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Abstract: The cement industry’s intricate production process, including kiln heating and fossil
fuel use, contributes 5–8% of global CO2 emissions, marking it as a significant carbon emitter in
construction. This study focuses on quantifying CO2 capture potential in blended cement systems
through the utilisation of phenolphthalein and thermalgravimetric methodologies. Its primary
objective is to assess the CO2 absorption capacity of these blended systems’ pastes. Initial evaluation
involves calculating the carbon capture capacity within the paste, subsequently extended to estimate
CO2 content in the resultant concrete products. The findings indicate that incorporating ground
granulated blast-furnace slag (GGBS) or an ettringite-based expansive agent did not notably elevate
carbonation depth, irrespective of their fineness. Conversely, the introduction of fly ash (FA) notably
augmented the carbonation depth, leading to a substantial 36.4% rise in captured CO2 content.
The observed distinctions in carbonation behaviour primarily stem from variances in pore structure,
attributable to distinct hydration characteristics between GGBS and FA. Thermal analysis confirms the
increased stabilisation of CO2 in FA blends, highlighting the crucial influence of material composition
on carbonation and emission reduction. Incorporating both GGBS and FA notably diminishes binder
emissions, constituting almost half of PC-concrete emissions. Initially, 60% GGBS shows lower
emissions than 50% FA, but when considering CO2 capture, this emission dynamic significantly
changes, emphasising the intricate influence of additives on emission patterns. This underscores the
complexity of evaluating carbonation-induced emissions in cementitious systems.

Keywords: supplementary cementitious materials; carbonation; blended cement; CO2 capture;
expansive agent

1. Introduction

The cement industry stands as a crucial cornerstone of global construction, yet its
operations contribute significantly to carbon emissions, which account for ~5–8% of to-
tal anthropogenic CO2 [1,2]. This stems from the intricate process involved in cement
production [3–5]. Cement, the binding phase (after hydration) in concrete, is primarily
manufactured through the heating and processing of raw materials like limestone, clay,
and other minerals in kilns [6]. The thermal treatment, coupled with the use of fossil fuels
to power these high-temperature kilns, leads to the release of carbon dioxide (CO2) into
the atmosphere [5]. Additionally, the decomposition of carbonates during the production
process generates emissions, making the cement industry a notable contributor to carbon
emissions worldwide.

In traditional practices, carbonation poses a risk to reinforced concrete by lowering the
pH of the matrix, leading to potential corrosion of the reinforcement bars [7,8]. Nevertheless,
this effect is limited to reinforced concrete with steel bars, while plain concrete or concrete
reinforced with polymers or non-steel bars remains unaffected by this carbonation-induced
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corrosion [9]. Therefore, the innovative concept of CO2 curing in concrete represents a
revolutionary shift in sustainable construction practices [10,11]. Unlike traditional methods,
CO2 curing involves leveraging carbon dioxide (CO2) as a beneficial agent in the concrete
curing process. By injecting CO2 into concrete mixes or exposing concrete structures to CO2,
a mineralisation reaction occurs wherein the CO2 chemically reacts with calcium ions in the
concrete to form calcium carbonate. This reaction not only accelerates the curing process
but also enhances the strength and durability of the concrete while effectively sequestering
CO2 within the material itself. This technique holds immense promise in reducing carbon
footprints within the construction industry, offering the dual benefit of enhancing structural
performance while mitigating carbon emissions [12,13].

Supplementary cementitious materials (SCMs) significantly contribute to bolstering
the performance, sustainability, and durability of concrete [14–16]. Materials like pul-
verised fly ash (PFA), ground granulated blast-furnace slag (GGBS), silica fume (SF), and
others, derived from industrial processes or natural minerals or recycled wastes, serve
as byproducts that, upon incorporation into concrete mixes, partially substitute for Port-
land cement [17–20]. Incorporating SCMs provides multiple benefits, such as enhanced
workability, decreased heat generation in hydration, heightened long-term strength, and
improved resistance to chemical attacks and cracking [18,21]. Moreover, SCMs additionally
contribute to mitigating the environmental impact of concrete production by reducing the
demand for cement, thereby lowering carbon emissions [22–25]. Their utilisation show-
cases a sustainable approach to modern concrete technology, promoting the construction of
resilient structures while diminishing the industry’s ecological footprint [26–28].

However, the use of SCMs means a reduction in the overall calcium content in the
blended systems, which, on the other hand, reduces the capacity for CO2 mineralisation.
Therefore, it is important to evaluate the amount of CO2 that can be immobilised by
these blended systems, which can be used as guidance for low-carbon and sustainable
development of the circular economy [29,30].

This study tries to configure different blended cement systems by using clinkers and
SCMs and estimate the CO2 capture capacity by different pastes. The flowchart of the
research outline is shown in Figure 1. Finally, based on the evaluated values, the embodied
carbon assessment was given to the standard pavements made by such binders. This paper
proposes the estimation method of CO2 capture capacity by blended cement from paste to
concrete, which will contribute to the development of low-carbon concrete.
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2. Experimental Procedures
2.1. Composition and Properties of Clinker and SCMs

Cement clinker (density of 3.12 g/cm3), which was provided by Xiaoyetian Cement
Plant (Nanjing, China), was ground for 45 min by a vibrating mill. The chemical compo-
sition and particle size distribution are given in Table 1 and Figure 2, respectively. The
ground granulated blast-furnace slag (GGBS) was supplied by Nanjing Steel and Iron
Company, with an initial Blaine fineness of 365 m2/kg (labelled as GGBS350) and a density
of 2.89 g/cm3. Considering there are different activities of commercial GGBS, the GGBS350
was further ground by the vibrating mill for another 20 min, resulting in GGBS with a
Blaine fineness of 450 m2/kg (labelled as GGBS450). The fly ash (FA) used in this study
conforms to GB/T 1596-2017 [31] as a Class F fly ash, a typical low-calcium FA, which only
contains 5.46% CaO, as shown in Table 1, determined by ARLTM Perform’X Sequential
X-Ray Fluorescence 4200 (Thermo Fisher Scientific, Waltham, MA, USA). The FA has a
slightly larger particle size, reaching a Blaine fineness of 325 m2/kg with a density of
2.15 g/cm3.

Table 1. Chemical composition of clinker, GGBS and FA by XRF (wt%).

Raw Materials SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O SO3 Others LOI

Clinker 21.09 5.33 3.28 0.87 66.12 0.55 0.21 0.2 1.67 0.89

GGBS 32.01 14.04 1.03 9.23 37.02 0.38 0.44 2.31 2.97 0.57

FA 49.23 25.87 7.62 0.98 5.46 0.55 1.59 1.01 4.94 2.75

UEA 25.57 15.30 0.80 1.01 24.12 0.09 1.38 28.90 0.98 1.85
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Figure 2. Particle size distribution of clinker, GGBS (350 and 450), and FA.

Additionally, the UEA (Aft-based expansive agent, density of 2.80 g/cm3) is always
used to reduce the cracks in plain precast concrete, which is considered during the prepara-
tion of CO2-cured concrete products. The UEA is in the form of a pink powder, provided
by the China Academy of Building Materials Science (CABMS), consisting of calcium
aluminium sulphate (containing some potassium, as shown by XRF) and aluminium oxide
as the major expansion sources. The images of the raw materials are shown in Figure 3.
This kind of expansion agent (EA) is frequently used in self-stressed or prestressed concrete
water pipes, floor slabs, columns, beams and columns, waterproof roof panels, etc., and
is sometimes also used in plain concrete products to resist shrinkage-induced cracks. Ac-
cording to the particle size distribution in Figure 2, the D50 values of GGBS350, GGBS450,
Clinker and FA are 25.8, 17.5, 18.7, and 27.5 µm.
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2.2. Sample Preparation and CO2 Curing

The blended cement was made by mixing clinker and GGBS or FA at a certain ratio
for around 10 min by a small (volume: 2 L) planetary mixer, in addition to clinker and
SCMs, around an additional 5% gypsum (which was not accounted into the total binder
mixture) was also added to the blended cement to regulate the hydration and setting time.
The blended cements were made by blending up to 50% FA, 60% GGBS, and 8% UEA (see
Table 2) to assess the carbonation process.

Table 2. Mixing proportion of blended cement (wt%).

Name Clinker GGBS FA UEA Additional Gypsum

Ref 100 -- -- -- 5%

10FA-blends 90 -- 10 -- 5%

20FA-blends 80 -- 20 -- 5%

30FA-blends 70 -- 30 -- 5%

40FA-blends 60 -- 40 -- 5%

50FA-blends 50 -- 50 -- 5%

10GGBS-blends 90 10 -- -- 5%

20GGBS-blends 80 20 -- -- 5%

30GGBS-blends 70 30 -- -- 5%

40GGBS-blends 60 40 -- -- 5%

50GGBS-blends 50 50 -- -- 5%

60GGBS-blends 60 40 -- -- 5%

8UEA-blends 92 -- -- 8 5%

Cement pastes were formulated using two distinct water-to-binder ratios of 0.45, while
the clinker was gradually replaced with GGBS and FA, spanning from 0 wt% to 60 wt%
or 50 wt% incrementally, with intervals of 10 wt% (see Table 2). The gypsum is used for
controlling the setting of the clinker, i.e., by the reaction between the C3A and gypsum,
the setting of the clinker can be controlled. The mix design refers to GB/T175 [32] for
the preparation of the P·I Cement, which requires 3–5% gypsum to control the setting
of the cement. The mixed blended powder (Section 2.1) was added to a planetary mixer,
and the weighted water was added slowly within 30 s. The slurry was mixed initially for
60 s, followed by a 30 s pause, and was then mixed for another 90 s to obtain the uniform
mixtures. The paste was cast into 40 mm × 40 mm × 160 mm steel moulds. The cast paste
prisms were covered with a layer of plastic form for around 24 h, followed by curing in a
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carbonation chamber with 20 vol% CO2 concentration according to GB/T 50082-2009 [33]
(a temperature of 20 ± 1 ◦C and relative humidity of 65 ± 5%) for up to 28 d.

2.3. Evaluation Methods

Figure 4 displays sampling strategies for carbonation depth measurements and the
single-way diffusion carbonation test. Three major aspects are evaluated for the blended
cement systems:
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carbonation test. (a) Specimens for carbonation, (b) carbonation depth measurement, and (c) single-
way diffusion carbonation test.

(1) Carbonation depth: The depth of carbonation after carbon curing was assessed by
the phenolphthalein method according to GB/T 50082-2009 [33].

(2) Carbon content evaluation and pore size distribution after carbonation: The
prisms of cement pastes were sealed with rosin paraffin wax for the four rectangular sides
(Figure 3) with the exposure of the two sides for single-way carbonation, which aims to
compare the differences between each mix. The carbonation degree of the pastes was
evaluated using the thermogravimetric method by a Netzsch STA 250 (Bavaria, Germany).
The test was conducted under an N2 atmosphere from 30 to 1000 ◦C with a heating rate
of 10 ◦C. The samples were removed from one side of the paste prisms by 2 mm each
until 40 mm (i.e., 6–20 groups), corresponding to the largest carbonation depth of 50 wt%
FA-blended cement paste (see sampling strategy in Figure 4) until the carbonation degree
was almost the same as the previous group. The carbonates were calculated according to
Equation (1). On the other hand, the CO2 percentage was calculated based on the mass loss
from 500 ◦C to 800 ◦C [34–36].

CC% =

 (m500◦C − m800◦C)×
(

100
44

)
m800◦C

× 100% (1)
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In addition, the Micromeritics ASAP 2020 system (Micromeritics, GA, USA) was used
to conduct the N2-adsorption test at a consistent temperature of 77.350 K for porosity
measurement. It calculated the specific surface area via the Brunauer–Emmett–Teller (BET)
equation and determined pore size distributions using the Barrett–Joyner–Halenda (BJH)
method from the adsorption curve. The samples were prepared from both the carbonated
side and the non-carbonated side, as indicated by the phenolphthalein method.

(3) Embodied carbon content for concrete: The life cycle assessment (LCA) of the
concrete products by using the blended cement was evaluated based on the database
provided by the Institute of Civil Engineers (ICE, London, UK; https://circularecology.
com/embodied-carbon-footprint-database.html, accessed on 5 November 2023) with the
addition of the evaluated captured carbon content by blended cement paste [37] under
the scheme of the cradle-to-gate method. The commercial concrete mix design is as given
in Table 3, and was set as the precast concrete pavement bricks with a standard unit
of 200 × 200 × 50 mm. The transportation distance is expected to be 30 miles, which
is a typical distance around construction sites. The emission factor for each material is
based on the database ICE V3.0, extracted from EN 15804, EPD-MPA-20170159-CAG1-EN
(https://epd-online.com/, accessed on 5 November 2023). The standard 100 mm cubic
bricks are made based on the mix design for testing the carbonation depth according to
the phenolphthalein method. The binders used were selected based on the discussion in
Section 3.1, which are the ref, 50% FA blends, and 60% GGBS blends. The carbonation
depth of the three cubic concretes are 15.3 mm, 27.6 mm, and 14.3 mm, respectively.

Table 3. Mix design for commercial concrete for embodied carbon assessment (kg/m3).

Types Clinker GGBS FA Water Coarse Aggregate Fine Aggregate Admixtures

PC-Concrete 360 0 0 160 1600 1420 4

60GGBS350-Concrete 144 216 (60%) 0 160 1600 1420 5

50FA-Concrete 180 0 180 (50%) 160 1600 1420 4

3. Experiment Results and Discussion
3.1. Carbonation Depth

Figure 5 shows the carbonation depth of GGBS-blended cement at 3, 7, 14, and
28 d with varying slag content (0 wt% to 60 wt%) under a water-to-binder ratio of 0.35.
The experimental results indicate that the carbonation depth of slag-clinker cementitious
materials at different ageing stages exceeds that of the control group. Notably, distinct
disparities in carbonation depth are observed at 3 and 7 d, while the differences diminish
gradually at 14 and 28 d. Interestingly, the carbonation depth of hardened GGBS blends
falls below that of the control group at both 14 and 28 d of carbonation.

Examining the reasons behind these findings, it is imperative to note that water-
quenched GGBS constitutes an active glassy material, and alkali released from the clinker
triggers its activity [38], albeit with a certain latency in this reaction (i.e., secondary hy-
dration) [39]. Nonetheless, the hydration products thereof contribute to densifying the
cementitious material and refining pore structures [40]. Consequently, this phenomenon
can enhance the carbonation resistance of cementitious materials under these conditions.

Figure 6 illustrates the impact of slag activity on the carbonation depth of blended
cement containing a 30% GGBS content. The depiction clearly illustrates that blended
cement compositions with increased slag activity consistently demonstrate shallower
levels of carbonation at various stages of maturation when contrasted with compositions
possessing lower slag activity [41]. The influence of slag activity on blended cement is
discernible through dual mechanisms. Primarily, the increase in slag fineness contributes
to an augmented specific surface area, thereby facilitating a more extensive interaction
with Ca(OH)2 within the system. This interaction leads to a reduction in Ca(OH)2 content,
effectively mitigating its detrimental impact on carbonation. Additionally, this interaction

https://circularecology.com/embodied-carbon-footprint-database.html
https://circularecology.com/embodied-carbon-footprint-database.html
https://epd-online.com/
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fosters the formation of C-S-H gel, consequently narrowing the pore structure of the
blended cement. This phenomenon results in heightened density and increased resilience
against carbonation, bolstering the material’s durability over time. The synergistic effect
of enhanced surface area and the formation of C-S-H gel thus presents a multifaceted
approach by which slag activity positively influences the carbonation resistance of blended
cement [42].

Buildings 2024, 14, x FOR PEER REVIEW 6 of 16 
 

 

(BET) equation and determined pore size distributions using the Barrett–Joyner–Halenda 

(BJH) method from the adsorption curve. The samples were prepared from both the car-

bonated side and the non-carbonated side, as indicated by the phenolphthalein method. 

(3) Embodied carbon content for concrete: The life cycle assessment (LCA) of the 

concrete products by using the blended cement was evaluated based on the database pro-

vided by the Institute of Civil Engineers (ICE, London, UK; https://circularecol-

ogy.com/embodied-carbon-footprint-database.html, accessed on 5 November 2023) with 

the addition of the evaluated captured carbon content by blended cement paste [37] under 

the scheme of the cradle-to-gate method. The commercial concrete mix design is as given 

in Table 3, and was set as the precast concrete pavement bricks with a standard unit of 

200 × 200 × 50 mm. The transportation distance is expected to be 30 miles, which is a typical 

distance around construction sites. The emission factor for each material is based on the 

database ICE V3.0, extracted from EN 15804, EPD-MPA-20170159-CAG1-EN (https://epd-

online.com/, accessed on 5 November 2023). The standard 100 mm cubic bricks are made 

based on the mix design for testing the carbonation depth according to the phenolphtha-

lein method. The binders used were selected based on the discussion in Section 3.1, which 

are the ref, 50% FA blends, and 60% GGBS blends. The carbonation depth of the three 

cubic concretes are 15.3 mm, 27.6 mm, and 14.3 mm, respectively. 

Table 3. Mix design for commercial concrete for embodied carbon assessment (kg/m3). 

Types Clinker GGBS FA Water Coarse Aggregate Fine Aggregate Admixtures 

PC-Concrete 360 0 0 160 1600 1420 4 

60GGBS350-Concrete 144 216 (60%) 0 160 1600 1420 5 

50FA-Concrete 180 0 180 (50%) 160 1600 1420 4 

3. Experiment Results and Discussion 

3.1. Carbonation Depth 

Figure 5 shows the carbonation depth of GGBS-blended cement at 3, 7, 14, and 28 d 

with varying slag content (0 wt% to 60 wt%) under a water-to-binder ratio of 0.35. The 

experimental results indicate that the carbonation depth of slag-clinker cementitious ma-

terials at different ageing stages exceeds that of the control group. Notably, distinct dis-

parities in carbonation depth are observed at 3 and 7 d, while the differences diminish 

gradually at 14 and 28 d. Interestingly, the carbonation depth of hardened GGBS blends 

falls below that of the control group at both 14 and 28 d of carbonation. 

 

Figure 5. Carbonation depth of the GGBS350 blends up to 60 wt% replacement. 

0 10 20 30 40 50 60

0

2

4

6

8

10

12

14
C

a
rb

o
n

a
ti

o
n

 D
e
p

th
 (

m
m

)

GGBS350 Content (wt%)

 3d

 7d

 14d

 28d

Figure 5. Carbonation depth of the GGBS350 blends up to 60 wt% replacement.
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Figure 6. Carbonation depth of the GGBS-blended cement with different fineness at the replacement
level of 30 wt%.

The overarching effect on carbonation emanates from the confluence of these dual
mechanisms. Empirical evidence illustrated from this investigation that the density en-
hancement attributed to enhanced slag activity markedly surpasses the adverse impact
stemming from Ca(OH)2 depletion [43,44]. Consequently, the carbonation depth of cemen-
titious materials crafted with highly active slag consistently registers lower values across
diverse ageing periods compared to those utilising low-activity (i.e., lower surface area,
in this case) slag [45]. Significantly, when maintaining a specified water-to-binder ratio
and incorporating 30% GGBS content, a remarkable enhancement in carbonation resistance
becomes particularly evident. Notably, this enhancement manifests as notable reductions
in depth by 19.2%, 9.7%, 9.4%, and 6.5% at 3 days, 7 days, 14 days, and 28 days, respec-
tively. This empirical trend not only underscores the substantial impact of slag activity on
mitigating carbonation but also intimates a gradual decrease in its influence over time on
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the depth of carbonation within the system. This diminishing effect suggests a nuanced
temporal relationship between slag content and its efficacy in bolstering the resistance of
the material against carbonation, underscoring the need for continued investigation into
the long-term implications of slag activity in blended cement compositions.

When the FA content reaches 50 wt% (under a water-to-binder ratio of 0.45), the
carbonation depth of the blended cement reaches 26.3 mm (Figure 7), indicating severe car-
bonation. This situation markedly differs from the impact of GGBS content on cementitious
material carbonation (Figure 5). The relatively lower reactivity of FA compared to GGBS
(owing to its lower calcium content) leads to a potential higher consumption of Ca(OH)2
during reactions [42]. Consequently, the alkalinity of the cementitious paste decreases, mak-
ing the cementitious material more susceptible to carbonation. Additionally, the pozzolanic
reaction of FA lags (behind) that of GGBS, showing more pronounced disparities during
the later stages of carbonation against the control group.
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Figure 7. Carbonation depth of the FA blends up to 60 wt% replacement.

Furthermore, the excessive unreacted FA in the early stages significantly increases
the porosity of the cementitious material, facilitating CO2 diffusion and thereby inten-
sifying carbonation. Notably, when the FA content reaches 50%, the carbonation depth
at 28 d (under a water-to-binder ratio of 0.45) increases by 100.1% (Figure 7). This sub-
stantial increase underscores the profound impact of FA content on the carbonation of
cementitious materials.

After the addition of the UEA expansion agent, the carbonation of cement pastes
significantly increased, particularly during the early-age phase, resulting in approximately
a twofold increase in carbonation depth compared to the control group (Figure 8). With
the inclusion of the UEA expansion agent, the cement paste exhibited a notably higher
presence of ettringite compared to ordinary cement paste. The complete carbonation of
this ettringite led to a significant rise in the content of calcite, suggesting that under the
influence of CO2, the ettringite was prone to fragmentation, resulting in the generation of
CaCO3. Moreover, the as-formed calcium carbonate predominantly comprised unstable
calcite, contributing to an increase in carbonation depth.
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Figure 8. Carbonation depth of the 8 wt% UEA blended cement.

3.2. Carbonates Content Profile

As discussed in Section 3.1, the maximum carbonation that happened in the systems
was in 50 wt% FA-blended cement, which was further used for the calculation of carbonate
profiles. Considering that GGBS is also frequently used in normal concrete, the 60 wt%
GGBS-blended cement was used for comparison. The carbonated samples were therefore
cut and ground for thermalgravimetric analysis.

Figure 9 illustrates the evolution of average calcium carbonate content at a given
location concerning the depth of carbonation following exposure surface sampling (2 mm to
30 mm). The trend exhibited in the figure aligns significantly with the results of carbonation
depth (as shown in Figures 5 and 7): after 28 d of carbonation, the FA-blended cement
demonstrates notably elevated calcium carbonate content, correlating with its higher degree
of carbonation. Additionally, FA contains some unburnt solid carbon that decomposes at
this stage, thus resulting in an overestimation of the calcium carbonate content within the
fly ash blended cement [46]. Upon the introduction of active mineral admixtures such as
fly ash (FA) and ground granulated blast furnace slag (GGBS) into the Portland cement
system, their active constituents initiate a gradual consumption of Ca(OH)2 and C-S-H
gel. This process results in the formation of a lower calcium-to-silica ratio C-S-H gel or
C-A-S-H gel. Notably, this reaction not only modifies the composition of the cementitious
matrix but also provides potential reactants for subsequent carbonation processes. These
include unreacted Ca(OH)2 and C-S-H gel, alongside C-(A)-S-H and lower Ca/Si ratio
C-S-H gel, which engage with the active substances present, influencing the carbonation
reactions within the system. This transformative process underscores the intricate role of
active mineral admixtures in altering the chemical composition of cementitious materials
and subsequently affecting their susceptibility to carbonation. Further investigation into
these intricate reactions is pivotal for a comprehensive understanding of their implications
for the durability and performance of cementitious systems [47]. Ca(OH)2 constitutes a
crucial part of the concrete paste, and during carbonation, it is converted into calcium
carbonate, followed by C-S-H gel [48]. However, the carbonation of the gel depends on
intricate factors such as the liquid phase environment, Ca/Si ratio, gel porosity, and more.
Upon slag reaction, the generated C-A-S-H gel possesses reduced gel porosity, restraining
diffusion, thereby exhibiting a slightly lower degree of carbonation compared to the control
group (Table 4) [42].
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Figure 9. Calcium carbonates calculated from TG using Equation (1) as given by the conversion from
CO2 to CaCO3.

Table 4. Pore structure of blended cement pastes determined by the N2 adsorption method after 28 d
of hydration.

Sample Surface Area
(m2/g)

Avg. Pore
Diameter (nm)

Pore Size Distribution (%)

<20 nm 20–50 nm 50–200 nm >200 nm

Ref 15.992 19.208 45.5 26.3 26.4 1.8

50FA 14.677 24.332 32.1 27.6 33.8 6.5

60GGBS350 22.021 13.620 57.5 31.1 11.4 0

It is clearer from the pore size distribution (Table 4) that the pore structure was refined
by adding 60 wt% GGBS after 28 d of hydration, which agrees with the theory of secondary
reaction (i.e., the pozzolanic effect of GGBS at the age of 28 d). However, the addition of
50% FA coarsened the pore structure from the nanometer to the micro-meter scale (Table 4).
This is potentially due to the lower reactivity of FA during hydration, only reacting a little at
the age of 28 d. A previous study showed that the refinement of C-A-S-H gel in FA-blended
cement takes up to 91 d [16]. By looking more specifically at the pore diameter ranges of the
selected mixtures, the pores distributed in the range of 50–200 nm in FA-blended cement
increased significantly when compared to the reference group (i.e., the clinker–gypsum
paste), which provides tunnels for the diffusion of CO2, accelerating the carbonation depth
(Figure 7) and carbonation degree (Figure 9). On the other hand, the GGBS blends (even the
content of GGBS is up to 60 wt%) showed a decrease in both the 50–200 nm and >200 nm
ranges of pores, indicating the significant hydration of GGBS happening in the system [34].

Moreover, the phenolphthalein method may not accurately reflect the extent of car-
bonation within the cementitious paste. Therefore, the thermal gravimetric method is used
as the basis to evaluate the capacity of CO2 binding by the blended cement systems [15].
Equation (2) provides an estimation method for the average CO2 content taken by the paste,
which is estimated from the mass loss of each layer. The average binding capacity of the
cement paste is used for the estimation of the total carbon emission by the as-made precast
concrete products.

CO2 (g/100g) =
∑n

i=1(l1 + l2 + . . . + ln)
n

(2)

where l stands for the CO2 from each layer calculated from the mass loss, and the position
of the l is given in Figure 4.

As calculated, the CO2 uptake by the carbonated blended cement is estimated in
Figure 8. The addition of FA significantly increases the content of CO2 taken by the paste
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due to carbonation, whereas the addition of GGBS slightly reduces this effect [49,50]. As
discussed above, although the GGBS consumes calcium hydroxide in the system, it also
decreases the carbonation depth (Figure 5) and reduces the amount of captured carbon.
The carbonated pastes stabilised around 8.90 g of CO2 per 100 g of paste, which increased
to 12.14 by using the 50% FA blends, accounting for a 36.4% increase. Conversely, the 60%
GGBS blends reduced the captured CO2 by around 14.4%, reaching 7.62 g of CO2 per 100 g
of pastes (Figure 10).
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Figure 10. Estimation of CO2 capture capacity by different blended cement based on experimental
observations.

As calculated, the CO2 uptake by the carbonated blended cement is estimated in
Figure 10. The addition of FA significantly increases the content of CO2 taken by the paste
due to carbonation, whereas the addition of GGBS reduced slightly this effect [49,50]. As
discussed above, although the GGBS consumes calcium hydroxide in the system, it also
decreases the carbonation depth (Figure 5) and reduces the amount of captured carbon.
The carbonated pastes stabilised around 8.90 g of CO2 per 100 g of pastes, which increased
to 12.14 by using the 50% FA blends, accounting for a 36.4% increase. Conversely, the 60%
GGBS blends reduced the captured CO2 by around 14.4%, reaching 7.62 g of CO2 per 100 g
of pastes (Figure 10).

3.3. Life Cycle Assessment and Captured Carbon Estimation of FA/GGBS Block

Life cycle assessment (LCA) is a comprehensive method used to evaluate the envi-
ronmental impacts of a product, process, or system throughout its entire life cycle. In the
context of producing paving bricks, the extension of the statement could be considered into
six phases of the life cycle and their implications [51–54]. Figure 11 gives the schematic
of the production of concrete products using the as-proposed mix design given in Table 3.
The details are shown in the following:

Step 1: Raw Material Extraction and Processing: LCA involves assessing the impact
of acquiring raw materials. In the case of paving bricks, this includes sourcing binders,
aggregates (coarse and fine), and other additives. It considers the energy consumption,
water usage, and emissions associated with mining, the transportation of raw materials to
the production site, and their processing [55].

Step 2: Manufacturing Process: This phase involves the actual production of bricks,
including mixing binders, aggregates, and any other additives to create the concrete mix.
The energy consumed during the mixing, moulding, and curing process is considered. In
this scenario, the use of waste CO2 gas for carbonation curing is noteworthy as it could
reduce the carbon footprint compared to traditional curing methods.
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Step 3: Transportation: LCA accounts for the transportation of raw materials to the
manufacturing plant, as well as the distribution of the finished bricks to construction
sites. The distance travelled, the mode of transportation, and fuel consumption impact the
overall assessment.
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Step 4: Carbonation Curing: This step is significant in reducing the carbon foot-
print. Carbonation curing involves using waste CO2 gas to react with the concrete mix,
which leads to the formation of calcium carbonate within the bricks, thereby sequestering
carbon dioxide.

Step 5: Construction Process: The assessment considers the emissions associated
with the construction phase, including the transportation of bricks to the construction
site, on-site activities like laying the bricks, and any additional materials or energy used
during installation.

Step 6: End-of-Life Considerations: LCA might also consider the disposal or reuse of
the paving bricks after their intended life cycle. Whether the bricks are recycled, reused, or
disposed of in landfills affects their overall environmental impact.

As shown in Figure 11, the blended binders are mixed with coarse and fine aggregates
in the plant to produce the bricks, followed by carbonation curing using waste CO2 gas.
The life cycle assessment of the embodied carbon emissions also includes the transporta-
tion and construction process (Figure 11) [56]. The embodied carbon emissions from the
captured CO2 by the bricks made of different blended cements can be calculated based
on the estimation from Equation (2) (as given in Figure 10) with the consideration of the
carbonation depth of the cured bricks (Section 2.3). However, two additional factors need
to be considered, including, firstly, the proportion of pastes in the concrete, which can be
calculated from Equation (3), and secondly, the volume of carbonation can be estimated
from the carbonation depth tested, as seen in Section 2.3.

Vpaste = Vconcrete − Vagg. (3)

where the density of concrete is considered to be 2400 kg/m3; the density of aggregate
is 2710 kg/m3 (limestone aggregate); and the density of water is 1000 kg/m3. Thus, the
volume of paste can be calculated (including the binder, water, and the as-formed capillary
and gel pores). Meanwhile, the density of cement paste is estimated to be 2000 kg/m3,
which can be used to estimate the mass of paste in carbonated concrete.

Vcarbonated = Vbrick − [(a − dcarbonation)× (b − dcarbonation)× (c − dcarbonation)] (4)
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where Vcarbonated is the carbonated volume of concrete, which can be used in conjunction
with Equation (3) to calculate the mass of carbonated paste.

Embodied carbon = total emboided carbon − carbon taken by paste (5)

Figure 12 calculates the embodied carbon emissions based on the methodology given
in Section 3.2 and the process in Figure 11. Naturally, the addition of both GGBS and FA
hugely reduces the carbon emissions from the binder, which gives roughly half of the total
carbon emissions from the PC-concrete (i.e., use CEM I). The addition of 60% GGBS shows
lower carbon emissions when compared to that of 50% FA. However, when considering
the CO2 capture, this situation changes conversely. This demonstrates that the low-activity
SCMs may show a positive effect on the overall carbon emission of concrete products when
using carbon curing technology.
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Figure 12. Embodied carbon emissions by each component (a) without considering carbon capture
(i.e., contributional distribution); (b) with the consideration of carbon capture. The carbon emission
of the PC-concrete reaches 386 kg/m3, whereas the GGBS blends and FA blends reach 190 and
179 kg/m3, respectively.

4. Conclusions

The research thoroughly investigates the complex interplay of carbonation depth in
relation to diverse cementitious materials and additives while calculating their cumulative
embodied carbon emissions. As a result, the following conclusions emerge:

(1) GGBS-blended cement demonstrates reduced carbonation depth via densification,
while higher FA content amplifies depth due to delayed reactions and increased
porosity, emphasising material and additive impacts.
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(2) The UEA expansion agent accelerates early-age carbonation, highlighting the diverse
influences of additives on carbonation depth, crucial for enhancing durability against
carbonation-induced deterioration.

(3) FA blends exhibit increased carbonation due to heightened porosity, contrasting
with the GGBS blends’ decreased depth, attributed to refined pore structures from
secondary reactions.

(4) Thermal analysis confirms higher CO2 uptake in FA blends, highlighting the material
composition’s crucial role in carbonation and emissions mitigation.

(5) The addition of GGBS and FA significantly reduces binder emissions, comprising
nearly half of PC-concrete emissions. While 60% GGBS initially shows lower emissions
than 50% FA, considering CO2 capture alters this dynamic.

The study examines carbonation depth in cementitious materials and additives, high-
lighting GGBS’s ability to reduce depth while FA enhances it due to delayed reactions.
Various additives play a significant role in influencing carbonation, ultimately affecting
material durability. Thermal analysis validates the increased CO2 absorption in FA blends,
vital for mitigating emissions. Incorporating both GGBS and FA notably decreases binder
emissions, yet the emission dynamics change notably when considering CO2 capture.
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