8 14 15 5 17 2 7 20 23 12

For each set of 30 random permutations, the cumulative deviations ∆i of each i storey
relative to the position of the base are expressed, and compared with the maximal permitted
deviation (Equation (1)). The relative numbers of random realizations that violate these
cumulative tolerances are monitored for each storey, and the average values along with
standard deviation bars (of the 30 permutations) are depicted in Figure 3.

Note: For the 1st and last (24th) floors, these values are the same (4.56% and 3.59%,
respectively) in all 30 permutations, hence the 0 standard deviation. The reason in the case
of the first floor is the fact the storey deviation depends only on the sway of the first floor
itself (Equation (1) is the same as Equation (2) for i = 1). For each storey sway, the 2 sigma
rule has been considered in order to achieve 5% of the random realization violating the
tolerance (Equation (2)). This value for the ALHS algorithm is precisely 4.56% (not exactly
5%), as the number 2 within the 2 sigma rule is rounded. For all the sets (A, B, C, . . . X), the
relative number of realizations violating the tolerance of maximal inclination (Equation (2))
is the same, hence, it does not matter which of the 24 sets is to be considered as the set
for the 1st floor. The value for the last (24th) floor is the same for all 30 permutations, as
the final deviation of this last floor relative to the base does not depend on the order of
individual sways (for equidistant floors).

In general, the number of random realizations violating the cumulative tolerance
(Equation (1)) decreases with the increasing storey number (Figure 3). The decrease appears
to be approximately linear, on average −0.0375% per storey. Approximately up to the 15th
floor, the number of these realizations violating the cumulative tolerance is still around 4%.
For the 23rd floor, the average number is 3.73%. In order to get a more precise value for the
24th floor, either additional random realizations of 24 sway parameters would be necessary,
or permutations of sway assignments for larger floor numbers are required. This has not
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been further investigated in detail, as the objective, the decreasing trend and its intensity,
has been found already.
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Overall, it appears this approach, #RSS, might be used without any additional mod-
ification for smaller numbers of floors. For larger numbers of storeys, it is questionable
whether the number of realizations that violate the cumulative tolerances for the uppermost
floors is not too small, as the value is not as close to the 5% threshold.

3.2. Random Storey Position (#RSP) Method Verification

Similarly to the previous verification, 24 floor structures are here considered, with an
equidistant storey height h of 4.5 m. The random inputs are storey deviations relative to the
position of the base. For each storey, the mean value of this deviation is set to 0 mm, and
the standard deviation σ∆j is set in accordance with Table 2, where the values are derived
from the tolerance Equation (1) considering the 2 sigma rule.

Table 2. Example of the standard deviations for the random input of storey positions relative to
the base.

Storey
Number i Σhj (m) σ∆j (mm) Storey

Number i Σhj (m) σ∆j (mm)

1 4.5 7.500 13 58.5 27.042
2 9.0 10.607 14 63.0 28.062
3 13.5 12.990 15 67.5 29.047
4 18.0 15.000 16 72.0 30.000
5 22.5 16.771 17 76.5 30.923
6 27.0 18.371 18 81.0 31.820
7 31.5 19.843 19 85.5 32.692
8 36.0 21.213 20 90.0 33.541
9 40.5 22.500 21 94.5 34.369
10 45.0 23.717 22 99.0 35.178
11 49.5 24.875 23 103.5 35.969
12 54.0 25.981 24 108.0 36.742

Additionally, these storey deviations are mutually correlated through the Gaussian
correlation function (Equation (4)), which represents a 1D random field with correlation
length Lcor (m) and was used also in [49]:

ρjh = p · e−(ζ jh/Lcor)
2
, (4)
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where ρjh is the member of the correlation matrix, p is the multiplication factor set to ensure
the matrix is definitely positive (applicable mainly for larger matrixes, considered as 0.99,
except for diagonal matrix members that are exactly 1.0), and ζjh is the vertical distance
between two points (two floors). Various correlation lengths Lcor are verified.

In this approach, the maximal deviations of each set of two adjacent storeys needs to
be verified—Equation (2)—as does whether a maximum of 5% of random realizations are
violating the considered criterion. Hence, it is necessary to find the smallest possible value
of the correlation length Lcor, such that the number of random realizations that violate this
tolerance (Equation (2)) is below 5% for each pair of two adjacent storeys of an m-storey
structure with equidistantly spaced floors (each with a height of h).

These optimal values of correlation lengths Lcor are to be determined for 2–24-storey
structures, expressed relatively as the ω ratio, which is a function of m:

ω(m) =
Lcor

m · h , (5)

where m is the total number of floors, each with a height of h. As long as the vertical
distance between two floors ζjh might be expressed as a natural multiplication n·h of the
storey height h, Equation (4) can be expressed as:

ρjh = p · e−(
n

ω(m)·m )2

, (6)

where n is the relative distance between two floors (e.g., n = 1 for the distance between
the first floor and the second floor). The values of ω ratio are determined considering the
storey height h = 4.5 m, with corresponding values of the Lcor.

Firstly, for the 24-floor structure, nine different values of the correlation lengths Lcor
have been verified (13.5, 18.0, 22.5, 27.0, 31.5, 36.0, 40.5, 45.0 and 54.0 m) in order to
determine the correlation matrixes (Equation (4)). For each of these nine sets, 10,000 random
realizations of the 24 input parameters (24 random storey deviations relative to the position
of the base ∆i) have been generated by the ALHS method. For each of these nine sets, the
number of realizations that violate the maximal column inclination between two adjacent
floors (Equation (2)) is monitored for each pair of two adjacent floors. For easier notation,
this inclination between ith and i − 1st floor is noted as the sway of the ith floor (e.g.,
the sway of the third floor is determined from the inclination of the columns between the
second and third floor levels; see Figure 1, swayi = ∆dif,i,i−1). This workflow is graphically
depicted in Figure 4.

Afterwards, in order to determine the optimal correlation length Lcor for each ith floor
more precisely and to verify this value, several more sets using linearly interpolated values
of the Lcor have been realized. This time, for the determination of the optimal Lcor for the
ith storey, only an i-storey structure was considered (with i random storey deviations) to
decrease unnecessary data. However, to be more precise, for each of these interpolated Lcor
values, the ratio of random realizations that violate the maximal sway of the corresponding
floor (Equation (2)) is determined as the average of four sets, each with 10,000 random
realizations. For each floor, the Lcor values are determined more precisely until the ratio of
random realizations that violate the sway tolerance is 5% ± 0.2%. If the ratio fits within
this tolerance, Lcor is considered as optimal for the corresponding ith floor.

These values of the correlation lengths Lcor for structures up to 24 floors (floor heights
h = 4.5 m) and the corresponding ratio of realizations violating the sway of the correspond-
ing ith floor number (swayi = ∆dif,i,i−1) are graphically depicted in Figure 5.
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Figure 5. Verification of the storey sway tolerance criterion for the #RSP method.

In this graph, the dots represent relative numbers of random realizations that violate
the sways tolerances either for 10,000 random realizations (those dots where Lcor = 13.5,
18.0, 22.5, 27.0, 31.5, 36.0, 40.5, 45.0 and 54.0 m) or based on an average of four sets, each
comprising 10,000 random realizations (the more exact values are based on the interpolated
Lcor values). Note: For the fourth and third floors, the optimal Lcor value is verified based
on an average of 10 sets (each with 10,000 random realizations), and for the second floor
the average is made of two sets of 10,000 random realizations. It was found that using
10 sets does not improve the precision significantly compared to four sets. On the other
hand, using two sets seems to be feasible, but four sets are more precise, hence this number
was used for all the other floors.

The optimal values of the correlation lengths Lcor for a structure of storey height
h = 4.5 m, and the relatively expressed ω ratio (independent of the storey height h), are
summarized in Table 3.



Buildings 2024, 14, 196 10 of 16

Table 3. Summary of the optimal correlation values Lcor expressed relatively by the ω ratio.

m-Storey
Structure

Lcor (m) (for
h = 4.5 m) ω(m) (-) m-Storey

Structure
Lcor (m) (for

h = 4.5 m) ω(m) (-)

1 - - 13 25.60 0.4376
2 7.50 0.8333 14 26.60 0.4222
3 9.80 0.7259 15 27.90 0.4133
4 11.70 0.6500 16 29.50 0.4097
5 13.72 0.6098 17 30.35 0.3967
6 15.51 0.5744 18 31.93 0.3942
7 17.06 0.5416 19 33.80 0.3953
8 18.46 0.5128 20 35.00 0.3889
9 19.73 0.4872 21 36.56 0.3869
10 21.44 0.4764 22 38.00 0.3838
11 22.34 0.4513 23 39.80 0.3845
12 24.00 0.4444 24 42.20 0.3815

Graphically, the ω ratio is depicted in Figure 6a, and it appears that linear approxima-
tion of the ratio ω is feasible for floors 17–24, or for the extrapolation of higher storeys; see
Figure 6b.
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Figure 6. The values of the ω ratio: (a) Optimal values of the ω ratio used to determine the optimal
correlation length for the #RSP method; (b) linear approximation of the optimal ω ratio for a 17–24-
storey structure.

In this #RSP approach, the ratios of random realizations violating the maximal sway
tolerances for the i−1, i−2, . . . second floor in the case of an i-storey structure are signifi-
cantly below 5% if the optimal Lcor (or relative ω ratio) for the ith storey is considered. For
example, in the case of a seven-storey structure, the optimal correlation length for the storey
height h = 4.5 m is Lcor = 17.06 m (Table 3), but for this value, the percentages of realizations
violating the sway tolerances for the sixth, fifth, fourth, third and second floor are 3.42%,
2.13%, 1.06%, 0.41% and 0.08%, respectively (see Figure 5, the dots at Lcor = 17.06 m). Note:
The first floor is not depicted in the graph, as the sway of the first floor is dependent only
on the directly input value of the cumulative tolerance ∆1 for the first floor (the storey
deviation relative to the position of the base)—see Figure 1, where ∆1 = swayi = ∆dif,I,i−1.
Hence, the number of realizations that violate the sway tolerance of the first floor is the
same as the number of realizations that violate the cumulative tolerance for the first floor,
and this value is approximately 4.4%, independent of the considered Lcor value, as will be
further discussed (Figure 7).
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ing n-th floor: (a) Selected sets; (b) average.

Furthermore, the numbers of random realizations that violate the cumulative tolerance
(Equation (1)), and thus the direct input of storey deviations relative to the base position, are
verified (as there are correlations between these inputs). These values have been monitored
and averaged for each storey in nine sets of 24-storey structures (with Lcor values of 13.5,
18.0, 22.5, 27.0, 31.5, 36.0, 40.5, 45.0 and 54.0 m), and the values along with their standard
deviations are depicted in Figure 7a. In this graph, each dot represents an average value
for nine sets, where each set contains 10,000 random realizations. Due to input correlations
between the parameters, the utilized ALHS algorithm generates slightly different numbers
of realizations that violate the cumulative tolerance for each floor. It appears that there is
some local minimum in this value in the mid-part of the floor, with the averaged value
of 4.3% for the 1st and 24th floor, and around 4.0% near the 12th floor. In general, the
mid-floor values are more correlated (to both sides, up and down), and on the other hand,
the edge floors are correlated only to one side. Otherwises the deviations of these values
are not so large.

The standard deviations of the graph in Figure 7a are slightly scattered, hence the
same was verified for all the realizations used to determine the optimal Lcor values more
precisely (in short, “all the dots” from Figure 5, except those already used for the graph
in Figure 7a). The result is presented in Figure 7b. When averaging from a larger data
set, a similar tendency is observed, with slightly more aligned standard deviations. It is
important to note that in the case of this graph (Figure 7b), the data set is different for
each floor. The reason is that this graph was created from data used to determine more
precise Lcor values for various storey structures. As was mentioned before, in order to more
precisely determine Lcor for the n-th storey, only the n-storey structure was considered.
But an n-storey structure also contains data for the n − first, n − second, . . . first floors.
Hence, since these data were already available, they have also been used for the averaging.
The data that were used to build the graph in Figure 7b are depicted in Figure 8. For
example, for the 24th floor, there are 8 × 10,000 random realizations. This correlates with
the two additional points for the 24th floor line shown in Figure 5 (where each point is an
average of 4 sets of 10,000 realizations). The largest data set is apparently related to the
first floor, as all of the n-storey structures contain the first floor.
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The numbers of random realizations that violate the cumulative tolerance have also
been verified via a different averaging approach. This time, the averaging was done using
the data set of all the floors, separately, for each n-storey structure. The averaged values are
depicted in Figure 9, and the data set out of which the values were averaged is in Figure 10.
For example, there were two sets of 10,000 random realizations of two-storey structures,
hence the combined data were averaged out of four floors for the two-storey structure.
There were two 24-storey structures (with Lcor = 41.2 and 41.6 m—see Figure 5), and each
contained four sets of 10,000 random realizations, hence for the 24-storey structure, the
average was composed of 2 × 4 × 24 = 192 floors together. Although the data set differs for
each n-storey structure, the number of realizations that violate the cumulative tolerance
(of any floor of the considered structure) seems to slightly decrease with the increasing
number of floors of the structure (Figure 9). This decrease is in general not so large.

Overall, the number of random realizations that violate some cumulative tolerance
(considering the 2 sigma rule) is approximately 4.3% for any floor of any of the n-th-storey
structures in the considered data set. This seems reasonable, and is not so far from the 5%
threshold. However, in this #RSP approach, the previously discussed number of realizations
that violate the sway tolerance appears to be more questionable (Figure 5).
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4. Discussion of the #RSS and #RSP Approaches

The input statistical parameters based on the tolerance criteria in accordance with Table
B.18 of Annex B of standard EN 1090-2:2018 [11] are considered in both the approaches,
#RSS and #RSP. For the #RSS (random storey sway), the random inputs are based on
Equation (2) and the tolerances derived from Equation (1) are verified. For the #RSP
approach (random storey position), the input parameters are derived from Equation (1),
and Equation (2) is used for the verification. In general, both approaches are correct.

The advantage of the #RSS approach is that the input parameters (random storey
sways) have zero mutual correlations. The number of random realizations violating any
sway tolerance is equal to 4.56% (when the 2 sigma rule is considered to determine the
standard deviation from the tolerance criterion), which is close to 5% and the same for all
uncorrelated random inputs. The verification of the cumulative tolerances (Equation (1))
resulted in ratios of violations between 5% and 4% for the 1st to about the 15th floor
(Figure 4). This ratio decreases for higher floors, and might have some impact on the
structural resistance determined by statistical methods (e.g., first-order reliability method—
FORM), depending also on the load distribution of such structures.

On the other hand, the #RSP approach requires the definition of mutual correlations
between the input parameters (storey deviations relative to base), making it less robust
for utilization. Therefore, optimal correlations for structures up to 24 storeys expressed
relatively as ω ratios (which might be used for a structure with any number of (equidistantly
placed) storeys of height h) have been determined (Figure 6a, Table 3). Due to the correlated
inputs, the numbers of random realizations that violate the cumulative tolerances are not
the same, but are slightly variable (see averages in the Figures 7a,b and 9), and are in general
around 4.3%, which might be considered as acceptable. However, in order to achieve the
5% of random realizations that violate the sway tolerance of the last, ith floor, the number
of realizations that violate the tolerances of the other floors must be much smaller than 5%
(Figure 5). It is unknown what the impact would be on the structural resistance.

The provisions offered by this paper include the optimal correlation lengths (Table 3),
which might be used in further numerical analyses of steel frame structures via the uti-
lization of finite element methods. For example, the #RSS method, as presented here, has
been used, along with the probabilistic FORM method [28], for stochastic analyses of a
three-storey steel frame, as has been presented in a previous verification study [38]. In this
study, the ultimate resistance of a steel frame structure was compared, in accordance with
the FORM method, with the resistance of a deterministic design, in accordance with the
assumptions of the EN standard for steel structure design [20]. However, this verification
was conducted based only on one specific type of steel frame geometry. In future research,
the ultimate resistances of several different steel frame geometries will be estimated via
the stochastic FORM approach [28] and compared with the assumptions in the EN stan-
dard [20]. The resistances will be estimated using both methods verified in this paper, #RSS
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and #RSP, along with the FORM method, in order to investigate the influences of these
presented methods on the structural resistance of steel frame structures. In other studies,
models based on the correlation length have been utilized to enhance the understanding of
imperfections arising in bridge arch analyses [50] and the seismic resistance of steel-braced
frames [12].

5. Conclusions

This study introduces two distinct methods, namely, the random storey sway (#RSS)
and the random storey position (#RSP), in order to incorporate stochastic parameters
associated with the global geometrical imperfections of steel frame structures. The #RSS
method focuses on rotations caused by column out-of-verticality between different floors
(storey sways), while the #RSP method focuses on floor positions relative to the base. The
#RSS method stands out by eliminating the need for incorporating correlations between
statistical parameters related to member rotations among floors. Conversely, the #RSP
method requires the utilization of correlations between the deviations of individual floors,
defined by a random field, and approaches to defining the optimal correlations are provided
in this study.

Both of these methods have been tested on structures with up to 24 floors using
numerous randomly generated input parameter values. It might be concluded that the
utilization of both method is feasible, with possible limitations in the #RSS when applied
to structures with more storeys (above 24). The #RSP method is limited to the defined
correlation values, which are provided for structures of up to 24 floors. It is expected that
the structural resistances given by the #RSP and #RSS methods will differ for structures of
more storeys. This needs to be verified in future research via numerical analyses of several
steel-framed structures with various geometries.

Both of the presented methods, #RSS and #RSP, offer ways to consider statistical
input parameters (storey sways or storey positions) as part of a probabilistic method to
directly model the initial geometrical imperfections of steel frames (via changes in the
model’s geometry). The proposed methods might be utilized in 3D numerical analyses of
steel structures. The probabilistic method used to directly model the initial geometrical
imperfections offers more accurate representations of real-world structural geometries
compared with other methods, such as the scaling of the elastic buckling modes (EBM), the
notional horizontal forces method (NHF), or member stiffness reduction. The statistical
values (mean value and standard deviation) of the input parameters (sways or positions)
for the #RSS and #RSP methods are derived from the tolerance criteria set in the standard
for the building of steel structures, and these values are similar to those measured in
real structures. Hence, the values might be considered as rather realistic, and not overly
conservative. The presented probabilistic methods might also be feasibly used to verify
all the other deterministic approaches applied to model initial geometrical imperfections
(in various frame geometries), without conducting a costly physical experiment on such
a structure.

Author Contributions: Conceptualization, methodology, analysis, and writing—original draft prepa-
ration, D.J.; writing—review and editing, supervision, J.K. and Z.K.; project administration, funding
acquisition, Z.K. All authors have read and agreed to the published version of the manuscript.

Funding: This paper has been created with the financial support of the Czech Science Foundation as
part of project No.: 23−04712S “Importance of Stochastic Interactions in Computational Models of
Structural Mechanics”. Other financial support was provided by the Brno University of Technology
(BUT) fund for specific university research, under project number FAST-J-23-8299.

Data Availability Statement: Data are contained within the article.

Acknowledgments: We would like to thank Brno University of Technology for maintaining the
licenses of the OptiSLang version 7.4.1 software, which was used for random parameter generation.



Buildings 2024, 14, 196 15 of 16

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, or in the decision to publish the results.

References
1. Melcher, J. Classification of structural steel members initial imperfections. In Structural Stability Research Council: Proceedings 1980;

Lehigh University: Bethlehem, PA, USA, 1980. Available online: https://scholarsmine.mst.edu/ccfss-library/234 (accessed on 12
August 2023).

2. Kala, Z. Sensitivity assessment of steel members under compression. Eng. Struct. 2009, 31, 1344–1348. [CrossRef]
3. Chen, G.; Zhang, H.; Rasmussen, K.J.; Fan, F. Modeling geometric imperfections for reticulated shell structures using random

field theory. Eng. Struct. 2016, 126, 481–489. [CrossRef]
4. Wang, J.; Li, H.-N.; Fu, X.; Li, Q. Geometric imperfections and ultimate capacity analysis of a steel lattice transmission tower.

J. Constr. Steel Res. 2021, 183, 106734. [CrossRef]
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