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Abstract: Bolted connections have become the most widely used connection method in steel structures.
Over the long-term service of the bolts, loosening damage and other defects will inevitably occur due
to various factors. To ensure the stability of bolted connections, an efficient and precise method for
identifying loosened bolts in a given structure is proposed based on computer vision technology. The
main idea of this method is to combine deep learning with image processing techniques to recognize
and label the loosening angle from bolt connection images. A rectangular steel plate was taken as
the test research object, and three grade 4.8 ordinary bolts were selected for study. The analysis was
conducted under two conditions: manual loosening and simulated loosening. The results showed
that the method proposed in this article could accurately locate the position of the bolts and identify
the loosening angle, with an error value of about ±0.1◦, which proves the accuracy and feasibility of
this method, meeting the needs of structural health monitoring.

Keywords: bolts looseness; angle; deep learning; image processing; feature matching; damage
detection

1. Introduction

Steel structural facilities have three primary connection methods: welding, bolting,
and riveting. Among these, the most commonly used is bolting, or bolted connections.
Bolted connections have several advantages over welding and riveting, such as a more
straightforward structure, easy installation, a low cost, and reliable quality. Due to these
advantages, bolted connections are widely used in various fields, including building
structures, mechanical products, power equipment, transportation, aerospace engineering,
and more [1]. However, bolted connections often occupy critical parts of steel structures,
and their connection parts are continuously exposed to damp air, acid rain, and other
harsh environments, making them susceptible to external damage like chemical corrosion.
Additionally, due to lateral loads, mechanical shocks, and vibrations, bolted connection
parts often operate in a damaged state for extended periods, which gradually reduces the
pre-tightening force. This can eventually cause loosening or detachment of the connection
joints, leading to structural damage [2].

Bolted connections are widely applied in civil, mechanical, and aerospace engineering
steel structures. Bolt loosening is one major threat to structural safety. Caused by vibration
or repetitive loads, the loosened bolt may not be easily identified initially but could weaken
the structural integrity and lead to catastrophic failure.
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To mitigate the structural damage caused by bolt loosening, human inspection is one
of the most dominant methods in the engineering practice, particularly in civil engineering.
For example, the Federal Highway Administration (FHWA) in the United States [3] requires
routine bridge inspection every two years, during which the bolts of steel connections are
inspected, recorded, and monitored by trained engineers. However, human inspection is
expensive and prone to error, especially if the bolt loosening is subtle. In addition, some
structural bolts are located in inaccessible places, making it more challenging to inspect
bolt loosening promptly.

To date, extensive research efforts have been made to leverage advanced technologies
for detecting and monitoring bolt loosening. Some of the applications include piezoelec-
tric sensors [4,5], vibration-based methods [6,7], and electromechanical impedance [8,9].
Despite their successes, one commonality in these methods is that physical sensor deploy-
ments and/or cabling work are required, leading to cost increments for monitoring systems
in the case of sensing a large number of steel bolts.

Non-contact vision-based methods, on the other hand, have shown great promise
for monitoring bolt loosening. Such technologies rely on consumer-grade digital cameras
to collect images of a structural surface at different inspection periods. Then, the image
features related to bolt loosening (e.g., rotation of the bolt head) can be extracted through
computer vision algorithms. Vision-based bolt loosening methods are appealing as they are
non-contact, low-cost, and easy to deploy. Through the integration of other image collection
platforms, such as unmanned aerial vehicles, these vision-based approaches could be
ideal candidates for monitoring the steel bolts of civil structures that are inaccessible to
human inspectors.

In this paper, we propose a vision-based approach for bolt loosening detection. The
proposed approach can reliably identify loosened bolts and quantify the rotation angle
of a bolt head. A laboratory experiment is conducted using a simple bolted steel plate to
validate the performance of the proposed approach. The results indicate the effectiveness
of the proposed approach for bolt loosening inspection in engineering applications.

The rest of the paper is organized as follows. Section 2 reviews the related work in
the literature; Section 3 illustrates the methodology and technical background; Section 4
describes the experimental test setup and discusses the results; and Section 5 concludes
the study.

2. Related Work

The health monitoring of bolted steel connections using vision-based methods is not
new and has been well investigated. In 2004, Mazzeo et al. [10] developed a machine-
learning method to identify the absence of bolts between rails and sleepers. A few years
later, Marino et al. [11] improved the detection accuracy of the same work by combining
the discrete wavelet transform technique with a neural network. As a result, the proposed
method can achieve an accuracy of 99.6% in detecting visible bolts and 95% in detecting
missing bolts. Liu et al. [12] investigated a novel machine vision approach to detect the
absence of a bolt installed between the safety chain and the brake beam in freight trains.
The proposed method shows promising results even when the collected image is subjected
to a more complex background. Nevertheless, as mentioned above, these studies can only
offer binary detection results on a bolt’s presence/absence. Whether the bolt is subjected to
loosening is out of the scope of these studies.

Instead of inspecting the absence of a bolt, an increasing interest has been reported in
the research community in quantifying bolt loosening through vision-based approaches.
Two research groups (Cha et al. [13] and Park et al. [14]) conducted the earliest attempts
in this field, after which more related work can be found, particularly in the fields of civil
and mechanical engineering. In the rest of this section, a literature review is performed by
discussing nine articles published in peer-reviewed journals from 2015 to 2019.

Cha et al. [13] investigated a vision-based approach for detecting loosened bolts. The
proposed approach first utilized the Hough transform method to extract edge features
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of the bolt boundary, such as the dimensions of bolt heads and wrench holes. Based on
such dimensions, the loosened and non-loosened bolts were classified by a support vector
machine (SVM) to identify the loosened bolt effectively. Later on, follow-up work was
conducted by Ramana et al. [15] through the usage of the Viola–Jones algorithm and a
revised SVM. As a result, the proposed method enabled a better robustness of bolt loosening
detection against a broader scope of image angles and distances.

Park et al. [14] applied the Hough transform method, Canny edge detector, and a series
of computational algorithms to identify the rotation of bolt heads from images. A laboratory
test was conducted on a bolted ring-shaped flange joint to validate the performance of this
approach. Then, the proposed method was revised by Huynh et al. [16] by adding deep
learning technology to enable a quasi-autonomous approach for bolt loosening detection.
A field deployment on a box girder bridge was performed using an uncrewed aerial vehicle
to validate the performance of this method.

Zhao et al. [17] developed a deep learning-based method to detect loosened bolts. The
method utilized a convolutional neural network to recognize a unique texture pattern on
a bolt head and then tracked the movement of this pattern once the bolt rotated. Zhang
et al. [18] modified and applied such a concept for tracking the change in bolt height before
and after bolt loosening. As a result, loosened bolts could be identified from images taken
at particular camera shooting angles.

Sun et al. [19] proposed a binocular vision-based method to detect the bolt loosening
on a bogie component in a train. Using edge extraction and 3D reconstruction technologies,
the method can track subtle changes in the bolt head after loosening. Wang et al. [20]
demonstrated a novel detection method for bolt loosening inspection in the oil and gas
industry. The established method first utilized a convolutional neural network for bolt
recognition. Then, the bolt rotation angles could be identified using the Hough transform
line detection technique. Kong et al. [21] reported an image registration methodology to
detect loosened bolts in steel connections. The method overlapped images of the steel
bolts before and after loosening and found the differential image features caused by bolt-
head rotation.

In reviewing the above-related works, one major challenge in existing methods is
to robustly identify and quantify bolt loosening damage against texture changes of the
structural surface. This is a concern in transferring such technologies from laboratory to
practice application as bolted steel connections in the field may be contaminated by unex-
pected textures such as rust, dust, and corrosion marks. Particularly in civil engineering,
the surfaces of steel connections could vary dramatically due to environmental factors like
temperature and humidity during intervals between inspection periods. Such a texture
change on the structural surface would provoke intensity redistribution at/around steel
bolts in the collected images, leading to the possible failures of these methods.

The main contribution of this study is to investigate a robust vision-based approach to
reliably detect loosened bolts against texture changes of the structural surface. Furthermore,
through the geometric transformation technique, the loosened bolts can be quantified
by automatically recovering the rotation angle of the bolt heads. To the authors’ best
knowledge, this is the first effort reported in the literature on the vision-based detection
and quantification of bolt loosening damage against surface texture changes.

3. Bolt Loosening Detection Method Based on Computer Vision Technology
3.1. Overall Detection Process

This paper integrates deep learning algorithms and digital image processing technolo-
gies, designing a bolt-loosening detection framework based on computer vision technology
to achieve bolt-loosening recognition and angle calculation. The overall detection process
is divided into two steps: Bolt detection and positioning based on the YOLOv2 algorithm
and bolt loosening identification based on image feature matching. The specific process
steps are shown in Figure 1.
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Figure 1. Flowchart of Bolt Loosening Identification.

3.2. Bolt Detection and Positioning Based on Deep Learning

The KLT corner tracking algorithm is an abbreviation for the Kanade–Lucas–Tomasi
tracking algorithm [18,22], and it is one of the classic corner-tracking algorithms. This
algorithm assumes that the target only produces consistent small displacements in the
video stream, and the grayscale variation in the target is not significant.

There are currently two directions for the task of object detection. One is based on
traditional algorithms, but it has not been widely adopted due to redundant selection
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boxes and low efficiency. The other is based on deep learning algorithms, such as the
two-stage series of Fast r-cnn, Faster r-cnn algorithms, and the one-stage series of SSD and
YOLO algorithms.

YOLOv2 [23] is the second-generation algorithm of the YOLO series, and its detection
performance is excellent. Based on the engineering reality that bolts belong to the small
target category, this paper proposes an improved YOLOv2 model, as shown in Figure 2.
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Figure 2. Improved YOLOv2 Model.

Using transfer learning, the convolutional residual network Resnet18 [24], which has
a deep network depth and a low computational load, and can extract rich features, is used
as the backbone network for YOLOv2. The advantage of introducing the residual network
is to reduce the gradient vanishing or gradient explosion problem caused by the excessive
depth of the network. The structure of the Resnet18 residual is shown in Figure 3.
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The residual module is represented by Formula (1):

y = F(x, ωi) + x (1)

In the above formula, x is the input of the residual module, y is the output of the
residual module, F(x, ωi) represents the residual mapping, and ωi is the weight coefficient
of the ith layer. When the second layer is included, Formula (2) is used for calculation.

F = ω2σ(ω1x) (2)

In the above formula, ω1 is the weight coefficient of the first layer, ω2 is the weight
coefficient of the second layer, and σ represents the activation function.
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A smartphone with a dual-lens setup (16 million pixels + 12 million pixels) was used
to capture the image dataset required for training the bolt detector. The dataset was then
preprocessed with unified numbering and other preprocessing tasks. The experimental
equipment was a computer with an Intel(R)Core(TM)i5 processor and 8.00 GB of mem-
ory. The software environment was the Windows 10 system, with the overall algorithm
framework written on the Matlab platform.

The test bolt image data were annotated using the Image Labeler in Matlab 2016a
software. The dataset was expanded through data augmentation. A dataset of 1000 bolt
images was obtained, with 80% used as the training set and 20% as the validation set. The
algorithm used the SGDM, with a learning rate set to 0.001, MinbatchSize set to 8, and
MaxEpochs set to 20. Feature extraction was performed using the Resnet18 deep residual
network to train the bolt detector based on the YOLOv2 model.

Hyperparameters are fixed parameters set before a model begins training, determining
the efficiency of network training and the detection performance of the model. This paper
established hyperparameters based on the device’s memory capacity and the relevant
literature [25–27]. The hyper-parameters are listed in Table 1.

Table 1. The setting of hyper-parameters.

Catagary Value

Optimizer SGDM
numEpochs 80

miniBatchSize 8
LearningRate 0.001

warmupPeriod 1000
12Regularization 0.0005
penaltyThreshold 0.5

After the training was completed, the model’s accuracy was tested using a test set
to obtain Precision and Recall data plotted on a coordinate axis. The area enclosed by
this curve and the axes represent the model’s accuracy; the larger the area, the better the
model’s detection performance. The graph shows that the Precision–Recall curve of the
bolt detection model can achieve a Recall rate of 80% or higher without compromising its
accuracy. As the Recall gradually increases, the detection accuracy experiences a slight
reduction and eventually stabilizes around 0.95. Through calculations, it was determined
that the average Precision (Average Precision) of the bolt detection model reached 0.95
during Recall, increasing from 0 to 1. As shown in Figure 4, the trained bolt-detection
model achieved an average accuracy of up to 95%, meeting the detection requirements.
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3.3. Bolt Loosening Identification Based on ORB Image Matching Algorithm

ORB, which stands for Oriented FAST and Rotated BRIEF, is a new key point detection
and feature description algorithm proposed by Rublee in 2011 [28]. This algorithm merges
the speed advantages of FAST key point detection [29] with the stability benefits of BRIEF’s
binary feature description [30]. The integration of these two characteristics results in
ORB’s impressive speed and stability. In this study, we use this algorithm to detect and
extract feature points from two images of bolts before and after loosening. We then match
the corresponding feature points and their pixel positions. Through MLESAC [31], we
estimate the geometric transformation matrix of the matched points, thereby identifying
the loosening angle of the bolt.

(1) oFAST Feature Extraction Algorithm

The principle of the FAST key point extraction algorithm is to use the fluctuation
in grayscale differences between pixel points to achieve the goal of rapid feature point
extraction. As shown in Figure 5, we take 16 bolt pixel points on the circumference with p
as the center and r as the pixel radius and compare the difference with the grayscale value
of the central pixel.
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If there are consecutive n pixel points that satisfy Formula (3), then:

N = ∑
q∀(circle(p))

∣∣∣I(q) − I(p)

∣∣∣ > εd (3)

In the formula: I(q) represents the pixel value of a certain point on the circumference,
I(p) represents the pixel value of the center of the circle, εd is a predefined threshold, and
circle(p) represents the set of all pixel points on the circumference with pixel point p as
the center.

While the FAST algorithm detects extremely fast, the extracted key points do not
include related information such as direction and scale. To address this shortcoming,
Rublee proposed an improved oFAST algorithm. After determining the bolt key points,
the algorithm adds direction to the detected vital points using the grayscale centroid
method [18], thus resolving the lack of directionality in the FAST algorithm.

(2) rBRIEF Key Point Description Algorithm

After extracting key points using oFAST, the image’s critical information must undergo
relevant description. The primary idea of the BRIEF key point description algorithm is
to randomly select several pairs of points near the extracted vital points and combine the
grayscale values of these point pairs into a binary string. This string is then used as the
feature descriptor for that critical point.

Suppose a smooth image is selected. Within its domain of size S × S, the description is
carried out using the binarization Formula (4):

τ(p; x, y) =

{
1, I(p, x) < I(p, y)
0, I(p, x) ≥ I(p, y)

(4)
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where I(p, x) represents the grayscale pixel value of the smoothed image domain at a
certain pixel location.

If n pairs of points are selected, the resulting feature vector is converted into a n-
dimensional binary string descriptor, as shown in Formula (5):

fn(p) = ∑
1≤i≤n

2i−1τ(p; xi, yi) (5)

where n can be 128, 256, or 512 dimensions, occupying 16 bytes, 32 bytes, and 64 bytes,
respectively.

Since BRIEF does not possess rotational invariance, Rublee proposed the improved
rBRIEF algorithm. The BRIEF descriptor is rotated by adopting the primary direction of the
critical points.

(3) Estimating Transformation Matrix Using MLESAC Algorithm

After matching the features of the images of the bolt before and after loosening, the
loosening angle of the bolt can be determined by calculating the geometric transformation
matrix of the bolt images. The MLESAC (Maximum Likelihood Estimation SAmple Con-
sensus) algorithm estimates the geometric transformation matrix between images. It can
transform the maximum likelihood estimation problem into a problem of minimizing a
cost function, as shown in Formula (6):

C = −∑
i

(
γ

(
1

2πσ2

)
exp

(
−

e2
i

2σ2

)
+ (1 − γ)

1
ν

)
(6)

where γ
(

1
2πσ2

)
exp

(
− e2

i
2σ2

)
represents the error pattern of Gaussian distribution, indicat-

ing the probability of inliers; (1 − γ) 1
ν represents the error pattern of uniform distribution,

indicating the probability of outliers. ν is the size of the search window in the matching
algorithm, and γ is the mixing factor of the two error patterns.

Figure 6 shows the deviation in pixel coordinates for each pair of feature points when
the bolt is loosened by 10◦.
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4. Case Study Analysis

To validate the bolt-loosening detection method proposed in this paper, based on
computer vision technology, the experimental setup utilized a rectangular steel plate
with a thickness of 10 mm, a length of 230 mm, and a width of 100 mm as the object
of study. Three grade 4.8 standard bolts were used to construct a model simulating a
critical joint in steel structures. An intelligent smartphone (model: Samsung S10e; dual rear
camera with 16 million + 12 million pixels; sensor type: CMOS sensor; camera aperture:
f/1.5–2.4 + f/2.2) mounted on a tripod was used to capture images of the experimen-
tal model.
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The external environment was set to natural daylight to simulate the lighting condi-
tions of steel structures under actual working conditions. During the shooting process, the
smartphone was fixed on a stand approximately 30 cm from the bolted joint plate. The
built-in auto-focus feature of the phone was used for image data collection. The bolts on the
joint plate were numbered for identification purposes. To simplify the calculation of angles,
the recognized angles were rounded to the nearest whole number. The experimental setup
is shown in Figure 7.
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Figure 7. Detail Drawing of Bolted Connection Model.

4.1. Categorization of Bolt-Loosening Angles

After mounting the bolts on the joint steel plate, they were numbered. To simulate the
loosening of bolts in steel structures in actual engineering projects, this study utilized a
protractor to demarcate several smaller-angle intervals at the bolt holes of the joint plate,
precisely at 0◦, 5◦, 10◦, and 15◦. Additionally, to verify various loosening scenarios, larger
angle intervals of 0◦, 20◦, 40◦, and 60◦ were also marked. The simulation of bolt loosening
in real engineering situations was achieved by manually aligning the bolts with these angle
markings and rotating them counterclockwise. The divisions of these angle intervals are
illustrated in Figure 8.
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4.2. Bolt-Loosening Recognition Analysis

The joint model was placed on a horizontal workbench, with the smartphone fixed
on a tripod under natural lighting conditions to collect image data. Initially, an image of



Buildings 2024, 14, 163 10 of 15

the model before the bolt loosening was captured with the smartphone positioned directly
in front of the joint model (the lens perpendicular to the model). Subsequently, the bolts
were rotated counterclockwise to a certain angle by the angle scale, and another image
of the model after the bolt loosening was taken in the same manner. Both images have a
resolution of 3024 pixels × 3024 pixels—a comparative illustration of the bolts before and
after loosening is presented in Figure 9.
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After acquiring the bolt image data, the two images, one before and one after loosening,
were input into the algorithm designed in this paper. This process involved detecting,
locating, and identifying bolt loosening in the images, with the specific workflow illustrated
in Figure 10.
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Figure 10. Processing Process and Recognition Results. (a) The indicator located on the bolt before
loosening. (b) The indicator located on the bolt after loosening. (c) The bolt without loosening.
(d) The bolt with loosening. (e) Feature points on the bolt without loosening. (f) Feature points on
the bolt with loosening. (g) Detailed detection effect of feature points on bolt without loosening.
(h) Detailed detection effect of feature points on bolt with loosening. (i) Feature ponits are matched.
(j) The rotation trajectory on the bolt without mismatched pairs. (k) The loosening angle is detected
and displayed on the bolt.

The figure shows that the detector precisely located the bolts in both images (a) and (b).
Image (a) shows the bolt before loosening, with a green box displaying “bolt1: 0◦”, in-
dicating the initial bolt image data. Image (b) represents the bolt after loosening, with a
yellow box displaying “bolt1: test”, signifying this image’s processing of bolt-loosening
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recognition. Images (c) and (d) depict the cropped target areas of the bolt before and after
loosening, respectively. This cropping retains the image of the bolt head while eliminating
background and other distracting information, thus reducing image processing demands
and enhancing the algorithm’s efficiency. Images (e) and (f) show the detection of a large
number of feature points in the grayscale bolt images; feature points in the pre-loosening
image are marked with red “o”s, and those in the post-loosening image with green “+”
signs. The detailed detection effect of these feature points is shown in images (g) and (h).

Subsequently, feature point information is extracted and matched, with each matched
pair connected by a yellow line, as shown in image (i). This matching identifies feature
points that indicate rotation at the bolt head and some around the bolt, although there are
numerous mismatched pairs. Image (j) overlays the pre- and post-loosening images, and
after removing mismatched pairs, the rotation trajectory of the red and green feature points
becomes apparent.

The original image (b) is re-marked for bolts that have loosened. The original locating
rectangle is changed to red, and the degree of loosening is displayed at the top of the image,
as shown in image (k), with a red box displaying “bolt1: 14◦”.

Following the operational process established for recognizing loosening in a single bolt,
this procedure was sequentially applied to images of multiple bolts to test for loosening
recognition. To verify the timeliness of the algorithm, a stopwatch was used during testing,
and it was observed that the recognition of loosening in images of multiple bolts took
approximately 5 s. Given the inherent errors in manually loosening bolts, an alternative
approach was adopted. Images of bolt heads were cropped and then superimposed onto
the bolt-hole positions on the joint plate to create composite images. This process, executed
by the computer, simulated the bolts being loosened counterclockwise, thus achieving ideal
loosening image data, as shown in Figure 11.
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In Figure 11, the left side displays images of bolts manually loosened, while the right
side shows computer-simulated loosening conditions. In the simulated loosening condition
images, the angles of counterclockwise rotation are precisely controlled by the computer,
ensuring that the algorithm’s detection results match the actual degrees of loosening. In
the case of manual loosening, there were inevitable errors; for example, Bolt 3’s loosening
angles of 4◦, 9◦, and 14◦ were each 1◦ off the ideal angles of 5◦, 10◦, and 15◦. However, Bolt
2, which was not manipulated during the experiment and remained tightened, showed
a detection result consistent with reality, displaying 0◦. For Bolt 1, in conditions 1 and 2,
the loosening angles were 21◦ and 39◦, differing by 1◦ from the ideal angles. However,
in condition 3, the detected loosening angle of 60◦ perfectly aligned with the ideal value,
meeting the detection requirements. The comparative analysis of the two sets of images
indicates that the algorithm’s angle recognition results are generally consistent with the
actual conditions.

Based on Table 2, the error in manual loosening is evident in the recognition of 15◦

and 20◦ angles, with an approximate error of around 1.3◦. The errors at other angles
are slightly smaller. Bolt 2, which remained tightened throughout and did not undergo
manual loosening, exhibited a maximum error of only 0.0588◦, closely aligning with the
actual 0◦ loosening condition. This indicates that, if the loosening angle of a bolt can be
precisely controlled, the recognition results under actual working conditions can meet basic
accuracy requirements.

Table 2. Comparative Analysis of Manual Loosening Angle Error (photos taken by mobile phone).

Conditions Angle Bolt 1 Bolt 2 Bolt 3

1
Manual loosening angle 20.0000◦ 0.0000◦ 5.0000◦

Algorithmic Recognition Angle 21.3417◦ 0.0288◦ 4.2185◦

error value 1.3417◦ 0.0288◦ 0.7815◦

2
Manual loosening angle 40.0000◦ 0.0000◦ 10.0000◦

Algorithmic Recognition Angle 39.2511◦ 0.0588◦ 9.2995◦

error value 0.7489◦ 0.0588◦ 0.7005◦

3
Manual loosening angle 60.0000◦ 0.0000◦ 15.000◦

Algorithmic Recognition Angle 60.3005◦ 0.0034◦ 13.6516◦

error value 0.3005◦ 0.0034◦ 1.3484◦

In Table 3, all cases involve computer-simulated loosening, resulting in a maximum
error of only 0.0400◦. This error is nearly identical to the pre-set 10◦ angle in the computer
simulation, effectively validating the precision of the bolt-loosening recognition algorithm
presented in this paper. This demonstrates that, with precise control and accurate sim-
ulation, the algorithm can reliably detect and quantify bolt loosening to a high degree
of accuracy.

Table 3. Comparative Analysis of Manual Loosening Angle Error (photos taken by computer simulation).

Conditions Angle Bolt-1 Bolt-2 Bolt-3

1
Manual loosening angle 20.0000◦ 0.0000◦ 5.0000◦

Algorithmic Recognition Angle 20.0232◦ 0.0098◦ 5.0346◦

error value 0.0232◦ 0.0098◦ 0.0346◦

2
Manual loosening angle 40.0000◦ 0.0000◦ 10.0000◦

Algorithmic Recognition Angle 39.9675◦ 0.0060◦ 10.0400◦

error value 0.0325◦ 0.0060◦ 0.0400◦

3
Manual loosening angle 60.0000◦ 0.0000◦ 15.000◦

Algorithmic Recognition Angle 60.0073◦ 0.0084◦ 15.0066◦

error value 0.0073◦ 0.0084◦ 0.0066◦
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5. Conclusions

This paper proposes a bolt-loosening detection method based on computer vision
technology, implemented through algorithms developed on the MATLAB platform. The
core idea integrates deep learning algorithms with image processing techniques to identify
and calculate the loosening angles of bolts in joint model images. Firstly, a bolt detector
trained using deep learning algorithms automatically identifies and frames bolts in captured
images. Secondly, image processing techniques are applied to crop the bolt images within
the confidence region, reducing the computational load in later stages. The cropped
bolt images are then processed using the ORB and MLESAC algorithms for feature-point
matching and pixel coordinate deviation calculations. This process effectively identifies
and calculates the loosening angles of bolts in the images. Finally, experiments on joint
model components were conducted to validate the feasibility of the proposed method. This
experimental study lead to the following conclusions:

(1) The method effectively identified loosened bolts in steel joint plates by training a
bolt detector based on the YOLO algorithm and combining it with the ORB image-
matching and MLESAC algorithms. It calculated their loosening angles, thereby
proving its feasibility;

(2) The algorithm efficiently processes bolt images obtained from experiments, identifying
the location of the bolts, cropping images to include only the bolt targets, and, finally,
calculating and marking the loosening angles on the images within less than 5 s,
demonstrating the method’s efficiency;

(3) Comparing manually loosened bolt images with computer-synthesized bolt-loosening
images, it is evident that the angle values identified by the algorithm nearly match the
actual values when the loosening angles of bolts are precisely controlled. The maxi-
mum error in loosening angles is approximately ±0.1◦, confirming the algorithm’s
accuracy in angle calculations.

Despite these achievements, the algorithm designed in this paper has certain limita-
tions, which will be addressed in future research:

(1) The algorithm’s processing time has yet to achieve near-real-time efficiency. Further
improvements in device configuration and algorithm processing will be made to
enhance the recognition performance, aiming for live detection capability;

(2) Most bolt loosening in steel structures involves small angles, but scenarios of 360◦ or
its multiples are not excluded, rendering the current algorithm infeasible. To enhance
the practicality of the algorithm, future research will consider classifying bolts based
on the length of the screw exposed after loosening, thereby addressing the limitations
of the current method;

(3) The issue of failing to consider the variability in tightened bolts’ angles when methods
are used in production and installation processes should also be considered. Accord-
ing to the literature [32,33], the Bayesian method, as a typical method to overcome
variability, could be considered. Due to the variability in tightened bolts, it is hard to
estimate the actual angle of the loosened bolts, so the Bayesian-based method can be
applied to update/predict the actual values of angles.
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