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Abstract: In this paper, we focus on the dynamic volatility behavior of the daily Swedish Real
Estate Sector Index and analyze the existence and degree of a long-range dependence or asymmetric
news effect since 2003. More specifically, we give extra attention to the 2007–2008 financial crisis,
the 2009–2012 European debt crisis, and the first two years of the global COVID-19 pandemic era
(2020–2021). We examine changes in volatility during these extreme events. We apply standard
GARCH models, asymmetric GARCH models, and long-memory GARCH models with various error
distributions to identify the most accurate volatility models of the daily returns of the Swedish Real
Estate Sector Index for the full sample period, January 2003 to June 2021. Our results show that the
volatility of the Swedish Real Estate Sector Index is time-varying and highly volatile. The impacts of
the global financial crisis, European debt crisis, and COVID-19 pandemic are noticeable. Moreover,
the volatility pattern during COVID-19 displays significant time-varying long-range dependence
and an asymmetrical news impact, which lead to market inefficiency. Finally, the volatility pattern
shows a tendency towards increasing leverage effects and less persistent behavior, indicating that
the market stakeholders are highly sensitive to negative returns and becoming quicker to respond to
market changes.

Keywords: volatility forecasting; GARCH models; value-at-risk; leverage effect; COVID-19

1. Introduction

Since the last decade, the securitized real estate, which includes publicly traded real
estate companies and real estate investment trusts, has yielded high returns for its investors,
largely driven by the expansionary monetary policy with very low policy interest rates
and large-scale open market bond purchases through quantitative easing programs [1–4].
Further, the underlying direct real estate market, as the world’s most significant store of
wealth with a total value equating to more than all global equities and debt securities
combined, plays a critically important role for the whole financial system and economy [5].
Therefore, modeling and forecasting the risk of real estate is crucial for the stability of the
financial and economic system [6]. Volatility forecasting is a critically important step in
investment, portfolio selection, security and derivatives valuation, risk management, and
monetary policy making [7,8]. Therefore, modeling and forecasting real estate’s return
volatility has been the subject of a large body of empirical and theoretical research, because
volatility reflects and quantifies risk and uncertainty.

Further, the existing literature has found evidence of co-movements between securi-
tized real estate and the underlying real estate market regarding their valuation, risk, and
return [9,10]. More importantly, Ling and Naranjo [11] find that securitized real estate leads
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direct real estate, since securitized real estate reacts to fundamental economic information
faster than direct real estate does. In addition, long-term performance and securitized real
estate are strongly related to direct real estate performance [12] and volatility [13]. Thus,
modeling the securitized real estate index could inform and predict the risk of the whole
real estate sector. However, most of the current real estate risk analyses that are carried
out by both the media and policy makers are based on monthly data or even quarterly
data of real estate transactions, which are highly lagged and do not effectively reflect the
fundamentals of the real estate market in time. A securitized real estate index on a daily
level is not used, mainly due to the complexity of the modeling and volatility pattern. This
paper aims to address this problem by empirically testing the securitized real estate daily
index in Sweden to understand the volatility pattern of return over time and identifying
the most appropriate modeling framework for a developed real estate market.

Since the Scandinavian banking crisis of the early 1990s, the Swedish real estate
industry has experienced three major economic crashes: the U.S. housing market crash
and the breakdown of the subprime mortgage market which resulted in the 2007–2008
global financial crisis (GFC), the 2009–2012 European (sovereign) debt crisis (EDC), and the
ongoing global COVID-19 pandemic. These crises have negative impacts on the financial
market and economy. In this paper, we focus on the dynamic volatility behavior of the daily
Swedish Real Estate Sector Index and analyze the existence and the degree of a long-range
dependence or asymmetric news effect from January 2003 to June 2021, with a special focus
on these extreme events. We follow the literature to adopt a wide array of approaches based
on the standard Generalized Autoregressive Conditional Heteroscedasticity (GARCH)
approach [14] and its popular extensions to model the volatility pattern of the daily returns
of the Swedish Real Estate Sector Index. Then, we compare and evaluate the (out-of-sample)
volatility forecasting performance of the various estimated GARCH models to identify the
optimal model for the real estate sector in Sweden. As far as we know, this is the first paper
that investigates the volatility behavior of the Scandinavian real estate sector.

Our results show that the volatility of the Swedish Real Estate Sector Index is time-
varying and highly volatile. The impacts of the global financial crisis, European debt
crisis, and COVID-19 pandemic are noticeable. Moreover, the volatility pattern during
the COVID-19 period displays significant time-varying long-range dependence and an
asymmetrical news impact, which lead to market inefficiency. The volatility pattern shows
a tendency towards increasing leverage effects and less persistent behavior. This indicates
that market stakeholders are highly sensitive to negative returns and respond to market
changes much quicker. Moreover, we have applied a comprehensive model selection
criterion and concluded that the most suitable method during the in-sample period does
not have the same accuracy during the forecasting process, which has enriched the current
empirical literature.

This article starts with a comprehensive literature review on applying various GARCH
models to financial assets. Section 3 introduces the theoretical framework of basic GARCH
models, asymmetric GARCH models, and long-memory GARCH models with distribution
functions, model diagnostics, and analysis for both the fitting and prediction phases.
Section 4 describes the data and presents the in-sample results. Section 5 provides the out-
of-sample forecasting results (including VaR backtesting). Finally, Section 6 summarizes
our findings and offers a conclusion.

2. Literature Review
2.1. Development of Modeling Framework

Asset return volatility, or the degree of price fluctuation in financial markets, is known
to change over time. This results in periods of significant price swings followed by less
volatile periods [15]. Various methods exist for estimating and predicting volatility. Simple
methods involve looking at historical price changes, while more complex models like
ARCH and GARCH have been widely used in finance [6].
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The history of modeling time-varying volatility dates back to the development of
ARCH by Engle [16] and GARCH by Bollerslev [14]. These models help illustrate how the
distributional parameters of mean and variance change over time, capturing phenomena
like autocorrelation in returns [17]. Researchers have built on these models, creating more
sophisticated ones that consider stylized facts of volatility, such as the leverage effect and
news impact [18–25].

Asymmetric models like EGARCH and GJR GARCH account for the uneven impact of
positive and negative returns [18]. Some studies suggest variations in forecasting abilities
among these models, with EGARCH showing promise in certain contexts [19]. Long-
memory models like IGARCH and FIGARCH address persistent autocorrelation in daily
and high-frequency financial data [4,26,27] (see also Bollerslev and Mikkelsen [20] and
Davidson [21]). The conclusions drawn from different long-memory models also depend
on the particular study. For example, Taylor [22] compared five GARCH-type models and
found that the GJR-GARCH and IGARCH models performed better. Antonakakis and
Darby’s study [23] on exchange rate volatility found that the FIGARCH model outper-
formed others for industrialized countries, and the IGARCH model had better forecasting
accuracy for developed countries.

Studies comparing these models reveal mixed results, with the choice of evaluation
criteria playing a crucial role. Different loss functions, estimators, and evaluation criteria
can lead to varied conclusions [24,25,28]. Brailsford and Faff found that the GJR-GARCH
model outperformed others, using root mean squared error (RMSE), mean absolute error
(MAE), and mean absolute percentage error (MAPE) as loss functions [29]; Efimova and
Serletis [26], in their energy market volatility modeling study, applied the Schwarz Infor-
mation Criterion (SIC) and log-likelihood statistics to select optimal order specification.
Value-at-Risk (VaR) is also commonly used in volatility forecasting comparisons [27,30].

GARCH-type models are widely used for studying financial volatility, with numerous
model specifications available. However, the extensive development of models does not
necessarily guarantee improved forecasting accuracy. The choice of models depends on
the specific subject and sample period, and considering distribution variations beyond the
normal distribution is important for accurate representation of financial time series.

Nowadays, GARCH-type models are some of the most used approaches for studying
financial volatility and have been developed over hundreds of model specifications. After
comparing 330 ARCH-type models, Hans and Lunde [28] concluded that there is no evi-
dence that advanced GARCH models provide more accurate forecasting when compared
to a basic GARCH (1, 1) model for an exchange rate dataset. However, for both the esti-
mating and forecasting capabilities of the various GARCH-type models for different study
subjects and sample periods, the selection of performance evaluation criteria led to various
conclusions. Moreover, distribution variations other than the normal distribution, such as
Student’s t-distribution and skewed Student’s t-distribution, account for the skewness and
excess kurtosis that was detected in the financial time series [31–33].

2.2. Review of Volatility Patterns

Empirical volatility studies of the Scandinavian region are limited. Dritsakis and
Savvas [34] explored the volatility of four Nordic stock exchanges in Norway, Denmark,
Sweden, and Finland using ARCH (q), GARCH (p, q), and GARCH-M(p, q) models, which
were evaluated through MSE, MAE, RMSE, and MAPE. They found that ARMA (0, 1)-
GARCH-M (1, 1) and ARMA (0, 3)-GARCH (1, 1) models are the most accurate in terms
of Student’s-t distribution. Frennberg [35] applied ARCH- and GARCH-type models to
Swedish stock returns between 1977 and 1990. Kambouroudis and McMillan [36] studied
forecasting abilities through the application of asymmetric GARCH models based on in-
sample periods that differed in length, using stock returns from 23 countries, including
Sweden, and concluded that an in-sample period between less than a year and slightly
over three years is appropriate to make an accurate forecast.
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To analyze the volatility pattern, Booth et al. [37] studied the stock volatility in Den-
mark, Finland, Norway, and Sweden using an EGARCH model and found both a volatility
persistence and leverage effect. Further, previous research found that the attributes of
asymmetry and long-range dependence are commonly found in listed real estate firms of
developed markets with mature and complete legal and regulatory systems like the U.S,
Australia, Canada, France, and the Netherlands [38–40]. These findings are consistent with
the Prospect theory and its application to financial market that investors are more sensitive
to bad news possibly leading to a loss than good news, and thus, markets react to negative
shocks more aggressively than to positive shocks [41]. Therefore, we hypothesize that
the listed Swedish real estate sector exhibits attributes of leverage/asymmetry effects and
long-range dependence in return in its volatility pattern. Further, existing research found
that the level of market maturity is positively associated with the market efficiency [42].
Therefore, we hypothesize that the market efficiency level of the Swedish real estate sector
should have been improving over time, and that it is taking a shorter time to recover from
each negative shock.

3. Methodology

The time series data of Swedish Real Estate Sector Index daily returns shows clear
evidence of time-varying volatility and clustering, as shown in Figures 1 and 2. In some
time periods, the volatility is mostly low (e.g., 2003–2006 and 2016–2019), while the volatility
is much higher during the 2007–2008 financial crisis and during 2020, when the world
economy and the financial markets were hit by the COVID-19 pandemic. Also, the volatility
is higher during the 2009–2012 European debt crisis. Thus, the data show that periods with
smaller return volatility are followed by further small changes in volatility, and periods
with larger return volatility are followed by further large volatility. It is this pattern that is
typical for time-varying volatility, as well as volatility clustering.

GARCH models are very popular because they are useful for modeling time-varying
volatility. In this methodology section, we briefly summarize the econometric specifications
of the time-varying volatility models, that is, the various GARCH models that are assessed
in this paper. For a more detailed introductory explanation of the GARCH models and
their specifications, see, e.g., [6]. In short, the GARCH models capture the evidence of
volatility changes and clustering via lagged-return news or shocks and the momentum of
such shocks (e.g., the initial COVID-19 return shocks resulted in higher return volatility not
only in the first days but also in the coming days).
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3.1. Basic GARCH Model

The benchmark model is the Generalized Autoregressive Conditional Heteroscedastic
(GARCH) model that was proposed by Bollerslev [14] in 1986. Specifically, a GARCH (p, q)
model is defined as follows:

Variance Equation : σ2
t = ω + ∑q

j=1 αjε
2
t−j + ∑p

i=1 βiσ
2
t−i (1)

Mean Equation : Rt = µt + ∑m
k=1 θkRt−k + ∑n

l=1 ϕlεt−l + εt (2)

The GARCH model reflects that the variance at time t, σ2
t , changes with both the

lagged effect of news or shocks via the squared return error term, ε2
t−j for j = 1,. . ., p lags,

and via the lagged variance σ2
t−i for i = 1,. . ., q lags. In this model, α is the random influence

from the previous period, and β measures the lagged past variance. A large α reflects a
significant reaction to market movement, while a large β indicates the shock of the fact that
conditional variance takes a longer time to die out (i.e., news or shocks have a momentum
effect, implying that news are persistent). Given the variance equation, σt expresses the
conditional volatility of the return series at time t.

Since the standard GARCH (1, 1) model, where p = 1 and q = 1, is the most extensively
applied and examined model in the literature, we have used this model as our benchmark.
Regarding the mean equation, Rt denotes the return of the sector index at time t, and µt is
the mean of Rt given the information from the past period t − 1,. . .,. m is the order of the
autoregressive process (AR-process) with k = 1,. . ., m lags of returns, and n is the order of
the moving average process (MA-process), with l = 1,. . ., n lags of the error term.

Volatility model parameters ω, α, β are assumed to follow the restriction ω > 0,
α ≥ 0, β ≥ 0, and the constraints are applied to ensure that σ2 is strictly positive; meanwhile,
∑

q
j=1 αj + ∑

p
i=1 βi < 1 holds.

The return of a financial time series may depend on its volatility or variance. To model
this phenomenon, the Generalized Autoregressive Conditional Heteroscedastic-in-Mean
(GARCH-M) model could be applied.

Modi f ied Mean Equation : Rt = µt +
m

∑
k=1

θkRt−k +
n

∑
l=1

ϕlεt−l + εt + τσk (3)
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The GARCH-m equation has an extra heteroscedasticity term as τσd, where γ is called
the risk premium parameter and is the ARCH-in-mean effect, and k = 1 for volatility in
mean and k = 2 for variance in mean. A positive τ indicates that the return is positively
related to its volatility or variance. In other words, the rise in the financial time series
means that the return is caused by the increase in the conditional variance. The modified
ARMA process allows for volatility feedback on conditional expected returns and shows
the influence of volatility on mean.

3.2. Asymmetric Conditional Volatility Models

During the volatility-generating process, the impact of the negative and positive
information of the series could be critical and asymmetric. However, the basic GARCH
(p, q) model is unable to capture the asymmetric volatility reaction towards good news
(returns being higher than expected) and bad news (returns being lower than expected).
The EGARCH model (Exponential GARCH (p, q) model) is improved by Nelson [43] to
consider the leverage effect, with a special variable to distinguish the negative and positive
impacts, as per the following form:

ln
(

σ2
t

)
= ω +

p

∑
i=1

βiln
(

σ2
t−i

)
+

q

∑
j=1

(
αjzt−j + γj

(∣∣zt−j
∣∣− E

∣∣zt−j
∣∣)) (4)

where σt is the conditional volatility of the return series at time t, αj measures the sign
effect—if αj is negative, bad news shocks will have a greater impact on volatility—and
γj captures the size effect. Thus, the persistence of the autocorrelation in the GARCH
(p, q) model is measured by α + β, while only β in the EGARCH (p, q) model reflects the
decay rate.

The GJR-GARCH model developed by Glosten et al. [44] models good news and bad
news as follows:

σ2
t = ω + ∑p

i=1 βiσ
2
t−i + ∑q

j=1

(
αjε

2
t−j + γj It−jε

2
t−j

)
(5)

where

Indicator f unction I =
{

1, ε ≤ 0
0, otherwise

(6)

And γj is the leverage term, while all other parameters are as previously defined.
Another commonly used volatility model is the asymmetric power ARCH model

developed by Ding et al. in 1993.

σδ
t = ω + ∑p

j=1 β jσ
δ
t−j + ∑q

j=1 αj
(∣∣εt−j

∣∣− γjεt−j
)δ (7)

where δ > 0, and −1 < γj< 1 is the leverage parameter. If γj = 0, the positive shock and
the negative shock will have the same effect on conditional volatility. A positive γj value
indicates that leverage presents, and negative returns increase, while σ indicates more
negative returns than positive returns.

3.3. Long-Memory Volatility Models

For short-memory models, the correlation of the series and its lag converge to a
constant when the lag becomes large. On the other hand, the effects of volatility shocks
decay slowly in long-memory models. Financial assets tend to display a high persistence
in terms of their volatility, where autocorrelation exists over long lags. But a long memory
in financial time series is subject to further theoretical and empirical research. The above
mean and variance models are for short-memory processes in order to study whether
long-memory processes produce better explanations and forecasts. We have selected the
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integrated GARCH (IGARCH) model, which is specified by Engle and Bollerslev [45] and
Baillie et al.’s [46] Fractionally Integrated GARCH, or FIGARCH:

σ2
t = ω +

{
1 − β(L)−

(
1 − α(L)(1 − L)d}ε2

t + β(L)σ2
t (8)

where L denotes the lag or backshift operator, and where 0 ≤ d ≤ 1. When the fractional
differencing parameter d gets closer to 1, the memory of the FIGARCH increases; when
d = 0, the FIGARCH is reduced to standard GARCH; and when d = 1, FIGARCH transforms
to an integrated GARCH (IGARCH) model. In the IGARCH model, the unique feature
of the model specification is the infinite memory, which means that the volatility shock is
permanent and affects all horizons. However, a never die out assumption seems unrealistic.
Thus, FIGARCH employs a more flexible class of processes for the conditional variance
and captures the long-memory features of financial volatility through parameter d.

3.4. Model Evaluation Using Loss Functions

To estimate the parameters, the maximum likelihood (MLE) technique is applied under
the assumption that the residual εt follows a conditional Gaussian (normal) distribution. We
have chosen a normal distribution as our default, which other distribution assumptions, for
example, Student’s-t distribution, skewed Student’s-t distribution, and GED distribution,
will replace. Quasi-maximum likelihood (QML) is applied when normality is violated
to yield consistent parameter estimates [47,48]. To evaluate the suitable density function,
we used the Bayesian information criterion (BIC) and Akaike information criterion (AIC)
together with the value of log-likelihood. Furthermore, the BIC and AIC criteria are also
applied in mean and variance models to select different orders of p and q. Models with the
smallest AIC and BIC values are considered to have the best fit.

To evaluate the forecasting ability that different models produce, we have selected both
mean absolute error (MAE) and mean square error (MSE) methods. The two approaches
are calculated as follows:

MAE =
1
n

n

∑
t=1

|σ 2
t − σ̂2

t

∣∣∣ , MSE =
1
n

n

∑
t=1

(σ2
t − σ̂2

t )
2

(9)

where σ̂2
t is the forecasted volatility, σ2

t represents the true volatility, and n is the total
number of forecasts. The model with the lowest MAE and MSE value implies the most
accurate forecasts.

3.5. Model Evaluation by Backtesting Value-at-Risk (VaR)

It is common that GARCH models are used to estimate Value-at-Risk (VaR) models.
VaR calculations are performed by financial institutions to quantify the risk of investments
and therefore used as a risk management tool [6]. Since volatility, and above all, time-
varying volatility, of investment returns, are important determinants of the level of risk of
investments, the use of various GARCH models to estimate VaR is popular. Furthermore,
it is common that financial institutions backtest VaR calculations (using historical return
data) to analyze whether their VaR calculations are accurate. Therefore, we also evaluate
GARCH model specifications by backtesting VaR. The test procedures are from Kupiec’s
test [49], which is used to evaluate GARCH specifications for conditional coverage tests,
and the independence test (conditional coverage test) introduced by Christoffersen [50].

The indicator variable It is used to measure whether there is an observed actual VaR
that exceeds the VaR estimations:

It =

{
1, Rt > VaRt,α
0, else

(10)
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where It follows the binomial distribution. Let α be the significance level, sample size T,
and N is the sum of It, which counts actual days of failure. The failure rate can be expressed
as α̂ = N

T .
Based on Kupiec’s proposal in 1995 [49], the likelihood ratio test ( LRuc) can be per-

formed with H0 : α̂ = α, and the statistic is given as

LRuc = 2log

{(
(1 − α̂)T−N

(1 − α)T−N

)(
α̂N

αN

)}
∼ X2(1) (11)

where LRuc ∼ χ2(1) under the null hypothesis, the 95% confidence level has a critical
value of 3.84. Thus, H_0 is rejected if the LRuc value is larger than 3.84 with a p-value of
LRuc that is smaller than 5%, indicating a less appropriate model specification.

VaR estimation is based on the assumption that failures are independently distributed
over time. Assuming that the model is well specified, today’s violation does not depend
on yesterday’s conditions, which means that these variables should be independent and
identically distributed (i.i.d.) over time. However, Kupiec’s LR test focuses mainly on
the number of violations. Thus, Christoffersen proposed the conditional coverage test in
1998 [50], which can test both frequency and independence through a likelihood ratio test
(LRcc). The test statistic is given as

LRcc = LRuc + LRind (12)

LRind = −2log

(
(1 − α)(T−N)αN

(1 − π01)
n00 π

n01
01 (1 − π11)

n10 πn11
11

)
(13)

where πi is the probability of observing a violation at time t when It−1 = i occurred at
t−1. nij is the number of days where It−1 = i followed by It = j. LRcc follows the χ2 (2)
distribution under the null hypothesis with a critical value of 5.99 at a 5% significance
level. Given a 95% confidence level, the null hypothesis is rejected if the p-value of the LRcc
statistic is smaller than 5%. This section may be divided by subheadings. It should provide
a concise and precise description of the experimental results, their interpretation, as well as
the experimental conclusions that can be drawn.

4. Data

Most of Sweden’s largest real estate companies are listed on Nasdaq OMX Stockholm.
This section presents the descriptive statistics of the daily index values and returns in the
OMX Real Estate Sector Price Index, designed to track the listed real estate companies in
Sweden. The dataset consists of 4642 daily observations, which have been obtained from
Nasdaq Global Indexes.

The total sample period spans from January 2003 to June 2021 and covers three substan-
tial financial and economic crises, namely, the global financial crisis (GFC), the European
debt crisis (EDC), and the COVID-19 pandemic (COVID-19). Therefore, the index series has
been divided into five subsamples: before the global financial crisis (the pre-GFC) period
(January 2003 to June 2007), during the GFC (July 2007 to September 2009) [51–54], during
the European debt crisis period (October 2009 to December 2012) [55–59], the post-EDC
period (January 2013 to January 2020), and the COV19 (January 2020 to present) period.

The first 90% of each period is selected as an in-sample, while the remaining 10% is an
out-of-sample. We use the in-sample period for volatility estimation and the out-of-sample
period to analyze the forecasting ability of competing models.

The daily returns are calculated as the first difference of the log index, given by

Ri,t = log (Indexi,t)− log(indexi,t−1) (14)
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where Ri,t is the return of index i at time t, and Indexi,t and indexi,t−1 denote index i
at time t and time t − 1, respectively. Figure 1 shows the daily real estate index price trend
(top graph) and daily log returns (bottom graph) of the OMX Real Estate Sector Index from
January 2003 to June 2021.

Descriptive log return statistics for the indices are given in Table 1.

Table 1. Descriptive statistics of daily return series.

Time Period n Min Max Mean St. d Skewness Kurtosis JB Test (x2) LM Test (x2)

Full sample 4642 −0.146 0.106 0.0005 0.0129 −0.650 9.247 16,867 *** 1009 ***
Pre-GFC 1129 −0.061 0.060 0.0009 0.0097 −1.298 8.745 3914 *** 77 ***
GFC 580 −0.072 −0.106 −0.0006 0.0207 0.191 1.896 91 *** 114 ***
EDC 806 −0.068 0.050 0.0004 0.0121 −0.261 2.398 202 *** 52 ***
Post-EDC 1767 −0.049 0.034 0.0008 0.0094 −0.443 2.031 362 *** 108 ***
COVID-19 360 −0.146 0.082 0.0001 0.0200 −1.477 10.365 1742 *** 94 ***

Notes: 1. Observations for weekends and public holidays are excluded. 2. *** represents significant levels at 1%.

Table 1 gives an overview of the return and risk levels of the full sample and five
subsamples. Apart from the GFC sample, all samples have a very small positive mean
return compared to the standard deviation, which is unconditional volatility. Similar to
other financial assets, the full sample series exhibits negative skewness and excess kurtosis.
As for subsample COVID-19, the return series displays the highest uncertainty level and
kurtosis. The minimum value of the daily return is −14.6%, which is on Black Thursday,
12 March 2020.

The null hypothesis of the Jarque Bera Test shows that returns are distributed normally,
which is rejected at a 1% significance level in all cases. The ARCH-test results confirm that
heteroscedasticity is inherent in all series, where periods of high volatility tend to follow
periods of high volatility, and periods of low volatility are also clustered.

5. Empirical Results
5.1. Estimation of Volatility Measurements

We firstly adopt the ARMA (p, q) process to estimate the residual as the measures of
volatility. Table 2 displays the estimated ARMA (p, q) process, and AIC is applied to detect
preferred lag orders.

Table 2. Comparisons of AIC values from ARMA (p, q) models.

ARMA (0, 1) ARMA (1, 0) ARMA (1, 1) ARMA (0, 2) ARMA (2, 0) ARMA (1, 2) ARMA (2, 1) ARMA (2, 2)

Full −27,259 −27,263 −27,267 −27,268 −27,269 - - -
Pre-GFC −7252 −7252 −7254 −7251 −7251 −7250 −7250 −7249
GFC −2856 −2856 −2855 −2854 −2854 −2852 −2852 −2850
EDC −4829 −48,230 −4829 −4832 −4829 −4834 −4832 −4833
Post-EDC −11,522 −11,522 −11,521 −11,520 −11,520 - - −11,517
COVID-19 −1795 −1796 −1798 −1797 −1797 - - -

Note: 1. AIC value comparisons from the full period and subperiods are based on daily return series from the
Swedish Real Estate Sector Index. 2. The ARMA (p, q) order with the lowest AIC value is preferred. 3. “-” means
that the estimated parameters are insignificant and thus were not listed in Table 2.

As we can see in Table 2, the preferred order for ARMA (p, q) differs for each sample.
Thus, ARMA (2, 0), ARMA (1, 1), ARMA (1, 0), ARMA (1, 2), ARMA (1, 0), and ARMA (1, 1)
are selected for mean equations correspondingly.

Table 3 presents the result of each sample’s density function selection of the
ARMA (p, q)-GARCH (1, 1) model. Normal distribution assumptions are not fulfilled
for all series. Skewed functions outperformed non-skewed functions in all series except for
the GFC subsample.
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Table 3. Density function selection of ARMA (p, q)-GARCH (1, 1) model.

Density Function Full Pre-GFC GFC EDC Post-EDC COVID-19

Gaussian distribution −6.2550 −6.6131 −5.0712 −6.1889 −6.6073 −5.4836
Skew-Gaussian distribution −6.2702 −6.6575 −5.0686 −6.1892 −6.6181 −5.5199
Student’s-t −6.3134 −6.8142 −5.0757 −6.1909 −6.6337 −5.5147
Skew-Student’s-t −6.3182 −6.8199 −5.0737 −6.1916 −6.6370 −5.5330
Generalized Error Distribution −6.3063 −6.7864 −5.0797 −6.1936 −6.6315 −5.5074
Skew-Generalized Error Distribution −6.3128 −6.7992 −5.0780 −6.1943 −6.6352 −5.5315
Normal Inverse Gaussian Distribution −6.3181 −6.8166 −5.0738 −6.1916 −6.6393 −5.5369

Note: 1. AIC values are calculated based on residuals from ARMA (p, q)-GARCH (1, 1) models. 2. Result with the
lowest AIC value is preferred.

5.2. In-Sample Estimation and Evaluation for the Full Sample

We used the first 90% of the Swedish Real Estate Sector Index observations from the full
sample, January 2003 to June 2021, to fit with the 12 GARCH family models (original and
GARCH-M) with the selected density functions. The 90% sample covers the period from
January 2003 to August 2019. The ARMA order was selected as ARMA (2, 0) based on the
results from Table 2, and the density function choice is based on Table 3. The GARCH (p, q)
order for each GARCH-type model is evaluated through AIC with maximum lag orders up
to 2. The degree of fit for each GARCH-type model with final order is evaluated through
log-likelihood value, AIC, and BIC criteria. Models with the highest log-likelihood and
smallest AIC and BIC values are the best-fitting models. We present the diagnostic statistics
comparisons between models in Table 4, and the results from the parameter estimation are
displayed in Supplementary Materials.

Table 4. Diagnostic statistics comparisons of GARCH models and GARCH-M models.

(a) Original GARCH Models

GARCH (1, 1) EGARCH (1, 1) GJRGARCH (1, 1) APARCH (1, 1) FIGARCH (2, 1) IGARCH (1, 2)

LLH 13,341 13,362 13,357 13,371 13,352 13,339
AIC −6.383 −6.392 −6.390 −6.396 −6.387 −6.382
BIC −6.371 −6.378 −6.376 −6.381 −6.371 −6.369
Q(9) 8.384 * 5.274 6.069 5.079 7.661 8.057 *
Q(9)2 2.181 1.784 2.755 2.060 3.243 3.991

Sign Bias Test 12.366 *** 4.248 5.766 3.402 10.445 ** 10.968 **

(b) Modified GARCH-M models

GAR (1, 1)-M EGAR (1, 1)-M GJRGAR (1, 1)-M APAR (1, 1)-M FIGAR (2, 1)-M IGAR (1, 2)-M

LLH 13,342 13,363 13,357 13,372 13,352 13,339
AIC −6.382 −6.392 −6.389 −6.396 −6.386 −6.381
BIC −6.369 −6.377 −6.374 −6.379 −6.369 −6.367
Q(9) 8.449 ** 4.700 5.719 4.580 7.545 * 7.934 *
Q(9)2 2.179 1.795 2.742 2.050 3.209 3.956

Sign Bias Test 12.200 *** 4.617 5.930 3.748 10.407 ** 10.903 **

Notes: 1. LLH is the value of the maximized log-likelihood function. 2. Q(9) is the Ljung–Box test on the residual
series. 3. Q(9)2 Ljung–Box tests on the squared returns and residuals. 4. ***, **, * represent significant levels of 1%,
5%, and 10%.

Bollerslev–Wooldridge robust standard errors are presented within parentheses. The
Ljung–Box portmanteau statistic Q(9) is to the ninth order serial dependence in the stan-
dardized residual, and the null hypothesis of no serial correlation is failed to reject at
the 5% level for the GARCH, FIGARCH, and IGARCH models and the corresponding
modified models. The Ljung–Box test (Q(9)2) result for squared residuals indicates that the
GARCH specification is suitable and confirms that all models take the heteroscedasticity
into account.
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Further, Table 4 reports the sign bias test by Engle and Ng [60]. The test results show
that, for the GARCH (1, 1) model, there is a significant leverage effect, which implies that
negative shocks tend to cause a significantly larger impact on volatility than positive shocks.
Thus, three commonly used asymmetric models are selected: EGARCH, GJR-GARCH,
and APARCH. Considering the leverage effect, the asymmetric models’ sign bias tests
are statistically insignificant, indicating that the asymmetric model specifications are well
specified. The AIC values for all asymmetric models are lower and show better fitness
than the basic GARCH (1, 1) model. The modified GARCH-M model is estimated by
Equations (2) and (3), which allows the mean equation of the return series to depend on the
conditional variance. However, as displayed in Table 4, the estimated risk premium τ is
insignificant in most of the model modifications.

In the conditional variance equation, the ARCH effects are represented by the esti-
mated coefficient of α, and the estimated β is the GARCH effect. The volatility persistence
is expressed as the sum of α + β (β only for EGARCH model) at a value of 0.986 from the
ARMA (2, 0)-GARCH-(1, 1) model and shows a mean-reverting behavior (as in Table S1).
The persistence in volatility is further demonstrated in the FIGARCH model; the estimated
fractional long-memory parameter is close to 0.5, indicating the presence of stationary
long-range dependence in conditional volatility. Another method to measure volatility
persistence is the half-life period (HLP) by Chou [61], where HLP = log (0.5)/[log (α + β)].
In our results, for example, ARMA (2, 0)-GARCH (1, 1), it takes 49 days for the previous
volatility shocks to decompose to half. Chaudhuri and Wu, in 2003, studied the stock
returns in 17 emerging markets and detected the mean-reverting behavior [62]. They
concluded that it took on average 30 months in emerging markets to revert to the average
mean. As for developed market indices, Nikkei took 44 days to revert to mean return
during the study period from 2000 to 2016 [63].

In summary, asymmetric models outperformed other models, followed by long-
memory models and the standard GARCH model. The result is similar to Alberg et al. [19];
they estimated the stock market using both the basic GARCH model and asymmetric
GARCH models and concluded that the EGARCH, APARCH, and GJR models performed
better in estimating the return series of the Tel Aviv Stock Exchange (TASE) indices than
the traditional GARCH.

Further, for the full sample, the volatility of the return series is time-varying and
highly volatile, and the conditional volatility displays both a leverage effect and long
persistent dynamics. Specifically, our findings show that the return series that is generated
from the Swedish Real Estate Sector Index over 18 years is negatively skewed and has
low unconditional volatility at 1.2%. GARCH, asymmetric GARCH models, long-memory
GARCH models, and their corresponding GARCH-in-mean models present similar results,
indicating that the market valuation of the listed real estate firms is more sensitive to bad
news than to good news. This finding indicates that it is important for investors of listed real
estate to have investment strategies in place to hedge against negative shocks. The financial
institution, as the lenders of the listed real estate, should be more cautious in handling the
financial agreements with listed real estate firms, especially during and after a shock, to
alleviate financial risk. Regulators should be more mindful of the stock price volatility of
the listed real estate during the shocks to enhance the stability of the financial market and
economy. Finally, the Swedish Real Estate Sector Index’s average mean-reverting half-life
period is 49 days. Compared with Nikkei (44 days) [63], the mean-reverting process is
slightly slower but much faster than indices of emerging markets (30 months) [62].

5.3. In-Sample Estimation and Evaluation for the Five Subsample Periods

We further conduct in-sample estimation for each subsample period: the pre-GFC
period (before the global financial crisis period, January 2003 to June 2007); during the GFC
period (July 2007 to September 2009); the EDC period (during the European debt crisis
period, October 2009 to December 2012); the post-EDC period (January 2013 to January
2020); and the COVID-19 period (January 2020–June 2021). We present the diagnostic
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statistics comparisons between models in Table 5 and display the parameter estimations
for each subsample in Supplementary Materials.

Table 5. Model comparisons of five subsample periods: pre-GFC, GFC, EDC, post-EDC, and COVID-19.

Pre-GFC GFC EDC Post-EDC COVID-19

GARCH IGARCH GARCH-
M

APARCH-
M

IGARCH-
M GARCH GJR-

GARCH GARCH GJR-
GARCH GARCH EGARCH

LLH 3530 3526 1322 1327 1321 2221 2231 5288 5301 891 893
AIC −6.933 −6.928 −5.038 −5.048 −5.040 −6.093 −6.119 −6.647 −6.662 −5.451 −5.454
BIC −6.894 −6.894 −4.981 −4.975 −4.991 −6.036 −6.056 −6.623 −6.635 −5.358 −5.349
Q(9) 3.474 2.498 1.125 0.916 1.169 4.616 4.398 3.251 2.764 3.394 2.711
Q(9)2 0.825 0.960 3.390 3.812 3.521 8.486 8.491 2.010 1.511 6.387 6.470
Sign Bias
Test 1.664 0.666 2.358 0.772 2.688 19.291

*** 1.884 * 13.037
*** 2.097 5.56 3.445

Notes: 1. *** and * represent significant levels of 1% and 10%, respectively. 2. LLH is the value of the maximized
log-likelihood function. 3. Q(9) is the Ljung–Box test on the residual series. 4. Q(9)2 is the Ljung–Box test on the
squared returns and residuals.

The first 90% of each observation is used and estimated via original GARCH models
and modified GARCH models, with a density function based on Table 3. An ARMA (p, q)
order is selected based on the results from Table 2, and a GARCH (p, q) order for each
model is evaluated through the log-likelihood value, AIC, and BIC criteria. In total,
12 GARCH-type models have been evaluated for each subsample. Table 5 only presents the
models with the lowest AIC values and significant parameters for simplification.

As shown in Table 5 and Supplementary Materials, the sign bias test failed to reject
the null hypothesis for the basic GARCH model for the pre-GFC sample, and the estimated
gamma statistics for the asymmetric models are not significant at the 5% level. Thus,
before the GFC, we cannot reject the notion that positive and negative news have the same
effect on conditional volatility. This result indicates that before the global financial crisis,
the leverage effect did not present itself in the return series. The basic GARCH model is
generally preferable for explaining the volatility pattern among the 12 models. The half-life
period is calculated as log (0.5)/log (0.094 + 0.842), which means that it takes only ten days
for the earlier shock to decompose to half, indicating a less persistent behavior. But if we
look at BIC criteria, both the GARCH and IGARCH models have the same explanatory
power. Frimpong and Oteng-Abayie [64] studied the volatility behavior of the Ghana Stock
Exchange using random walk (R.W.), GARCH (1,1), EGARCH (1,1), and TGARCH (1, 1)
models. The index series was from 1994 to 2004; before the global financial crisis started,
they concluded that the basic GARCH (1, 1) model outperformed all other models.

However, since the global financial crisis started, the conditional volatility of the
return index exhibits both a leverage effect and persistent dynamics. Moreover, modified
GARCH-m models outperformed the corresponding original GARCH models, which
indicates the existence of a positive risk premium. The expected return is correlated with
the past variance and positively affected by the current variance. Although the diagnostic
statistics’ log-likelihood and AIC value suggests an asymmetric model, while the BIC value
suggests a long-memory model, both outperformed the basic GARCH model, indicating
that during a complex situation, such as the GFC period, the basic GARCH is unable to
capture the special volatility characteristics. This also indicates market inefficiency and
high uncertainty. The half-life period increased dramatically from 10 days before the global
financial crisis to almost perpetual during the crisis. Similar results could be found in
Abdalla and Suliman’s study [65], which applied various GARCH models to the Saudi
Stock Exchange index from 2007 to 2011. They confirmed the presence of both a leverage
effect and long persistency. Oberholzer and Venter applied univariate GARCH models to
JSE/FTSE stock indices during the global financial crisis and concluded that GJR-GARCH
was the best fit.
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Since the start of the European debt crisis period, conditional volatility has still pre-
sented a leverage effect, and the GJR-GARCH model outperformed the other 11 models.
Additionally, we did not detect signs of a long memory process. If we look at the sum of α̂
and β̂ in the GJR-GARCH model for the EDC period (0.912) in Supplementary Materials,
the half-life period was reduced to 7.5 days, which is even lower than it was before the
crisis. This means that the market moves more efficiently, and stakeholders respond much
quicker to the market information. The sharp drops in the measure of volatility persistency
were also discussed by Tamakoshi and Hamori [66], who mentioned that for the Greek
sovereign bond index, the long memory effect reduced sharply from April 2010 to March
2012; in their research, AR (1)-EGACRCH (1, 1) specifications were preferred. Furthermore,
the conditional volatility during this period was very sensitive to bad news. This is reflected
by the estimated γ̂ value in the GJR-GARCH model. More particularly, bad news have an
additional 13.5% impact compared to good news.

As for the post-EDC period, asymmetric models outperform the traditional GARCH
and long-memory models. The model evaluation criteria suggested the GJR-GARCH model
again. The sum of α̂ and β̂ further reduced to 0.83, the half-life period was only 3.9 days,
and the γ̂ value in the GJR-GARCH increased to 15.8%. Although “bad news” still have
more influence, the market responds much faster.

Unfortunately, the coronavirus outbreak has completely ended the recovery from the
European debt crisis, and the sector index has entered an era of unprecedented change.
During this period, the unconditional volatility has grown by up to 2%, and the conditional
volatility displays the most notable leverage effect, which is 20.6%, suggested by the
EGARCH model. The market is fearful and uncertain, and stakeholders are very sensitive
to “bad news”. A β̂ value of 0.963 indicates a half-life period of 18 days. Although under
the COVID-19 pandemic, the sector index presents extraordinary economic crash and
volatility clustering compared with the global financial crisis, and the value of the half-
life period has increased from 3.9 days to 18 days, unlike in the GFC period, in which it
increased from 10 days to almost perpetual. These changes indicate that the experience and
lessons learned from both crises have accelerated the market response and efficiency. This
finding is consistent with the hypothesis that the market efficiency level of the Swedish
real estate sector should have been improving over time, and that it is taking a shorter
time to recover from each negative shock. This finding indicates that even though there
is improvement over time, the long-range dependence persists for the listed real estate
firms’ return. Therefore, it is important for listed real estate firms to adopt conservative
financing strategies and reserve greater buffers for longer periods of dealing with shocks
like COVID-19 and the financial crisis.

5.4. Out-of-Sample Forecasting

For each sample period, we used the remaining 10% of the observations to perform
the one-day-ahead forecasts using the rolling window method and re-estimating the pa-
rameters. Forecasting is estimated through various GARCH-type models.

As displayed in Table 6, we have compared the best-performing models from the
in-sample section via a loss function to select the model with the most accurate forecasts.
Secondly, a VaR backtesting approach (unconditional and conditional coverage tests) was
also implemented to select the models.

Table 6. Evaluations of volatility forecasts for one-day out-of-sample using loss functions.

Full Sample Pre-GFC GFC EDC Post-EDC COVID-19

Loss
Function GAR APAR FIGAR GAR IGAR GAR-

M
APAR-

M
IGAR-

M GAR GJRGAR GAR GJRGAR GAR EGAR

MSE 3.296 3.285 3.295 19.04 18.96 23.24 23.23 21.41 4.384 4.421 8.824 8.849 1.147 1.18
MAE 11.81 11.81 11.81 9.905 9.907 12.38 12.3 11.57 5.385 5.391 6.987 7.012 8.614 8.619
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Table 6 displays the volatility models’ evaluation diagnostics, MSE and MAE, with
results from one-day-ahead rolling re-estimation approaches. As discussed by Lopez [67],
it is not obvious which loss function is more appropriate for evaluating volatility models.
Thus, two loss functions are considered to assess the predictive accuracy of volatility
models, namely, MSE and MAE. To define the most accurate forecast, models should have
the minimum MSE and MAE statistics, and Table 6 presents only the models with minimum
MSE and MAE in each subperiod.

We find that for the full sample period from January 2003 to June 2021, the APARCH
model performed the best for both in-sample and out-of-sample. If we look at the BIC
criteria, the basic GARCH and IGARCH models have similar explanatory accuracy, but
IGARCH showed better prediction performance before the global financial crisis started.

The conditional volatility is influenced by both the leverage effect and long memory
during the GFC period. The evaluation result from the model forecasting shows a similar
pattern. For the in-sample explanation stage, the log-likelihood and AIC value diagnostic
statistics suggest an asymmetric model. In contrast, the BIC value suggests a long-memory
model. Both outperformed the basic GARCH model, and the modified GARCH-in-mean
approach has more accurate predicting power than the original GARCH-type models.
As for the out-of-sample forecasting process, the long-memory IGARCH model outper-
formed again, indicating uncertainty and a persistently high level of volatility during the
GFC period.

However, for the European debt crisis period, although the volatility displayed a
leverage effect during the out-of-sample forecasting process, the symmetric GARCH model
still outperformed. This result is similar to Srinivasan [68], who performed volatility fore-
casting of the S&P 500 and found that EGARCH captured the leverage effect. However,
the traditional GARCH model still outperformed during forecasting. Similarly, we draw
the same conclusion for COVID-19 subsample. EGARCH reflected that “bad news” influ-
enced conditional volatility more than “good news,” and the AIC value of the EGARCH
model suggests that EGARCH best explained the in-sample period of COVID-19. Still,
according to the result of the loss function evaluation, the GARCH model outperformed
out-of-sample forecasting.

Moreover, we performed a recursive out-of-sample forecasting exercise to evaluate the
performance of the GARCH through a Values-at-Risk approach [30,69], which represents
tail quantiles of the return densities. The VaR estimates that are calculated from the
volatility forecasting models are evaluated using Kupiec’s unconditional coverage test and
Christoffersen’s independence test. We present the results of the models with best Kupiec’s
test and Christoffersen’s test in each subperiod in Table 7, for which the results align with
the conclusion drawn from Table 6.

It specifies that long-memory models have better forecasting ability when the strong
long-memory behavior is detected during the in-sample period. Although the GARCH
model did not reflect the asymmetric effect during the European debt crisis, it still out-
performed during forecasting. The findings are similar to Harrison and Moore [70],
who concluded that although the simple GARCH model did not capture the asymmet-
ric effects, it still performed relatively well among the 12 volatility models regarding
forecasting ability.

Table 7. Evaluations of volatility forecasts for one-day out-of-sample with VaR backtesting.

Full Sample Pre-GFC GFC EDC Post-EDC COVID-19

GAR APAR FIGAR GAR IGAR GAR-
M

APAR-
M

IGAR-
M GAR GJR-

GAR GAR GJR-
GAR GAR EGAR

Kupiec’s Test (p-value)
LR.uc 0.234 0.076 0.634 0.016 0.338 0.188 0.188 0.453 0.592 0.258 0.283 0.283 0.88 0.88
Christoffersen’s Test (p-value)
LR.cc 0.385 0.204 0.545 0.013 0.342 0.412 0.412 0.651 0.77 0.501 0.456 0.456 0.876 0.876

Note: Higher p-value indicates a better forecasting ability.
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6. Conclusions

The volatility of asset returns, which reflects risk or uncertainty, plays a central role
in finance and economics. It is a well-known stylized fact that asset return volatility
is time-varying and exhibits a characteristic that is referred to as volatility clustering.
Since the Scandinavian banking crisis of the early 1990s, the Swedish real estate industry
has experienced three major economic crashes: the U.S. housing market crash and the
breakdown of the subprime mortgage market, which resulted in the 2007–2008 global
financial crisis (GFC), the 2009–2012 European (sovereign) debt crisis (EDC), and the
COVID-19 pandemic. All three crises have had a tremendous impact on both the financial
economy and the real economy.

Real estate as an asset class, both listed and direct, is considered the most important
alternative investment class among institutional investors, such as pension funds. It is,
therefore, important to study real estate return and risk characteristics from different angles.
This paper aims to model and compare volatility dynamics of the daily listed real estate
stock sector index before, during, and after the financial crisis periods.

We have applied standard GARCH models, asymmetric GARCH models, and long-
memory GARCH models with various error distributions to identify the most accurate
volatility models for the daily returns of the Swedish Real Estate Sector Index for the
full sample period, which runs from January 2003 to June 2021, and for five separate
periods: before the global financial crisis (January 2003 to June 2007), during the global
financial crisis (July 2007 to September 2009), during the European debt crisis (October
2009 to December 2012), the recovery from the crisis (January 2013 to January 2020), and
the ongoing COVID-19 pandemic (January 2020 to present). Besides commonly used
loss function criteria, we calculated a 5% Value-at-Risk (VaR) to evaluate forecasting abil-
ities using Kupiec’s test and Christoffersen’s test as backtesting methods using rolling
window estimations.

Our results show that the volatility of the Swedish Real Estate Sector Index is time-
varying and highly volatile. The return series shows significant evidence of non-normality
and the presence of heteroscedasticity in the residual series. The impacts of the global
financial crisis, European debt crisis, and COVID-19 are noticeable. Moreover, the volatility
pattern during COVID-19 displays significant time-varying long-range dependence and an
asymmetrical news impact, which lead to market inefficiency. The volatility pattern shows
a tendency towards increasing leverage effects and less persistent behavior, indicating
that market stakeholders are highly sensitive to negative returns and respond to market
changes much more quickly. Moreover, we have applied a comprehensive model selection
criterion and concluded that the most suitable method during the in-sample period does
not have the same accuracy during the forecasting process, which has enriched the current
empirical literature.

We compare the test results to previous studies which adopted similar empirical
strategies on Scandinavian stock markets, and find that the volatility pattern of the Swedish
real estate sector—leverage effect and long-range dependence specifically—follow similar
movement of the stock market as a whole [34–37]. Further, the Swedish Real Estate Sector
Index’s average mean-reverting half-life period is 49 days, which is longer than other
developed markets such as NYSE Composite and Nikkei [63], but faster than emerging
markets such as the Saudi Stock Exchange (30 months) [62]. In comparison to similar
studies on the real estate sector, the asymmetry and long-range dependence identified in the
Swedish real estate sector are consistent with other markets like the U.S, Australia, Canada,
France, and the Netherlands [38–40]. However, the volatility pattern of the Swedish real
estate sector is different to emerging markets like Hong Kong, where an asymmetric effect
does not exist [71], and South Africa, where the effect of positive news outrides the effect of
negative ones [72]. It is also important to notice that the listed real estate sector is different
from other sectors because listed real estate is affected by both occupier sentiment and
investor sentiment which, could exhibit a different asymmetric volatility pattern to the
market shock [73,74]. Our study further extends current knowledge by testing how the
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volatility pattern changes over time, responding to different market shocks with gradual
improvements in market efficiency. The market efficiency level reflects how quickly and
accurately the market reacts to the news, and thus, it can be measured by the symmetric
reaction to the negative and positive shocks and the speed of the mean-reverting process
of the market [75,76]. Our findings show that even though the asymmetric effects persist
through our sample period, the mean-reverting process has been shortened over the four
market shocks, indicating the improvement of market efficiency over time.

The findings have the following practical implications: First, our findings can help
listed real estate firms improve their risk management strategy. Listed real estate firms are
usually highly leveraged. Our findings show that the market valuation of the listed real
estate firms is more sensitive to bad news than to good news, meaning that the market value
of the listed real estate is more susceptible to negative market shocks like the COVID-19
pandemic, leading to a higher financial risk (debt ratio and financing cost). Also, the long-
range dependence that was found for the listed real estate index indicates that listed real
estate firms take longer than originally expected to recover from the shocks. It is therefore
important for listed real estate firms to adopt more conservative financing strategies and
reserve greater buffers for dealing with shocks like COVID-19 and the financial crisis.
Further, the real estate industry is one of the most leveraged sectors in the economy, and
it is therefore important for the financial institutions and regulators to consider this risk-
prone attribute of listed real estate firms in operating and regulating the lending business to
maintain the stability of the financial market and economy. Finally, listed real estate takes
up a substantial proportion in the portfolios of institutional investors like pension funds,
superannuation, insurance, etc. Our findings can benefit these investors by enhancing
the understanding of the volatility pattern of listed real estate and help them improve
their investment strategies for managing risks, rebalancing their portfolios, and preparing
effective hedging strategies.

Finally, one of the aims of this paper is to identify the most appropriate GARCH-type
models to analyze the return volatility of listed real estate, and we do not have sufficient
page space to further develop the existing GARCH-type model in this paper. To address this
limitation, we encourage future research to develop the existing GARCH-type models for
analyzing the volatility pattern of listed real estate by taking the risk–return characteristics
of the real estate industry into consideration.
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