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Abstract: High-density communities have proliferated globally during rapid urbanization. They
are characterized by a high population density and limited per capita public spaces, making them
susceptible to infectious disease risks. The impact of infectious diseases in these communities, as
evident during the COVID-19 pandemic, underscores their vulnerabilities. Yet, research on disease
prevention in high-density areas remains limited. This study aims to investigate the relationship
between the built environment and the transmission of infectious diseases in high-density urban
communities, with a particular focus on the lessons learned during the COVID-19 pandemic. Utiliz-
ing Shenzhen city as a case study, this study collected data on the built environment and epidemic
trends and involved a generalized linear regression analysis, aiming to understand the key built
environment factors that affect epidemic spread in high-density areas. The results from the study
revealed that high-density communities experience higher rates of infectious disease transmission
compared to their medium- to low-density counterparts. The significant factors identified include
land use mixture and walkability, with land use mixture showing the most substantial impact on
infection rates. Through a combination of qualitative analysis and empirical research, we constructed
a conceptual framework linking containment measures, non-pharmaceutical interventions, and the
built environment. The findings emphasize the significance to focus on the health development of
high-density communities and offer valuable insights for tailored urban planning and built environ-
ment design. These insights are crucial for promoting the healthy and sustainable transformation of
existing high-density communities.

Keywords: built environment; high-density community; epidemic infection; healthy; sustainable

1. Introduction

Since the 20th century, cities have been significantly impacted by recurrent outbreaks
of infectious diseases [1]. These recurring global outbreaks underscore the fact that cities
have become epicenters for disease transmission [2]. Infectious diseases such as AIDS,
SARS, HPAI H5N1, and COVID-19 have wrought unprecedented consequences on human
health, social stability, and economic progress [3]. The confluence of urbanization and
globalization has amplified population mobility and substantial migration to urban centers,
creating favorable conditions for the spread of infectious diseases [4,5]. In this context, the
community, as a fundamental unit within cities, plays a pivotal role in pandemic prepared-
ness and response. In the post-pandemic era, urban planning aimed at curbing community
transmission and fostering the development of resilient and healthy communities has
become paramount.
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We conducted a literature search in the WOS core database and retrieved a total of
2616 articles in the field of urban planning from 2020 to 2023. Through a keyword analysis,
we observed a heightened scholarly interest in epidemic outbreaks, including the impact
of community built environment factors on epidemic transmission, particularly in the
context of the COVID-19 pandemic (Figure 1). Built environments (BEs), through encour-
aging close interactions among individuals, the presence of fomites (potential carriers of
infectious agents), and airborne viral exchange, emerge as potential mediums for disease
propagation [6]. Particularly in high-density BEs, intensified human interactions often
lead to increased transmission risks for diseases relying on direct contact and proximity,
such as influenza and tuberculosis [7]. In addition, Central European scholars have also
discussed BIM (Building Information Modeling) technology and related legislative issues
in the context of healthy living environments [8].
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The surge in high-density communities has emerged as an inescapable trend in the
rapid and sustainable global urbanization [9]. The concentration of populations in large
cities and mega-cities stands as a predominant feature of urbanization across Asia, ex-
emplifying high-density BEs as a pivotal aspect of urban development [10]. Before the
epidemic, high-density cities were believed to offer numerous benefits through compact
development [11]. However, this pandemic has severely dampened economic growth [12],
while highly dense and interconnected urban networks have significantly facilitated the
rapid transmission and diffusion of diseases [13]. Notably, areas with high COVID-19
infection rates, both domestically and internationally, such as communal dormitories for
foreign workers in Singapore, the “Dayuan F4” community in Chengdu, urban villages
in Guangzhou, and the Xiangxi community in Shenzhen, share a common trait of ex-
cessive population concentration [14]. Given the recurrent occurrence of epidemics, the
enhancement of community planning and built environment (BE) design within high-
density communities becomes imperative to effectively curtail epidemic transmission,
reduce associated societal and economic costs, and safeguard public health.

The outbreak of the COVID-19 pandemic has notably confined urban residents’ living
spaces, fostering increased reliance on the surrounding built and natural environments [15].
The community’s BEs can exert direct or indirect influences on infectious disease transmis-
sion by altering microclimate conditions or influencing behaviors that impact health [1,16].
Scholars from diverse regions have conducted empirical investigations into the BE fac-
tors affecting epidemic propagation within communities. Nevertheless, the relationship
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between the floor area ratio (FAR), building density (BD), and COVID-19 transmission
remains contentious. Some researchers assert that high FAR and BD values contribute
to higher population densities [17,18] and poor ventilation [13], consequently heighten-
ing the virus exposure risk. Conversely, others posit that stringent Non-Pharmaceutical
Interventions (NPIs) can curtail COVID-19 transmission within high-density communi-
ties [19,20]. For instance, during the COVID-19 pandemic, businesses have adjusted their
recruitment strategies and the nature of new positions in response to the challenges posed
by remote work and the pandemic [21]. Likewise, the correlation between walkability
(WB) and COVID-19 transmission has sparked debate. While certain studies suggest that
high community WB promotes physical activity, thereby reducing infection risk [22,23],
other research underscores the challenge of maintaining social distancing within highly
developed urban areas [24,25]. Various community facilities are closely correlated with
resident behavior and influence epidemic spread. Elevated-density commercial facilities
may lead to overcrowding [19,26], whereas high-density healthcare establishments may
heighten the risk of case clustering during consultations [27–29]. Furthermore, convenient
public transportation can enhance community mobility and consequently elevate exposure
risk [30–32].

Although the specific directional significance of different BE attributes in COVID-
19 infection remains unresolved, the significant role of community BEs in COVID-19
prevention and control is well recognized. Yet, most studies have focused predominantly
on general communities, with limited attention paid to an in-depth analysis of high-density
communities. In such communities, the high population density poses additional challenges
for effective residential management, potentially exacerbated by an excessive FAR, which
can compromise living conditions, reduce the per capita green space, and diminish natural
lighting [33]. Such unique challenges may impact COVID-19 control strategies within
high-density communities.

To realize post-pandemic health-oriented community development, a focused analysis
of high-density communities is imperative. Our primary goal is to comprehend the impact
of the BE within high-density communities on infectious disease transmission, especially
in comparison to low-density communities. Our secondary aim involves exploring the
correlation between BE factors, such as land use and BD, and the spread of epidemics,
while evaluating their potential implications for public health.

This study, based on a review of the literature on epidemics and BEs, presents a frame-
work for BE elements that are integral to community epidemic prevention. Using Shenzhen
city as a study case, we utilize a combination of spatial analysis in various dimensions and
quantitative calculations to compare high-density communities with regular communities.
Through the application of Generalized Linear Models (GLMs), we quantitatively assess the
differences in the BE factors that may affect epidemic transmission between high-density
and general communities.

We hypothesize that specific BE factors within high-density communities exhibit a
significant correlation with the transmission of infectious diseases, potentially resulting in
higher infection rates. In conclusion, this research integrates its findings into an analytical
framework that encompasses containment measures, NPI, and various pathways involving
the BE. The results of this study offer valuable guidance and technical support for the
development of new high-density communities and the improvement of existing ones.
This research contributes to enhancing the preparedness and control measures against
unforeseen public health events.

2. Methods

In the analysis of COVID-19 infection within communities, it is crucial to recognize
the multifaceted nature of the BE and its potential impact. Focusing solely on a single
level of BE analysis when assessing its influence on COVID-19 infection in communities
may lead to biased and incomplete findings, overlooking localized and specific factors. To
address this issue, our study initially conducted a statistical analysis of existing empirical
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research to identify key indicators of the BE that may influence the transmission of the
virus within communities. To further investigate the relationship between these indicators
and community infection rates, we conducted a preliminary correlation analysis in the
typical high-density city of Shenzhen. However, it is essential to note that this pairwise
correlation analysis does not account for potential interactions between variables. To
address this limitation, all relevant variables will be further incorporated into a GLM.
This will allow us to separately examine the effects of multiple independent variables
on the dependent variable, both at the scales of ordinary communities and high-density
communities. Furthermore, we will utilize the significance test results (p-values) and
standardization coefficients (β) of independent variables to assess the importance of each
indicator in influencing the community’s epidemic spread.

2.1. Index Selection

Table 1 presents the results of 21 empirical studies examining the relationship between
the BE and epidemics in general communities, with investigated indicators classified
according to the five “5D” elements of the BE [34].

Table 1. Built environment factors influencing the prevention and control of new crown pneumonia
outbreaks in the community.

Authors
Density Diversity Design Destination Accessibility Distance

to Transit

BD FAR LUM RD WB OD D_cf D_h D_gs D_pt

Behram Wali [35] - - +
Shakil Bin Kashem et al. [36] + - - 0

Quynh C. Nguyen [25] +
Tianming Zheng [20] - - + + +

Wu Li et al. [32] + - + - +
Xin Huang [37] + + + -

Tribby and Hartmann [22] - 0
Niu et al. [38] + + + - +

Credit [28] - +
Guo, Yu and Zhang [23] - -

Asfour [39] +
DiMaggio [40] +
Rahman [27] 0 + +

Yong Xu et al. [41] + + + +
Bo Li et al. [31] + + +
Emre Tepe [42] +

Zerun Liu et al. [43] - - + -
Jingwei Wang [19] - + - -

Eric Gaisie [44] + +
Kate H. Choi [45] - +

Dennis Schmiege [46] - -

The direction of association was coded as ‘+’, ‘-’, or ‘0’; ‘+’ indicates a statistically significant positive association,
while ‘-’ represents a statistically significant negative association, and ‘0’ indicates no significant association.

Based on previous reviews, a characteristic of the BE is considered to have strong
evidence if the number of positive/negative associations is greater than or equal to the
sum of its negative/positive or inconclusive associations [47]. The table shows that there is
strong evidence of a positive association between virus infection risk and BD, open design
(OD), densities of commercial facilities (D_cf), densities of hospitals (D_h), and densities of
public transportation (D_pt). Negative associations with infection risk were found for FAR,
land use mixture (LUM), and WB. The evidence for associations of infection risk with other
BE factors (e.g., road density and densities of green space) was weak. Notably, scholars
have identified that BD, LUM, WB, D_cf, D_h, and D_pt are significantly associated with
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COVID-19 infection, and thus, they were selected as the six major BE factors to be further
investigated regarding their impacts on COVID-19 infections in high-density communities.

To accurately model and interpret the data, the COVID-19 incidence rate defined as
the ratio of COVID-19 cases to the total population of the community was chosen as the
dependent variable in this study. This variable was selected due to its ability to consider
the population base of each community, and thus, it provides a more precise measure of
the probability of infection occurring within a specific population. In terms of independent
variables, the study considers various BE indicators, including BD, LUM, WB, D_cf, D_h,
and D_pt.

2.2. Theoretical Overview

Within communities, the transmission dynamics of many infectious diseases are
intricately linked to human mobility patterns and social interactions, which are factors that
are intimately tied to the characteristics of the BE [11]. The BE elements are associated with
the features of epidemic transmission, affecting transmission rates through ventilation and
congregation dynamics [48,49]. Concurrently, community BE plays a role in controlling
infection sources (like home isolation), cutting transmission routes (such as community
closures), and offering relief and treatment options [50].

Notably, indoor airborne transmission significantly contributes to COVID-19 infec-
tions, especially in congested and poorly ventilated environments [51]. Key elements
within the built environment—such as healthcare facilities, retail spaces, cultural hubs,
green areas, and transportation networks—serve as pivotal areas for intervening in public
spaces, impacting congregation and necessitating focus when devising epidemic prevention
strategies [52]. The quantity and scale of these elements can shape congregation dynamics,
warranting specific attention to be paid to prevention strategies. Vital preventive measures
like physical distancing and population lockdowns remain pivotal [53].

COVID-19 transmission can occur via airborne means or direct/indirect contact within
built environments, intricately entangled with human behavior, thus influencing epidemic
prevention and control strategies [54]. Our research focuses on analyzing the BE factors
influencing epidemic transmission within high-density communities and combining spatial
intervention measures to chart the trajectory of health-oriented development in such areas.

2.3. Research Region and Data Sources

Large cities typically pose a higher risk for the transmission of infectious diseases
due to the following characteristics: high population density, diversity in residents’ health
statuses, frequent interpersonal interactions, and a high level of population mobility [55].
Therefore, this study focused on Shenzhen, which was chosen as a representative case due
to its high population density and rapid urbanization. Shenzhen is situated in the south-
eastern coastal region of Guangdong Province, China and is adjacent to Hong Kong. This
vibrant city is divided into 9 districts, encompassing 74 sub-district offices and 677 com-
munities (Figure 2), covering a total area of 1997.47 km2 with a resident population of
17,681,600 [56]. The city’s extensive urbanization has led to the creation of numerous high-
density community units, as evidenced by a growing trend in this direction [57]. Notably,
Shenzhen’s communities exhibit a distinct dual status characterized by a juxtaposition
of urban villages and modern residential buildings, exemplifying typical traits of high
population density, a substantial influx of migrants, and a youthful demographic profile.

From 26 February to 16 September 2022, data collected from the Shenzhen Government
Data Open Platform revealed 2128 confirmed indigenous COVID-19 cases [58]. Demo-
graphic information on local communities was retrieved from official sub-district office
websites [59], facilitating the computation of the incidence of COVID-19 per community.
The BE data used were gathered from the collection and processing of multivariate big data
and vectorized grid maps. Our data extraction strategy included obtaining various Points
of Interest (POIs) and Areas of Interest (AOIs) data from Baidu Maps, building outline
and height data from Gaud map data, road data from the OpenStreetMap database, and
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community boundary data from the Shenzhen Municipal Planning and Natural Resources
Bureau’s Shenzhen City Map (Outline Version III).
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2.4. Statistical Analyzing

To investigate the impacts of these BE factors on COVID-19 infection rates, we em-
ployed a three-step statistical analysis (Figure 3). First, we cleaned the case data and
obtained data for 311 infected communities in Shenzhen, including the incidence rates,
through spatial processing using ArcGIS. Next, we processed the collected BE data, result-
ing in 6 BE indicators. In the third step, we used the qcc.overdispersion.test function in R
language to perform an Equi dispersion test on the dependent variable [60], and the results
indicate that the distribution of COVID-19 infections within the community is excessively
dispersed, and multiple factors within the BE can potentially influence their spread. For
our initial analysis, we performed Pearson and Spearman correlation analyses to identify
the built environmental influences on epidemic spread in communities. Subsequently,
we assessed multicollinearity using variance inflation factors (VIFs). Finally, we utilized
Generalized Linear Models (GLMs), including the Poisson model (PM), negative binomial
model (NBM), and zero-truncated models (ZTM), as they are better suited for modeling
discrete data.

2.4.1. Calculation of Indicators

Six indicators were selected as independent variables in the present study: BD, LUM,
WB, D_cf, D_h, and D_pt. The measurement methods for these BE indicators are outlined
in Table 2.

In terms of BD, we obtained Shenzhen’s building outline data from Baidu Maps and
calculated the BD for each community by dividing the base area of community buildings
by the community’s land area.

In terms of LUM, it can be measured using the entropy index, with values ranging
from 0 to 1. When the proportions of different land uses within the study unit are equal,
the index is 1 [61]. We obtained AOI (Area of Interest) data for Shenzhen from Baidu Maps
to examine the degree of mixture of eight land uses within each community’s boundaries:
residential; commercial and office; commercial shopping; scientific, educational, cultural
and health; public green space; industrial; transportation; and other land uses.

In terms of WB, we obtained data from OpenStreetMap, including 1024 pedestrian
and bicycle lanes within the confirmed communities. These data provided information on
road categories, road lengths, and geographic locations. WB was calculated as the length of
pedestrian and bicycle lanes within the community divided by the community’s area.
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In terms of facility accessibility, research has shown that the more public service
facilities per unit area, the closer the facilities, indicating higher accessibility [17,36]. In
this study, we obtained POI data for confirmed communities in Shenzhen from Baidu
Maps, including 150,514 commercial facilities, 3773 medical facilities, and 3529 public
transportation stops. Accessibility was measured as the number of facilities per square
kilometer within each community’s boundaries.

Table 2. Built environment metrics used in this study.

Indicator Name Formula Description Data Source

BD BD = BA
CA

BD represents the building density,
BA represents the base area of the

community building, and CA
represents the footprint of

the community.

BA: Shenzhen’s building outline
data from Baidu Maps; CA:

Shenzhen Municipal Planning and
Natural Resources Bureau’s

Shenzhen City Map (Out-line
Version III)

LUM LUM = −∑ pkln(pk) ln(N)

pk represents the percentage of
sites within K in each community,
and N is the number of site types

in the community.

AOI: Area of Interest data for
Shenzhen from Baidu Maps; N: the

number of AOI types

WB WB = Lfw+Lcw
CA

The width of sidewalk/bicycle
lane is assumed to be normal. Lfw

represents the length of the
sidewalk in the community, Lcw
represents the length of the bike
lane in the community, and CA

represents the footprint of
the community.

The width of sidewalk/bicycle
lane: obtained data

from OpenStreetMap



Buildings 2024, 14, 103 8 of 19

Table 2. Cont.

Indicator Name Formula Description Data Source

D_cf D_cf = Nc f
CA

Ncf represents the number of
commercial facilities in the

community, and CA represents the
footprint of the community.

POI data obtained from Baidu
Maps, including 150,514

commercial facilities, 3773 medical
facilities, and 3529 public

transportation stops

D_h D_h = Ns
CA

Nh represents the number of
medical facilities in the community,
and CA represents the footprint of

the community.

D_pt D_pt = Nps
CA

Nps represents the number of
public transportation stops in the

community, and CA represents the
footprint of the community.

2.4.2. Correlation Analysis

The Pearson correlation coefficient, also known as the Pearson product moment
correlation coefficient, is the most widely used measure of correlation in statistical analysis.
It assesses the degree of linear association between two variables, X and Y, assuming that
both variables are normally distributed. For binary or other non-normally distributed data,
Spearman’s correlation analysis is a preferred method, as it employs monotonic functions
to evaluate the correlation without relying on the overall distribution or sample size of the
data and is less sensitive to outliers. However, the disadvantage of Spearman’s method is its
lower efficiency compared to Pearson’s method. Therefore, it is recommended to consider
both Pearson’s and Spearman’s coefficients, considering the nature and distribution of
the data.

The formula for the Spearman correlation coefficient is as follows (1):

r =
∑
(
X − X

)(
Y − Y

)√
∑
(
X − X

)2
∑
(
Y − Y

)2
(1)

Here, X and Y are the values of the two variables, and X and Y represent their
respective means.

The formula for the Spearman correlation coefficient is as follows (2):

ρ = 1 − 6∑ d2

n(n2 − 1)
(2)

where d represents the differences between ranks, and n is the number of data points.

2.4.3. Regression Analysis

The GLM is an extension of the general linear model that allows us to create regression
models for various types of response variables, including count, binary, proportions, and
positive-valued continuous distributions. The GLM equation encompasses this flexibility
and can be expressed as follows (3):

g{E(y)} = LP = a + b1x1 + b2x2 + · · · bpxp (3)

where g{} represents a linear function of the regressors, E(Y) represents the expected value,
LP indicates the linear predictive value, a is the constant of the regression equation, x1, . . .,
xp represent the p environmental variables, and b1, . . ., bp are the p regression coefficients.

The Poisson distribution is the most commonly used approach for modeling count
data, and it represents a special case of the GLM framework that requires the mean and
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variance to be equal [23]. However, in real-world scenarios, data can be overly discrete.
For this reason, NBM is better suited for such cases and can result in improved fitting [62].
In the NBM, the variance is assumed to be a quadratic function of the mean [63]. Since
we collected communities with COVID-19 infections, where the IR is not zero, the ZTM
was used to model count data where the value of zero cannot be observed and if there
is evidence of overdispersion [64]. The effectiveness of our model was assessed using
four indicators: deviance, AIC value, AICc value, and BIC. A model with lower AIC and
AICc values is considered to be better fitted when the difference between the AIC and
AICc values of two models is more than or equal to 3 [65]. The statistical analyses were
performed using R software (V.4.0.4), with the MASS and pscl packages employed.

3. Results
3.1. Spatial Patterns of COVID-19 Infections and BEs in Shenzhen Communities

We performed a spatial analysis of the 2128 COVID-19 cases, using ArcGIS software
to visualize their distribution across 341 communities in Shenzhen (Figure 4). Among
these, the Futian District recorded the highest cumulative number of cases, with 1091 cases,
representing 51.2% of the total. Following closely were the Luohu District and Nanshan
District, with 241 (11.3%) and 292 cases (13.7%), respectively, primarily concentrated in
the southwestern region of Shenzhen. On the other hand, the Dapeng New District and
Guangming District each reported only three cumulative cases, while Pingshan District
had just two cases, ranking them as the top three districts with the most effective epidemic
control. These districts are situated in the eastern and northwestern areas of Shenzhen. To
gain a more comprehensive insight into the distribution of infection cases, we conducted
COVID-19 kernel density analyses based on both population and area in the ArcGIS soft-
ware (refer to Figure 4b,c). The distribution patterns revealed overall consistency with
the spatial distribution of case numbers. Hotspots remained concentrated in the Futian
District, Luohu District, and Nanshan District. However, when considering the popula-
tion density, the Nanshan District exhibited a notably higher infection rate. Conversely,
coldspots were identified in the western areas, particularly in the Dapeng New District and
Pingshan District.
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Figure 4. Distribution of locally confirmed cases in Shenzhen communities. (a) COVID-19 cases in
communities; (b) COVID-19 cases per 10,000 people in communities; (c) COVID-19 cases per square
kilometer in communities.

Furthermore, we conducted an in-depth exploration of the spatial distribution of BEs
in the infected communities of Shenzhen, encompassing parameters such as population
density, FAR, BD, LUM, WB, D_h, D_cf, and D_pt (Figure 5). The spatial distribution
analysis of the BE factors yielded several significant findings. Firstly, all hotspots for the
distribution of BEs were concentrated in the Futian District, Luohu District, and Nanshan
District, whereas coldspots were evident in the Dapeng New District and Pingshan District.
Secondly, we observed significant variations in the kernel density distribution of medical
facilities, commercial facilities, and transportation hubs. These factors exhibited distinct
spatial patterns, reflecting their varied concentrations and accessibility across the city.
Thirdly, when considering LUM and WB, we found them to exhibit intermediate patterns
in their spatial distributions. These factors were less concentrated in the central districts
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(Futian, Luohu, and Nanshan) compared to medical facilities, commercial establishments,
and transportation hubs. Lastly, the population density, FAR, and BD demonstrated a
relatively smaller presence and a more uniform distribution across the city.

Buildings 2024, 14, x FOR PEER REVIEW 11 of 21 
 

 

Figure 5. Spatial distribution of BEs in eight types of communities ((a) population density; (b) floor 

area ratio; (c) building density; (d) land use mixture; (e) walkability; (f) medical facilities; (g) com-

mercial facilities; (h) public transportation). 

It is imperative to acknowledge that while our spatial analysis has unveiled these 

distinctive patterns, there remains a critical need for additional quantitative investigations 

to elucidate the intricate relationships between infection rates and these specific BEs. This 

essential next step will yield a more refined comprehension of how the community BEs 

may influence the transmission of infectious diseases, including COVID-19. Subsequently, 

the insights gained from such analyses can serve as valuable guidance for the formulation 

of precise urban planning strategies and informed public health interventions. 

3.2. Relationship between the Community Epidemic Incidence and Built Environment 

Following the exclusion of communities with incomplete data, our analysis focused 

on 311 case communities. This paper used a correlation analysis to determine the BEs that 
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area ratio; (c) building density; (d) land use mixture; (e) walkability; (f) medical facilities; (g) commer-
cial facilities; (h) public transportation).

It is imperative to acknowledge that while our spatial analysis has unveiled these
distinctive patterns, there remains a critical need for additional quantitative investigations
to elucidate the intricate relationships between infection rates and these specific BEs. This
essential next step will yield a more refined comprehension of how the community BEs
may influence the transmission of infectious diseases, including COVID-19. Subsequently,
the insights gained from such analyses can serve as valuable guidance for the formulation
of precise urban planning strategies and informed public health interventions.
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3.2. Relationship between the Community Epidemic Incidence and Built Environment

Following the exclusion of communities with incomplete data, our analysis focused
on 311 case communities. This paper used a correlation analysis to determine the BEs that
influence community COVID-19 infection. Table 3 shows the descriptive statistical results
of the indicators of the community’s BEs. The correlations between community COVID-19
incidence and six explanatory variables were determined using Pearson and Spearman
correlation coefficients before conducting specific regression modeling. In general, we
found large differences in the associations between the variables and COVID-19 in the
community, with a range of 0.03–0.26, indicating that different BEs differed significantly in
the importance of the impact of the epidemic (Figure 6).

Table 3. Descriptive statistical analysis of built environment factors and correlation coefficient statistics.

Variable
Descriptive Statistics Pearson Spearman Collinearity

Mean Std. Dev. Coef. p-Value Coef. p-Value VIF 1/VIF

BD 0.199 0.097 0.1048 * 0.0650 0.1412 ** 0.0127 1.24 0.807
LUM 0.570 0.293 −0.1033 * 0.0689 −0.0318 0.5758 1.01 0.989
WB 2.860 4.594 0.1512 *** 0.0076 0.2430 *** <0.001 1.05 0.948
D_cf 529.794 641.605 0.0658 0.2476 0.1375 ** 0.0152 1.95 0.513
D_h 14.350 16.053 0.0968 * 0.0885 0.1934 *** <0.001 1.99 0.503
D_pt 10.607 9.940 0.0916 0.1067 0.1009 * 0.0755 1.48 0.675

* p < 0.1; ** p < 0.05; *** p < 0.01.
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The selection of the α critical value in hypothesis testing should be based on the
specific context. Normally, values such as α = 0.01, 0.05, or 0.1 are used, corresponding
to probabilities of correctly accepting the null hypothesis at 99%, 95%, or 90%, respec-
tively [66]. Our Pearson and Spearman correlation analyses identified three environmen-
tal factors that were significantly associated with community morbidity: WB (p < 0.01),
D_h (p < 0.1), and BD (p < 0.1). However, three other factors, specifically LUM (Ppear-
son < 0.1, Pspearman = 0.5758), D_cf (Ppearson = 0.2476, Pspearman < 0.05), and D_pt
(Ppearson = 0.1067, Pspearman < 0.1), displayed different levels of association with com-
munity morbidity between the two correlation analyses. To avoid any issues of excessive
multicollinearity among the six selected explanatory variables, we employed the variance
inflation factor (VIF) test, which did not reveal concerns of collinearity (VIF < 10) [67].
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The results of our correlation analysis indicated that the significance of the BEs we
examined with regard to COVID-19 infection varied, which may be attributed to the distri-
bution characteristics of the data. To enhance the accuracy of our analysis, we employed
various methods and compared the fitting effects of different models.

3.3. GLM Regression Results for General Communities

In this study, we conducted PM, NBM, and ZTNBM regression analyses on a sample
of 311 communities. Table 4 presents the results of our regression analyses regarding
BEs that influence community epidemic transmission. The Negative Binomial_F model
demonstrated a higher level of explanation, as evidenced by the lower values of the
Deviance, AIC, AICc, and BIC, respectively. Our findings suggest that three indicators
were significantly and positively associated with community epidemic transmission, which
were BD, WB, and D_h, while LUM was negatively associated. The regression coefficients
revealed that the impact of BD (1.685) on community epidemic transmission was the most
significant, while the impact of D_h (0.012) was found to be the least significant. WB (0.055)
and LUM (−0.738) instead exhibited moderate impacts.

Table 4. GLM regression results for general communities.

Variable
Poisson_F Negative Binomial_F Zero Truncated nb_F

Estimate S.E. p Estimate S.E. p Estimate S.E. p

Intercept 3.100 *** 0.033 <0.001 0.701 *** 0.204 <0.001 2.781 *** 0.252 <0.001
BD 1.671 *** 0.122 <0.001 1.685 ** 0.766 0.027 1.846 ** 0.916 0.044
WB 0.044 *** 0.002 <0.001 0.055 *** 0.014 <0.001 0.064 *** 0.021 0.002

LUM −0.739 *** 0.036 <0.001 −0.738 *** 0.229 0.001 −0.767 *** 0.264 0.004
D_h 0.012 *** 0.001 <0.001 0.012 ** 0.006 0.029 0.013 * 0.007 0.052
D_cf −0.000 ** 0.000 0.032 −0.000 0.000 0.664 −0.000 0.000 0.533
D_pt −0.005 *** 0.001 <0.001 0.000 0.008 0.970 0.002 0.009 0.817

Deviance 13,972.62 370.603 2573.4
AIC 15,343.665 1323.309 2589.388
AICc 15,344.035 1323.786 2589.865
BIC 15,369.844 1353.227 2619.306

* p < 0.1; ** p < 0.05; *** p < 0.01.

3.4. GLM Regression Results for High-Density Communities

We initiated a group analysis on the processed data, dividing communities with
COVID-19 cases into three categories based on the FAR (Figure 7): high-density, medium-
density, and low-density communities. The results indicate that high-density communities
exhibit significantly higher values for average case numbers, average incidence rates, and
cumulative diagnosis densities compared to medium- and low-density communities, with
the disparities being twice as large. These findings strongly emphasize the substantially
elevated risk of epidemic infection in high-density communities, highlighting the critical
need for focused attention in this regard.

We conducted a regression analysis on the group of 103 high-density communities
obtained after grouping, and the results of this analysis are presented in Table 5. Among
the three models, PM_H has the highest deviance, AIC, AICc, and BIC values. Therefore,
PM_H is initially excluded. The AIC, AICc, and BIC are designed to balance the goodness
of fit and complexity of the models, penalizing model complexity to prevent overfitting.
In the comparison between NBM_H and ZTNBM_H, NBM_H exhibits significantly lower
deviance than ZTNBM_H, indicating its superiority in fitting the data. AIC, AICc, and BIC
are slightly higher for NBM_H compared to ZTNBM_H, suggesting that NBM_H may be
more complex; hence, NBM_H is selected. This led us to conclude that LUM (p = 0.009)
and WB (p = 0.047) displayed high levels of significance. Specifically, LUM demonstrates a
significant negative correlation, while WB shows a positive correlation with the absolute
value of the correlation coefficient, as the LUM value is greater than that for WB.
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Table 5. GLM regression results for high-density communities.

Variable
Poisson_H Negative Binomial_H Zero Truncated nb_H

Estimate S.E. p Estimate S.E. p Estimate S.E. p

Intercept 4.250 *** 0.069 <0.001 3.873 *** 0.506 <0.001 3.797 *** 0.492 <0.001
BD 0.530 ** 0.225 0.018 1.072 1.511 0.489 1.123 1.784 0.529
WB 0.039 *** 0.002 <0.001 0.039 ** 0.020 0.047 0.041 0.025 0.105

LUM −1.140 *** 0.049 <0.001 −1.010 *** 0.347 0.004 −1.066 *** 0.412 0.009
D_h 0.000 0.000 0.904 0.001 0.001 0.466 0.006 0.008 0.478
D_cf 0.000 0.000 0.330 0.000 0.000 0.878 0.000 0.000 0.835
D_pt −0.016 *** 0.001 <0.001 −0.014 0.010 0.167 −0.014 0.011 0.197

Deviance 7582.157 118.576 950
AIC 8091.276 977.801 965.963
AICc 8092.455 979.333 967.495
BIC 8109.719 998.879 987.041

* p < 0.1; ** p < 0.05; *** p < 0.01.

4. Discussion
4.1. Analysis of Shenzhen’s Epidemic Distribution Patterns and BE Characteristics

By combining the epidemic distribution characteristics in Shenzhen (Figure 4) with the
spatial distribution of FAR (Figure 5b), we observed that regions with severe outbreaks often
corresponded to areas with a high FAR. Furthermore, by quantifying the infection rates in
communities of different densities, we found that high-density communities had infection
rates more than twice as high as those in medium- and low-density communities (Figure 7).
This underscores the significant risks associated with high-density communities during
epidemic outbreaks, highlighting the need for focused attention in epidemic prevention
and control management as well as in health planning.

The spatial distribution of BE factors in Shenzhen also reveals the distinctiveness of
its high-density areas (Figure 5). Specifically, the analysis reveals that central urban areas,
characterized by a high population density and intensified urban development, exhibit a
more substantial presence of various BE elements. These encompass critical components
such as medical facilities, commercial establishments, and transportation hubs. What is
particularly noteworthy is the pronounced disparities observed between hotspots and
coldspots across these categories. This disparity underscores a key point: specific elements
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of the BE, including healthcare infrastructure, commercial amenities, and transportation
networks, tend to be disproportionately concentrated in high-density communities, making
high-density communities more conducive to prevention and control efforts to some extent.

4.2. Built Environment Factors Affecting COVID-19 Cases in High-Density Communities

High-density BEs are characterized by several key features, including spatial high-
intensity development, three-dimensional transportation organization, high-density multi-
functionality, frequent population interactions, interwoven underground spatial networks,
and challenging outdoor physical conditions [10]. These attributes have substantially
exacerbated the spread and diffusion of diseases due to the highly concentrated population
and interconnected urban networks associated with high-density BEs.

Our study identified LUM and WB as the most significant BEs impacting COVID-19
infection rates in high-density communities, which is consistent with the sign of the corre-
lation analysis results. However, several other factors, including BD, D_cf, D_h, and D_pt,
which exhibited significant correlations in the correlation analysis, did not demonstrate
substantial effects in the regression analysis. This inconsistency can be attributed to the
difference between the correlation analysis, which evaluates the relationship between two
variables, and the regression model, which considers the interplay among independent
variables.

Interestingly, our analysis revealed a positive correlation between WB and COVID-
19 infection rates at the high-density community level. This finding is consistent with
a study conducted on COVID-19 infection rates in communities across 20 states in the
United States [25]. This suggests that enforcing social distancing measures may be more
challenging in densely developed urban areas. Conversely, other research has indicated
that pedestrian-oriented streets are associated with lower mortality and hospitalization
rates [22,68]. This could be because high walkability encourages physical activity, enhances
residents’ physical fitness, and thereby reduces the likelihood of infection.

In contrast, LUM exhibited a negative correlation with COVID-19 infection rates,
aligning with the findings of the majority of the existing research [38,69]. A higher degree of
LUM implies a better spatial proximity of urban services and diverse functions that cater to
residents’ needs. This results in reduced travel distances and less frequent travel, ultimately
lowering the risk of infection due to reduced exposure to traffic-related contagion. The
LUM may exert a more significant influence than walkability, as it impacts both travel mode
and distance [70]. It increases the probability of the origin and the destination of travelers
being within the same vicinity, meeting residents’ daily needs during the epidemic, and
minimizing non-commuting interactions across communities. In comparison to walkability,
it may also decrease residents’ likelihood of visiting high-risk areas.

4.3. Comparative Analysis between High-Density Communities and General Communities

The emphasis on maintaining social distancing has emerged as a crucial intervention
measure in the prevention of infectious diseases. In China, high-density communities
characterized by high floor area ratios have gained prominence as land-saving urban lay-
outs. However, they may not always facilitate effective ventilation and can present certain
transmission risks, making them susceptible to disease spread [13]. Our analysis revealed
that high-density communities exhibited the highest risk of COVID-19 infection when com-
pared to general communities. In general communities, the key BEs influencing COVID-19
cases included BD, WB, LUM, and D_h. Remarkably, the LUM and WB were significantly
associated with COVID-19 cases in both high-density and general communities.

Furthermore, our regression analyses, conducted separately for high-density and
general communities, highlighted significant disparities in the impact of various indicators.
Notably, BD and D_h lost their significance in high-density communities. These indicators
exhibited consistent high values in high-density communities, with minimal variations
and no discernible impact on epidemic transmission. These findings underscore the
necessity for tailored planning and design strategies based on the density level of the
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communities in question. To further extend this discussion, it is essential to consider the
broader implications of these findings. High-density communities, which are prevalent in
rapidly urbanizing regions, present a unique challenge in disease transmission management.
While they often offer benefits in terms of efficient land use, reduced commute times, and
proximity to urban amenities, they also entail greater population density and complexity.
Therefore, mitigating the transmission risks within high-density communities requires
multifaceted strategies.

4.4. Guidance on the Built Environment Design of High-Density Communities

In the context of high-density communities, the discussion around the design of the BE
takes on critical significance. Spatial interventions have been a cornerstone in achieving ef-
fective epidemic containment, encompassing strategies aimed at isolating infection sources,
disrupting transmission pathways, and safeguarding vulnerable populations [71,72]. The
conceptual framework, as depicted in Figure 8, illustrates the intricate interplay between
containment measures, NPIs, and the BEs of communities. An analyzation of the epidemic
prevention process reveals that infection sources primarily originate from residents with
transmission capabilities, who subsequently construct transmission chains within their
living areas [52].
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When considering the isolation of infection sources, it becomes evident that grassroots
health service institutions within communities play a pivotal role. These institutions are
responsible for swift infection testing within the community and the implementation of
isolation measures for confirmed cases. The adequacy of medical facility infrastructure,
to a certain extent, influences a community’s ability to quarantine and isolate individuals
affected by novel viruses [73]. Concurrently, NPIs like traffic restrictions, community
lockdowns, and the closure of public spaces emerge as indispensable measures. These
restrictions limit population movement, both within and beyond the community, effectively
reducing the risk of epidemic transmission. In the realm of safeguarding susceptible popu-
lations, several measures have proven vital. These include promoting proper ventilation to
mitigate aerosol-based infections, encouraging physical activity to enhance overall physical
fitness, and providing a diverse array of public facilities within the community to meet
residents’ daily needs. In high-density communities, optimizing the layout and accessibility
of these facilities becomes particularly critical.

Furthermore, the consideration of the LUM and WB takes center stage when designing
high-density communities. In essence, communities characterized by a higher degree of
LUM are strategically designed to minimize travel distances for their inhabitants. This
reduced need for travel results in fewer interactions, ultimately decreasing the risk of
infection associated with traffic exposure. Conversely, WB, although generally associated
with higher COVID-19 infection rates in high-density communities, requires nuanced
consideration. While promoting physical activity through walkability to enhance residents’
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physical fitness, planners should consider widening sidewalks or establishing multiple
square nodes to increase space and avoid crowding.

Our findings provide new insights and guidance for designing high-density commu-
nities and controlling COVID-19 in existing ones. These insights offer valuable guidance
for the future development of high-density urban areas, emphasizing the importance of
creating resilient, health-conscious environments that are prepared to confront and mitigate
the challenges posed by infectious diseases.

5. Conclusions

As urbanization continues to accelerate, with high-density urban areas proliferating
rapidly, it becomes increasingly imperative for urban planners and policymakers to ac-
knowledge and address the vulnerabilities that are inherent in the built environment. This
study underscores the significant influence of the BE on infectious disease transmission,
particularly in high-density communities. Our research, focusing on the emblematic high-
density city of Shenzhen, selected six key BE indicators based on the statistical analyses
of existing research conclusions. By examining 311 infected communities in Shenzhen
and categorizing 103 high-density communities, we combined spatial and quantitative
analyses of epidemic infections and BE factors to unravel the extent of the outbreak and the
characteristics of the BE elements in high-density communities.

Our findings unequivocally demonstrate a stark contrast between high-density areas
and medium- to low-density communities. High-density areas exhibited significantly
higher case numbers, incidence rates, and diagnosis density, indicating a heightened risk of
epidemic infections. Through a correlation analysis and GLM models, specific BE factors
affecting high-density and general communities were identified. In general communities,
BD, WB, and D_h were positively correlated, with BD being the most influential. In high-
density communities, LUM showed a negative correlation, while WB exhibited a positive
correlation, with LUM being the most influential factor. To address the unique challenges
of epidemic prevention in high-density areas, our study proposes a comprehensive con-
ceptual framework integrating containment measures, NPIs, and the BE. This framework
emphasizes isolating infectious cases, disrupting transmission pathways, and safeguarding
vulnerable populations. Our regression analysis emphasizes the critical role of prioritizing
land use and walkability in the planning of new or refurbished high-density communities.

This research offers practical implications for enhancing epidemic prevention and
control in high-density urban areas, facilitating tailored urban planning and BE design
and the healthy and sustainable transformation of existing high-density communities. It is
essential to note that the findings and recommendations of this study are specific to the
context of the studied region, and their applicability to other geographical locations may
vary due to differing socio-economic, cultural, and environmental factors. Future research
directions may include delving into the mechanisms of epidemic transmission, considering
occupant behavior in diverse climate regions, and examining the resident population
composition within communities to achieve a more comprehensive understanding of the
factors affecting epidemic transmission.
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