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Abstract: The construction industry plays a vital role in the urbanization process and global economy,
and there is a growing interest in utilizing artificial intelligence (AI) technologies to improve sustain-
ability, productivity, and efficiency. However, there is a lack of comprehensive analysis regarding the
progression of AI in the construction context, particularly from the sustainability angle. This study
aims to fill this gap by conducting a scientometric analysis of AI research in construction by focusing
on historical clusters, emerging trends, research clusters, and the correlation between sustainability
pillars and key project stages. A Scopus search, between January 2000 and July 2023, was conducted
that used 25 construction industry-related keywords, resulting in a total of 9564 publications. After
evaluating practical AI applications in construction, 3710 publications were selected for further
analysis using VOSviewer for visual diagrams and to further understand connections and patterns
between literature. The findings revealed that: (a) Literature on AI in construction has experienced
steady growth over the past two decades; (b) Machine learning, deep learning, and big data are seen
as the key enabling digital technologies in the construction sector’s performance; (c) Economic and
governance pillars of sustainability exhibit the highest potential for AI adoption; (d) Design and
construction phases demonstrate substantial advantages for AI adoption; (e) AI technologies have
become, despite adoption challenges, a strong driver of construction industry modernization, and;
(f) By incorporating AI, the construction industry can advance towards a more sustainable future by
consolidating its processes and practices.

Keywords: urbanization; artificial intelligence; construction technologies; construction phases;
Industry 4.0; sustainability; machine learning; deep learning; robotics

1. Introduction and Background

In our increasingly urbanizing world, the construction industry is not only vital for the
development of cities but also for the global economy, accounting for approximately 13%
of the world’s gross domestic product (GDP) [1]. This estimate is based on a combination
of economic data, industry reports, and various sources of information to estimate the
percentage. Despite its urbanization and economic significance, the industry faces a range
of challenges that undermine productivity and efficiency, including cost overruns, project
delays, and quality issues. This is evident in a Mckinsey 2020 report that indicated that
large construction projects tend to exceed their schedules by 20% and exceed their budgets
by 80% [1]. This is compounded by a lack of digitalization, and the manual nature of
the industry makes projects more complex and tedious [2]. To combat these challenges
and transform the construction sector, particularly in a sustainable way, the integration of
artificial intelligence (AI) has emerged as a promising solution [2–4].

The widely accepted definition of AI states that “AI is the study of how to make
machines do things, which at the moment, people do better” [5]. However, the industry
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has experienced sluggish productivity growth, falling behind other sectors with an annual
rate of only 1% over the past two decades [6,7]. This slow growth can be attributed to
inherent characteristics of the industry, such as cyclical demand, limited capital investment,
and a lack of standardization. Furthermore, the industry’s inadequate investment in
construction innovation and the prevalence of small, specialized subcontractors with
limited technological advancements have hindered the widespread adoption of automation
and constrained its overall growth potential [7–9]. This is apparent in a recent study
conducted by KPMG that indicated only 8% of construction companies are identified as
highly innovative, with the remaining 92% categorized as moderate or low innovators [4].

The history of AI in construction dates back several decades, with the concept evolving
alongside advancements in technology and computing power [10]. In the initial phases
of AI integration in construction, three significant applications emerged. First, AI opti-
mizes project schedules and planning for enhanced efficiency. Second, AI-enhanced risk
management identifies and mitigates potential issues proactively. Finally, AI’s precise cost
estimation helps prevent budget overruns, contributing to improved financial control [5,11].

The application of AI in construction involves the use of intelligent machines and
programs that mimic human cognitive functions, such as learning, problem-solving, and
decision-making. Furthermore, the major components of AI include leaning, knowledge
representation, perception, planning, action, and communication [5]. In the early stages,
AI in construction focused primarily on automation, aiming to enhance efficiency and
productivity on construction sites [12]. As computing power increased and data analy-
sis capabilities improved, the concept of AI expanded to include machine learning and
data-driven decision-making. Machine-learning algorithms allow systems to analyze large
amounts of data, recognize patterns, and make predictions or recommendations based
on past experiences [13]. This capability has been applied to various aspects of construc-
tion, including project planning, design optimization, risk management, and resource
allocation [14,15].

In recent years, AI in construction has further evolved around the following major
subfields; machine learning, computer vision, natural language processing, knowledge-
based systems, optimization, robotics, and automated planning and scheduling [5,16].
These emerging technologies have enabled real-time data collection, optimized decision-
making, and improved project management [17,18]. Today, deep learning, a subset of AI
has gained significant attention in the construction industry due to its potential to address
complex technical challenges. It involves training artificial neural networks with multiple
layers to learn patterns and make accurate predictions based on large datasets [13,19,20].
Deep learning offers a crucial advantage to the construction industry as it gives the ability to
process intricate data, allowing for informed decisions, improved efficiency, and enhanced
project outcomes [2]. Furthermore, by analyzing data, deep learning models can predict
hazards, identify defects, optimize scheduling, and enhance design decisions. Overall,
deep learning has the potential to revolutionize construction processes [10,21,22].

AI continues to emerge as a powerful tool to tackle productivity challenges in the
construction industry and drive improvements in performance, efficiency, and innova-
tion [7,23]. By simulating human cognitive functions, AI technologies offer opportunities
to transform business models within construction [24,25]. Through AI adoption, construc-
tion operators can optimize resource allocation, automate tasks to address skill shortages
and unlock higher levels of productivity and efficiency [26]. Nonetheless, the practical
implementation of AI in construction faces several obstacles. One key challenge is the need
for accurate and comprehensive data to train AI algorithms, which can be costly and time-
consuming for many construction companies [27]. The dynamic outdoor environmental
conditions and the non-standardized nature of building designs pose further complexities
in effectively applying AI. As a result, while larger construction companies may reap
some benefits from AI technologies, there remains a lack of widespread knowledge and
established frameworks within the industry. This has led to ongoing debates regarding the
future of the construction workforce and the potential impact of AI on jobs [8,28].
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Although there have been numerous studies examining the application of AI in con-
struction, it is important to note that many of these studies have been limited in their scope.
These include small sample sizes, theoretical focus, limited long-term analysis, data quality
issues, and concerns about bias. Addressing these constraints through interdisciplinary
research is essential to gain a comprehensive understanding of AI’s potential in construc-
tion. They have focused on specific aspects of AI implementation in construction, often
neglecting to comprehensively review research clusters related to the four pillars of sustain-
ability and the different stages of construction projects [11]. Sustainability in construction
involves creating built environments that meet present needs without compromising the
ability of future generations to meet their own needs. It combines environmental responsi-
bility, social equity, economic viability, and responsible governance to create balanced and
positive outcomes for society and the environment [28]. The four pillars of sustainability
are the following.

• Economic sustainability: The ability of construction projects to create long-term eco-
nomic value while considering the needs of both present and future generations. It
involves ensuring the financial viability of construction projects, promoting fair trade
practices, supporting local economies, and optimizing resource allocation [5]. This
pillar emphasizes the importance of cost-effectiveness, profitability, and the long-term
economic benefits derived from sustainable construction practices [29,30].

• Social sustainability: Meeting the needs and improving the quality of life for individuals
and communities affected by construction projects. It encompasses factors such as so-
cial equity, inclusivity, health, safety, and well-being. Socially sustainable construction
practices involve providing safe working conditions, promoting diversity and equal
opportunities, respecting local cultures and traditions, and enhancing community
engagement throughout the project lifecycle [28].

• Environmental sustainability: Minimizing the negative impact of construction activities on
the natural environment. It involves practices that conserve resources, reduce pollution,
promote energy efficiency, and mitigate climate change [31]. Examples include using
renewable energy sources, employing sustainable construction materials, reducing waste
generation, and implementing effective water and land management strategies [32].

• Governance sustainability: Promoting transparency, accountability, and ethical decision-
making in construction projects. It emphasizes the importance of effective governance
structures, policies, and regulations to ensure compliance with environmental, social,
and economic standards. This pillar focuses on promoting responsible practices, pre-
venting corruption, establishing clear frameworks for decision-making, and fostering
collaboration between stakeholders to achieve sustainable outcomes [33].

The use of AI is evident across all four pillars and plays a vital role in achieving sus-
tainability. Economically, AI leverages historical data for precise cost estimates, optimized
resource allocation, and waste reduction [34]. Socially, AI’s predominant applications lie in
safety monitoring, community engagement, and workforce development, fostering safer
sites, inclusive feedback analysis, and efficient training [5]. Environmentally, AI optimizes
energy use, promotes sustainability, and reduces waste through consumption analysis,
improved systems, material evaluation, and waste reduction efforts [34]. In governance,
AI ensures compliance, transparency, and oversight by monitoring data for regulations,
enhancing accountability, and refining project management and risk mitigation [22].

Each of these pillars plays a crucial role in ensuring sustainable construction prac-
tices. However, previous studies often tend to focus on a subset of these dimensions or
overlook their interconnectedness [2]. By taking a holistic approach and considering all
four pillars, a more comprehensive understanding of the potential impact of AI on sustain-
able construction can be achieved. Additionally, construction projects consist of various
phases, including planning, design, construction, and operation and maintenance. Each
phase presents unique challenges and opportunities for implementing AI. However, many
studies have focused on specific phases or failed to consider the entire project lifecycle.
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Understanding the potential of AI across all phases of construction is vital for developing
effective strategies and harnessing its full potential [29,35].

This study adopts a scientometric approach to analyze scholarly research published
in the last two decades. It aims to bridge gaps in the existing literature by conducting a
comprehensive analysis that encompasses the four pillars of sustainability and considers
the complete lifecycle of construction projects. The study has the objectives to uncover
historical and emerging trends, identify research clusters, and present a summary of influ-
ential authors, publications, countries, universities, and publishing sources in the domain
of AI in construction. The primary contribution of this research lies in improving our under-
standing of the potential opportunities and challenges associated with AI in construction
and providing practical insights for its application from commencement to completion of a
project. Overcoming AI implementation challenges in construction involves education and
training for professionals, collaboration with experts, and robust data management. Regu-
latory frameworks should also be established to ensure ethical deployment. These solutions
enable effective AI adoption and innovation in the industry. By undertaking such research,
the construction industry can develop more robust frameworks and strategies to effectively
leverage the capabilities of AI and achieve sustainable and efficient construction practices.

Following this introduction, the paper is organized as follows. Section 2 outlines the
research methodology employed in the study. Section 3 presents the results that cover
a range of aspects including general observations, academic influence analysis, research
clusters in AI in construction literature, historical clusters, and emerging trends in AI
research specific to construction and, along with the analysis findings of research trends
and clusters, considers both the four pillars of sustainability and the four construction
phases (planning, design, construction, and operation and maintenance). Section 4 offers
a detailed discussion of the results, providing insights and interpretations. Section 5
concludes the paper.

2. Methodology

This study undertakes a scientometric analysis of existing AI and construction lit-
erature to address the following research questions: (a) What are the different areas of
focus in AI in construction research? (b) What are the historical clusters, emerging trends,
research clusters, and the correlation between sustainability pillars and project phases
in AI in construction? With the guidance of the key literature—e.g., [36–38]—and using
scientometric techniques, the study creates a knowledge connection map that visually
represents qualitative data and helps to provide a clearer understanding of the research
clusters [39]. This approach can provide valuable insights and a deeper understanding of
the topic under investigation [40].

An extensive literature review was conducted to identify the existing applications of
AI in the construction industry. The primary database search was performed on Scopus
and was then validated by data from other databased such as the Institute of Electrical and
Electronics Engineers (IEEE), Association for Computing Machinery (ACM), and Science
Direct were used for validation. These databases were selected for their collection of
high-impact publications in construction, engineering, and computer science. Scopus,
being the largest citation database was chosen as the primary data source, while the others
were utilized for downloading full articles and validating the data. Furthermore, Scopus
provides the added advantage of allowing files to be exported in multiple formats that are
compatible with mainstream scientometric analysis software—e.g., VOSviewer 1.6.19.

The search was performed using 25 keywords of the subfields and the construction in-
dustry: (“Artificial Intelligence*” OR “AI”) AND (“Construction Industry” OR “Building”)
AND (“Sustainable” OR “Sustainability”) OR “Urban Environment” OR “Construction
Projects” OR “Automation” OR “Machine Learning” OR “Deep Learning” OR “Robotics”
OR “Industry 4.0” OR “Building 4.0” OR “Urban Development” OR “AI Application” OR
“Construction Projects” OR “Green Buildings” OR “Building Information Modeling” OR
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“BIM” OR “Smart Cities” OR “Smart Buildings” OR “Technology” OR “Lifecycle” OR
“Civil Construction” using advanced search to achieve the focus of this study.

The search task of literature data was conducted in July 2023 by covering the pub-
lication between 1 January 2000 to 8 July 2023—covering over two decades of publi-
cations on the topic. Excluding the small number of publications with information
absence—i.e., undefined document type and authors—the search resulted in selected a
total of 9564 publications from Scopus repositories, including conference papers, articles,
conference reviews, book chapters, and gray literature. It is noted that journal papers are
extended, structured pieces published in journals, while a conference paper is a concise,
focused work presented at conferences. After extracting the papers from the database, they
were carefully checked for completeness and screened to remove any publications that did
not meet the inclusion criteria. The primary criteria for inclusion in this study were articles
that described or evaluated practical applications of AI subfields and techniques in the
construction industry, based on information from the abstract, title, or full-text article when
needed. Data extracted from each article included the application area in construction, the
methodology/techniques used, and the findings.

As a result of this screening process, a final selection of 3710 publications was considered
relevant and included for further investigation. From these screened papers, the publications
were sorted based on the author keywords and abstract into the four pillars of sustainability,
namely: (a) economic; (b) social; (c) environmental; and (d) governance, as well as into different
project phases, such as: (a) planning; (b) design; (c) construction; and (d) operation and
maintenance. After the search task was completed, full records of the resulting publications,
including citation and bibliographical information, abstracts, keywords, funding details,
and other relevant data were exported in CSV format. This format was chosen to ensure
compatibility with the selected data analysis software, namely VOSviewer [3].

VOSviewer is a widely used software tool designed to visualize and analyze biblio-
metric networks. Allowing researchers to comprehend intricate relationships and trends
within the extensive scholarly literature. By processing bibliographic data encompassing
publication records, citations, and keywords, VOSviewer creates visual representations that
unveil connections and patterns among different elements in the dataset [3]. It achieves this
by constructing networks of nodes (authors, keywords, journals) and edges (co-citation or
co-occurrence relationships), arranging them in the visualization space based on their asso-
ciations. This interactive visual map facilitates the identification of key authors, influential
papers, collaboration trends, and emerging research areas [4]. VOSviewer has become a
popular tool for scientometric research in various fields, including thermal comfort and
building control [41], sustainable urban development [42], circularity in construction [43],
autonomous vehicles [44], and smart homes [45]—just to name a few. In this study, VOSviewer
was used to analyze AI in construction literature and create a range of visual diagrams, such
as co-authorship network maps, citation-based network maps, and co-occurrence network
maps, to help visualize and qualitatively analyze the literature data [39].

To ensure the reliability and validity of the analysis, repeated validations of the
results were conducted, including duplicate screening of initial data, retesting of the
software, and random selective tests of outputs. Scientometric analysis, while valuable
for assessing research trends and patterns, comes with inherent limitations that should
be considered [40]. One significant constraint is its heavy reliance on bibliometric data,
primarily citations and publication counts. Such data might not provide a comprehensive
picture of research quality, impact, or context. Another limitation is not accounting for
qualitative aspects of research [41]. Consequently, this may lead to the inclusion of studies
that have garnered citations due to factors other than their genuine impact or contributions.
Lastly, scientometric analysis focuses on academic impacts and may overlook non-academic
impacts un which have significant real-world implications or application. In essence,
these limitations can lead to a distorted view of research trends, impact, and relevance.
To mitigate these effects, it is crucial to acknowledge these limitations and complement
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scientometric analyses with qualitative evaluations and a broader consideration of research
context and influence [2].

3. Results
3.1. General Observations

The dataset used in this study consisted of 3710 scholarly publications published
between 1 January 2000 and 8 July 2023. These publications were sourced from 148 countries
and involved 9567 authors, 1214 organizations, and 937 publishing sources (Table 1).

Table 1. Statistical information on the data.

Domain Specifics

Data source Scopus bibliographic repository
Covered period From 1 January 2000 to 8 July 2023
Number of publications 3710
Covered country contexts 148
Number of authors 9567
Number of universities 1214
Number of publishing sources 937

Number of papers in each sustainability pillar

Economic: 1973 (53.2%)
Environmental: 430 (11.6%)
Social: 462 (112.4%)
Governance: 845 (22.8%)

Number of papers in each project stage

Design: 1161 (31.3%)
Panning: 876 (23.6%)
Construction: 1366 (36.8%)
Operation and maintenance: 307 (8.3%)

As seen in Figure 1, the amount of AI in construction-related publications increased
over time, where exponential growth was observed from 2019 (n = 347) and almost doubled
in 2021 (n = 640). The number of publications between 2018 to 2023 accounts for 75.1%
of the total publications in the database. The surge in interest surrounding AI in the
construction sector is the result of a convergence of influential factors in recent years.
Technological advancements, particularly in machine learning and deep learning, have
unlocked more sophisticated applications for construction. This progress aligns with
the increasing availability of data generated throughout the project lifecycle, offering
a foundation for AI-driven insights. Notably, AI’s capacity to enhance cost and time
efficiency, mitigate risks through predictive analytics, and address labor shortages has
increased attention. The complexity of modern projects, coupled with client demand for
innovative solutions, has positioned AI to manage intricacies effectively. Moreover, the
success of AI in other industries, government initiatives, research developments, and the
pursuit of competitive advantages have collectively propelled the construction industry’s
embrace of AI as a transformative tool for advancement [33].

The construction industry has been grappling with the challenge of meeting higher
productivity demands, leading to a significant research focus on optimization within the
field of AI [5]. In recent years, machine learning has emerged as the primary area of interest,
surpassing knowledge-based systems due to its adaptability to dynamic data and predictive
capabilities. Unlike knowledge-based systems, machine learning handles complex scenarios
effectively, and its adaptability suits construction’s variable conditions [1]. This is evident
as machine learning has demonstrated success in practical application areas such as project
scheduling, cost estimation, and predictive maintenance. Although knowledge-based
systems have benefits, machine learning’s versatility with diverse construction data makes
it a more promising choice for practical use on a construction site. Conversely, natural
language processing (NLP) has received limited attention over the past decade compared
to other AI subfields. Challenges in understanding construction-specific language and a
historical focus on quantitative methods could explain this disparity [45]. Despite this, there
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is potential for NLP to provide insights in areas like text mining and sentiment analysis for
construction project documents and communications. As the field evolves, NLP might find
a more significant role in construction research.
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The main types of selected publications are conference papers (47.8%) and articles
(38.7%). Other gray literature such as reviews, book chapters, and others only account
for 4% of the total number of publications (Figure 2). The major subject areas of selected
publication are Engineering (n = 44.9%), Computer Science (n = 24.1%) and Mathematics
(5.6%) (Figure 3). USA (n = 1791), China (n = 1289), and India (n = 794) are the top three
productive countries, which, respectively, account for 39.9%, 28.7%, and 17.7% of the total
publications (Figure 4). Despite excelling in AI across various sectors, Japan’s absence
from the top 10 AI research publishers in construction could stem from its broader AI
focus, including robotics, electronics, and manufacturing. The construction sector’s distinct
challenges might have influenced Japan’s research distribution despite its AI leadership.
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Based on the literature selected for AI in construction, Shuangyu Wei, Yacine Rezqui,
and Paige Wenbin Tien emerge as the three most productive authors, with contributions
of 2.2%, 2%, and 2%, respectively. Interestingly, these three authors are affiliated with the
University of Nottingham and Cardiff University, which are based in England. Furthermore,
these three authors’ specific focus and expertise are in building technology and informatics.
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Notably, among the top 10 most productive authors, there are from England and China
and two are from Canada. For a comprehensive list of the top 10 most productive authors,
their affiliated universities, and their respective contribution shares, refer to Table 2.

Table 2. Top-10 most published authors.

Rank Author Affiliation Country Count Share

1 Suangyu Wei University of Nottingham England 10 2.23%
2 Yacine Rezqui Cardiff University England 9 2.01%
3 Paige Wenbin Tien University of Nottingham England 9 2.01%
4 Min-YuanCheng National Taiwan University China 8 1.79%
5 Bruno Bouchard University of Quebec Canada 7 1.56%
6 Calautit Kaiser University of Nottingham China 7 1.56%
7 Albert Chan Hong Kong Polytechnic University China 7 1.56%
8 Chimay Anumba, University of Johannesburg South Africa 6 1.34%
9 Mehrdad Arashpour Monash University Australia 6 1.34%
10 Abdenour Bououance University du Quebec Canada 6 1.34%

Among the top institutions, Hong Kong Polytechnic University from China leads
with the highest contribution at (n = 34), followed by Politecnico di Milano from Italy at
(n = 30), and Nanyang Technological University from Singapore and the Chinese Academy
of Sciences both at (n = 28) as seen in Table 3. This demonstrates that various countries
are actively participating in advancing AI technologies in construction. Furthermore, this
global collaboration indicates a growing interest in leveraging AI’s potential to enhance
various aspects of construction, leading to innovative solutions and increased efficiency in
the industry.

Table 3. Top-10 most published universities.

Rank University Country Count Share

1 Hong Kong Polytechnic University China 43 0.96%
2 Politecnico di Milano Italy 30 0.67%
3 Nanyang Technological University Singapore 28 0.63%
4 Chinese Academy of Sciences China 28 0.63%
5 Tsinghua University China 27 0.60%
6 Carnegie Institute of technology USA 27 0.60%
7 Georgia Institute of Technology USA 26 0.58%
8 National Taiwan University China 25 0.56%
9 Politecnico di Torino Italy 24 0.54%
10 University of Florida USA 24 0.54%

Prominently, Advances in Intelligent Systems and Computing stands out as the leading
source, with 161 publications, representing 3.59% of the total publications in this paper
(Table 4). This source focuses on research related to intelligent systems and computing,
covering areas such as artificial intelligence, machine learning, robotics, and advanced
computational techniques. Following closely is IEEE Access, a prominent journal with
114 publications, making up 2.54% of the overall output. Third, automation in construction
published 79 papers, representing 1.76% of the total papers used in this paper. These
three prolific publishing sources collectively highlight the strong research landscape in
this field, as shown by their respective h-indices of 58, 204, and 157, respectively. Other
journals, such as Automation in Construction (n = 79), Energy and Building (n = 67), Sensors
(n = 65), and Energies (n = 58), demonstrate significant contributions to AI research in the
construction domain.
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Table 4. Top-10 publication outlets.

Rank Publishing Source Subject Area Type Count Citations H-Index Share

1
Advances in
Intelligent systems
and Computing

Computer Science and
Engineering Book Series 161 525 58 3.59%

2 IEEE Access Computer Science, Engineering,
and Materials Science Journal 114 2237 204 2.54%

3 Automation in
Construction Engineering Journal 79 4197 157 1.76%

4 Energy and Building Engineering Journal 67 3986 214 1.49%

5 Sensors Computer Science and
Engineering Journal 65 371 219 1.45%

6 Energies Energy and Engineering Journal 58 791 132 1.29%

7 Building and
Environment

Engineering, Environmental
Science, and Social Science Journal 41 1589 189 0.92%

8 Journal of Building
Engineering Engineering Journal 33 765 129 0.74%

9

Journal of
Construction
Engineering and
Management

Business, Management and
Accounting and Engineering Journal 32 942 189 0.71%

10 Sustainable Cities
and Society

Energy, Engineering,
and Social Science Journal 27 1249 103 0.60%

Most of the publishing sources (n = 6) focus on specific engineering disciplines. This
indicates a strong emphasis on applying AI in various engineering within the construction
industry. Computer science and engineering is also a prominent subject area (n = 3), which
indicates a significant interest in utilizing AI technologies in computer science and engineer-
ing applications related to construction. Lastly, subject areas such as Environmental Science,
social science, energy, and social science are represented by single publishing sources. This
indicates a growing trend of integrating AI with broader social and environmental aspects
of construction and urban planning.

3.2. Academic Influence Analysis
3.2.1. Citation Analysis by Publication

As shown in Table 5, Boje et al.’s (2020) [46] review paper examines the impact of
digital technologies on the AEC sector, focusing on design, construction, and operation
processes. It highlights the role of sensor networks, semantic models, and engineering
system simulation in enhancing efficiency and minimizing lifecycle impacts. The study
also introduces the concept of a Construction Digital Twin and identifies areas for future
research. Overall, it underscores the transformative potential of digital technologies in
achieving sustainable and efficient construction practices.

Ranked second among the top-10 most cited publications is Pan et al.’s (2019) [39]
paper on the roles of artificial intelligence in construction engineering and management.
This publication explores the rapid digital transformation of construction engineering
and management (CEM) due to extensive AI adoption. It presents a systematic review,
revealing the surge in relevant papers and highlighting six key research topics leveraging
AI advantages in CEM. Additionally, it outlines six promising directions for future research
to further enhance automation and intelligence in the field. Overall, the paper provides
valuable insights into AI’s transformative impact on CEM.

Golparvar-Far et al. (2011) [22] present an automated approach for tracking and visu-
alizing as-built progress in construction using unordered daily photographs and building
information models (BIMs). The system utilizes structure-from-motion, Multiview stereo,
and machine-learning techniques to achieve accurate and efficient progress monitoring,
making it a significant advancement in the field. Experimental results demonstrate its
potential for transformative impact in construction project management.
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Table 5 displays the top 10 highly cited research publications, including information
on the authors, year of publication, research focus, and citation count. The results reveal
that the most influential publications primarily center on technology algorithms and the
practical implementation of AI in construction sites. Out of the research focus areas, BIM,
Construction Safety, Machine Learning, and Automation were each mentioned twice, while
the other research keywords were mentioned once. This analysis highlights the diversity of
research focus areas in the field of AI in construction, ranging from specific technologies
and applications (e.g., BIM, 3D reconstruction) to broader concepts and methodologies
(e.g., Digital Transformation and Machine Learning).

Table 5. Top-10 most cited publications.

Rank Publication Title Author Research Focus Year Citation

1 Towards a semantic Construction Digital
Twin: Directions for future research

Boje C.; Guerriero A.;
Kubicki S.; Rezgui Y.

Big data, BIM, and
construction safety. 2020 359

2

Roles of artificial intelligence in
construction engineering and
management: A critical review
and future trends

Pan Y.; Zhang L. Construction engineering
and management. 2019 269

3

Automated progress monitoring using
unordered daily construction
photographs and IFC-based building
information models

Golparvar-Fard M.;
Peña-Mora F.; Savarese S.

3D reconstruction,
Automation, and
Computer vision.

2011 250

4
A review of rotorcraft unmanned aerial
vehicle (UAV) developments and
applications in civil engineering

Liu P.; Chen A.Y.;
Huang Y.N.; Han J.Y.;
Lai J.S.; Kang S.C.; Wu
T.H.; Wen M.C.; Tsai M.H.

Image processing and
analysis and Unmanned
aerial vehicle.

2014 248

5
An Internet of Things-enabled BIM
platform for on-site assembly services in
prefabricated construction

Li C.Z.; Xue F.; Li X.;
Hong J.; Shen G.Q.

BIM, Decision-support
system, Internet of Things,
and Prefabricated
construction.

2018 235

6
Artificial intelligence in the AEC
industry: Scientometric analysis and
visualization of research activities

Darko A.; Chan A.P.C.;
Adabre M.A.; Edwards
D.J.; Hosseini M.R.;
Ameyaw E.E.

Automation, Digital
transformation, Industry 4.0,
and Machine intelligence.

2020 214

7 Application of machine learning to
construction injury prediction

Tixier A.J.P.; Hallowell
M.R.; Rajagopalan B.;
Bowman D.

Construction safety,
Machine learning,
Predictive modeling,
and Random Forest.

2016 192

8 Smartphone-based construction workers’
activity recognition and classification

Akhavian R.; Behzadan
A.H.

Machine learning,
Neural networks, and
Smartphone sensors.

2016 172

9
Developing a Digital Twin at Building
and City Levels: Case Study of West
Cambridge Campus

Lu Q.; Parlikad A.K.;
Woodall P.; Don
Ranasinghe G.; Xie X.;
Liang Z.; Konstantinou E.;
Heaton J.; Schooling J.

Asset management, Digital
twin (DT), and Operation
and maintenance (O&M).

2020 159

10
Predicting concrete compressive strength
using hybrid ensembling of surrogate
machine-learning models

Asteris P.G.; Skentou A.D.;
Bardhan A.; Samui P.;
Pilakoutas K.

Hybrid modeling
and Soft computing. 2021 157

3.2.2. Citation Analysis by University

According to Table 6, universities from the USA and China dominate the list (n = 7),
with Carnegie Institute of Technology and National Taiwan University holding the top
two positions, respectively. Nanyang Technological University from Singapore ranks third.
Notably, Hong Kong Polytechnic University, also from China, holds the fourth position and
has the highest number of documents published (n = 43), indicating significant research
impact. Universities from Italy, such as Politecnico di Milano and Politecnico di Torino, are
also represented in the top 10, showcasing their contributions to the research in the given
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field. These findings suggest that the USA and China have made a significant contribution
to the research on AI in construction and have exerted a substantial influence on research
in other countries. In addition, the inclusion of Italian universities (n = 2) further adds to
the international collaboration and research efforts in AI in construction.

Table 6. Top-10 most cited universities.

Rank University Country Count Citations Share

1 Carnegie Institute of technology USA 27 1282 0.60%
2 National Taiwan University China 25 1259 0.56%
3 Nanyang Technological University Singapore 28 1235 0.63%
4 Hong Kong Polytechnic University China 43 1135 0.96%
5 Georgia Institute of Technology USA 26 1031 0.58%
6 Tsinghua University China 27 673 0.60%
7 Chinese Academy of Sciences China 28 556 0.63%
8 University of Florida USA 24 318 0.54%
9 Politecnico di Milano Italy 30 242 0.67%
10 Politecnico di Torino Italy 24 194 0.54%

3.2.3. Citation Analysis by Country

Table 7 presents a comparison of the top 10 most cited countries in AI in construction
research in terms of citations, total link strength, and publication year. The USA emerges
are the most influential country with a significantly higher citation count than any other
country. England and China are ranked second and third, respectively, with similar citation
numbers. The total link strength indicates the strength of a country’s academic relationships
with other countries. For instance, China has a total link strength of 284, which signifies a
wider academic network (in terms of citation) with other countries compared to Germany
(n = 142). Figure 5 illustrates the citation network by country, where each circle denotes a
country, and the size of the circles indicates the citation count of that country’s publications.
The line between each circle signifies the academic relationship between pairs of countries,
and a shorter line implies a closer academic relationship. The color of the circles indicates
the scientific communities to which they belong, with countries belonging to the same
community being deeply connected in terms of citation [3].

Table 7. Top-10 most cited countries.

Rank Country Citation Totally Strength Year

1 USA 17,143 343 2014
2 England 10,971 291 2016
3 China 9289 284 2019
4 Italy 4062 151 2011
5 India 3311 129 2022
6 Australia 3202 111 2019
7 Germany 2870 142 2018
8 Taiwan 2608 23 2017
9 South Korea 2604 65 2018
10 Spain 2590 130 2017
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Based on the citation network visualized in Figure 5, it can be discerned that the top
three highly cited countries are from different citation communities but are closely inter-
linked through citations. Additionally, the citation communities comprising the network
do not show any discernible regional patterns, such as being from the same continent.
These observations imply that over the past two decades, research on AI in construction
has not been dominated by any subject or group, and academia globally has sustained
a level of interest and scholarly exchange in this area. These findings have significant
implications for researchers, policymakers, and industry practitioners, as they suggest
that AI in construction is a topic of interest for the academic community worldwide, and
international collaboration is crucial for advancing the field.

Figure 6 depicts a citation network map visualizing the publication year by country
in the field of AI in construction, which is an emerging area of research. The color-coded
circles on the map represent the chronological order of the average publication year, with
darker colors indicating earlier years and lighter colors representing more recent years. The
network map analysis reveals the USA as the primary contributor to the field, showcasing
a significant research presence and laying the groundwork for future studies. Notably,
India has exhibited a considerable and noteworthy enhancement in its contributions in
recent times, demonstrating promising advancements in the field. These findings offer
valuable insights for researchers, policymakers, and industry practitioners, providing a
comprehensive view of the global trends and the evolving landscape of AI applications
in the construction sector. Understanding the key players and emerging contributors can
help stakeholders make informed decisions and foster collaborations to further advance
the integration of AI technologies in construction practices.
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3.3. Research Clusters of AI in the Construction Literature

Referring to Figure 7, by utilizing frequency and link strength analysis of 8165 extracted
keywords from AI in the construction database. The keywords were then filtered to meet a
minimum threshold of five occurrences, resulting in a total of 260 keywords. The analysis
identified six distinct clusters in the existing AI in construction research. The following
outlines these clusters:

• Cluster 1 (Automation): Using technology to automate repetitive tasks and improve
efficiency and safety.

• Cluster 2 (Big data): Analyzing large volumes of data to improve decision-making.
• Cluster 3 (Digital twin): Creation of a virtual replica of a physical asset such as a building

or infrastructure project, allowing for optimized designs and improved collaboration
between stakeholders.

• Cluster 4 (Deep learning): Uses artificial neural networks to analyze data and make
predictions in construction, including quality control for materials such as concrete
and steel.

• Cluster 5 (Machine learning): Using data and algorithms to make predictions and
identify hazards.

• Cluster 6 (Information systems): Software and hardware used to manage and process
project data.

• Cluster 7 (Simulation): Using software to model materials, structures, and construction
processes to identify potential issues before construction begins.
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The research clusters network map presented in Figure 7 exhibits valuable insights
regarding the relationships and interactions between the various research clusters. Each
circle within the map represents a distinct keyword, and its size is proportional to its
frequency of occurrence, while the color reflects its research cluster affiliation. The proximity
of the circles to each other indicates the strength of correlation and similarity between the
corresponding keywords.

The network map reveals several noteworthy findings, including Clusters 1 and 5
are located centrally within the network, serving as pivotal points for connecting various
clusters. Additionally, the high degree of overlap between Clusters 2 and 3 suggests a close
interconnection between these two clusters. Furthermore, the circles within Clusters 4, 5,
and 7 display an assortment of colors from different clusters, indicative of their diverse and
extensive connections with other clusters. Conversely, Cluster 1 appears to be relatively
independent in its distribution, signifying weaker connections with other clusters. These
clusters provide a comprehensive overview of the relationships and interdependencies
between various research clusters, allowing for deeper insights into the underlying patterns
and connections within the research domain.

Table 8 provides a list of the top-10 occurrence keywords and shows the average
publication year, occurrences, link, total link strength, and subordinate clusters. The list ex-
cludes the search keywords and other alternative keywords—e.g., “Artificial Intelligence”,
“Construction”, and “Modeling”. A set of exclusion criteria can reduce the redundancy on
the list and help identify the research trends of AI in construction research, i.e., identify the
specific research clusters or extended research orientations. The most frequent keyword
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“Machine Learning” has the strongest total link strength, indicating that machine learning
has emerged in construction and has been the most popular trend that has attracted signif-
icant interest from various universities and researchers. Three of the top-10 occurrences
keywords (the 1st, 3rd, and 9th ranked keywords) are categorized as Cluster 5. The sum
of the total link strength of these 3 keywords ranks first on the list (n = 557) from the total
list of (n = 1140). This shows that existing AI in construction research has kept a strong
connection with Machine learning. Furthermore, no keywords categorized to Cluster 6
are on the list, which means that Information Systems clusters are not a popular extended
research orientation for AI in construction research.

Table 8. Top-10 occurrence keywords.

Rank Keyword Occurrences Total Strength Year Cluster

1 Machine Learning 238 410 2019 5
2 Deep Learning 68 120 2021 4
3 Neural Networks 47 98 2017 5
4 Big Data 60 94 2019 3
5 Internet of Things 42 92 2020 2
6 Decision-Support Systems 72 89 2014 1
7 Digital Twin 26 72 2021 2
8 Automation 25 67 2015 4
9 Computer Vision 28 49 2017 5
10 Fuzzy Logic 30 49 2012 7

3.4. Historical Research Clusters of AI in the Construction Research

This subsection identifies historical research-based keyword occurrences on a density
map in the context of AI in construction. The keyword selection process excluded redundant
keywords and alternative keywords to provide a more explicit understanding of the specific
research clusters and extended research orientation of AI in construction.

The outputs are interpreted as follows: First, on the density map of 2000–2005, the
keywords of Clusters 1 and 6 are distributed in the areas as seen in Figure 8a. These
keywords are closely linked to each other, which assemble the largest aggregation on the
map. On the other hand, the keyword for Cluster 7 is in an area relatively far away from the
aggregation of Clusters 1 and 6, having a weak connection with them. In this period, the
most frequent keyword is from Cluster 1 (n = 7) and occupies most of the top-10 occurrence
keyword list. The remaining keywords on the list are from Clusters 6 and 7 as seen
in Table 9.

Second, on the density map of 2006 to 2011, the largest aggregation is composed of
Cluster 3 (Big Data) and Cluster 7 (Simulation) (Figure 8b). Furthermore, some keywords
from Clusters 3 and 5 first appear on the map with higher density, i.e., neural networks,
data mining, and machine learning. In this period, Cluster 1 (n = 4), Cluster 2 (n = 1),
Cluster 3 (n = 1), Cluster 5 (n = 1), and Cluster 7 (n = 3) occupy the top-10 occurrence
keywords list as seen in Table 9.

Thirdly, on the density map of 2012 to 2017, the keyword of Cluster 5 appears to be
the most predominant research cluster as seen in Figure 8c. The keywords of Cluster 7
(Simulation) form a separate and individual aggregation. So far, five clusters are displayed
on the density map: Cluster 1 (n = 4), Cluster 3 (n = 1), Cluster 5 (n = 2), Cluster 6 (n = 1),
and Cluster 7 (n = 2).

Finally, on the density map of 2016 to 2023, the keyword density distribution is
completely different from previous layouts (Figure 8d) as it presents a spreading layout
with keywords of Clusters 4 and 5. This is the first appearance of Clusters 2 and 4 with
higher density and are in close aggregation with Cluster 5. Furthermore, Clusters 1, 6, and
7 are diminishing in aggregation and are being replaced with Clusters 4 and 5. The results
of keyword occurrence density (by period) revealed that:

• The earliest research clusters in AI in construction were Automation (Cluster 1) and
Information systems (Cluster 6), which laid the groundwork for the field.
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• Simulation (Cluster 7) was the first extended research orientation of AI in construction,
but it had a relatively weak link to other clusters.

• The earliest research clusters that started to reduce the aggregation of Clusters 6 and 7
were Machine learning (Cluster 5) and big data (Cluster 3).

• Automation (Cluster 1) has been the most popular extended research orientation of AI
in construction over the past two decades (2000 to 2023).

• Deep learning (Cluster 4) has recently emerged as a significant cluster in AI in con-
struction, driven by advances in technology from Digital twin (Cluster 2) and big data
(Cluster 3). It has strong links with other relevant research clusters. In the past 6 years,
Deep learning (Cluster 4) has replaced Automation (Cluster 1) and Information systems
(Cluster 6) as the most popular cluster in AI in construction (excluding AI).
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Table 9. Top 10 keyword occurrences per 5-year period.

Occurrence per Period Ranks per Period

Cluster Keyword 2000–2005 2006–2010 2011–2015 2016–2023 2000–2005 2006–2010 2011–2015 2016–2023

7 Fuzzy Logic 6 7 9 - 1 4 7 -
7 Simulation 6 9 - - 2 3 - -
5 Neural Networks 5 11 8 - 3 2 6 -

1 Decision-Support
Systems 4 37 57 18 4 1 1 1

7 Genetic Algorithms 4 4 9 - 5 7 4 -
2 Reinforced Learning 2 - - - 7 - - -
6 Image Processing 2 - - - 8 - - -

3 Building Information
Systems - 3 10 - - 10 3 -

3 Data Mining 2 7 4 - 9 5 5 -
1 Automation - 3 - - - 8 - -
5 Machine Learning 3 3 37 195 6 9 2 2
4 Deep Learning - - - 66 - - - 3
3 Big Data - - 7 53 - - 8 4
2 Internet of Things - - - 40 - - - 5
1 Robotics 2 6 6 28 10 6 9 6
2 Digital Twin - - - 26 - - - 7
6 Computer vision - - - 23 - - - 8
5 Support Vector Machine - - - 16 - - - 9

5 Natural Language
Processing - - 4 14 - - 10 10

3.5. Research Clusters in the Context of AI and Sustainability

The network map in Figure 9 outlines the research clusters through sustainability
pillars and the frequency of keyword occurrences. Figure 9a revealed that machine learning
emerged as the most significant keyword associated with improving economic efficiency.
As a subfield of AI, machine learning utilizes algorithms and statistical models to enable
computers to learn from data and make predictions without being explicitly programmed.
This technology has immense potential to optimize resource allocation, predict project
outcomes, and identify potential risks, leading to better project outcomes. Moreover,
the close association between machine learning and other technologies such as building
information modeling (BIM), decision-support systems (DSS), genetic algorithms, and the
IoT further highlights the potential of these technologies to improve economic efficiency in
project management.

On the other hand, in the context of governance sustainability as seen in Figure 9b, the
network map reveals the significance of machine learning in promoting risk management
and mitigation. The close association between machine learning and other technologies
such as the IoT, reinforced learning, and DSS highlights the potential of these technologies
to improve governance sustainability in construction projects. Data mining and artificial
neural networks also form separate clusters that promote different types of research. By
leveraging the power of these technologies, construction managers can identify and mitigate
risks, optimize resource allocation, and make more informed decisions, leading to more
sustainable outcomes.

Figure 9c presents a network map of keyword clusters in the field of social pillar of sus-
tainability. One key finding is that big data and data mining emerged as prominent clusters
and were strongly associated with computer vision. This indicates that researchers in the
field of AI governance have recognized the importance of data analysis and visualization in
improving decision-making processes and achieving better outcomes. Another interesting
observation is that decision-support systems and automation formed separate keyword
clusters, which had little correlation with machine learning. This suggests that research
projects are exploring a variety of approaches to improving decision-making, including
both automated systems and human decision-making aided by technology.

In the environmental sustainability context as shown in Figure 9d, machine learning
remains a predominate keyword. However, deep learning emerges as a key cluster, indi-
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cating its potential to address sustainability challenges in construction. Overall, most of
the keywords in the environmental sustainability context form separate clusters, pointing
to a diverse range of research topics and approaches. Common research clusters include
simulation, artificial neural networks, and decision-support systems, which may require
different AI techniques and methods to address sustainability challenges.

Buildings 2023, 13, x FOR PEER REVIEW 20 of 39 
 

 
(a) Economic 

 
(b) Governance 

Figure 9. Cont.



Buildings 2023, 13, 2346 20 of 36Buildings 2023, 13, x FOR PEER REVIEW 21 of 39 
 

 
(c) Social 

 
(d) Environmental 

Figure 9. Research cluster map.  

On the other hand, in the context of governance sustainability as seen in Figure 9b, 
the network map reveals the significance of machine learning in promoting risk manage-
ment and mitigation. The close association between machine learning and other technol-
ogies such as the IoT, reinforced learning, and DSS highlights the potential of these tech-
nologies to improve governance sustainability in construction projects. Data mining and 
artificial neural networks also form separate clusters that promote different types of 

Figure 9. Research cluster map.



Buildings 2023, 13, 2346 21 of 36

3.6. Historical Research Clusters of Sustainability in the Construction Domain

Figure 10 depicts a citation network map organized according to sustainability pillars.
Earlier research in the economic pillar as shown in Figure 10a, identifies neural networks as
a promising research cluster. Later, in 2016, DSS emerged as an area of focus in economic-
related construction research. More recently, however, the focus has shifted to machine
learning and building information modeling. Machine-learning algorithms have been
applied to construction data to make predictions and learn from experience while building
information modeling has been used to create virtual representations of buildings and
construction projects. These technologies have expanded the scope of investigation into
other advanced technologies, such as IoT, digital twins, and cloud computing, which have
the potential to enhance the efficiency and effectiveness of construction processes.

Governance research efforts as seen in Figure 10b have changed significantly over
the past decade. Early research in 2010 placed a great emphasis on decision-support,
simulation, and fuzzy logic. These technologies were seen as crucial for managing the
complex and rapidly changing landscape of AI. However, by 2014, the focus began to shift
towards data mining and reinforced learning. These approaches were seen as offering
greater precision and flexibility in decision-making, as well as the ability to learn from
experience and adapt to changing circumstances. More recently, the focus has shifted
towards machine learning, which has emerged as a key area of research. This has led to
further investigations into other advanced technologies such as IoT, blockchain, and object
detection. These technologies have the potential to revolutionize the way that AI systems
are governed, offering greater transparency, accountability, and security.

On the other hand, the early social pillar as shown in Figure 10c focused on DSS, data
mining, and adaptive learning. These technologies were seen as critical for addressing the
social implications of AI in construction. By 2018, the focus of research had shifted towards
cyber security, automation, and support vector machine technology. As AI systems became
more widespread and complex, the need to ensure their security and reliability became
increasingly important. Automation was also seen as an important area of research, as it
offered the potential to improve the efficiency and effectiveness of site safety. In the follow-
ing years, machine learning emerged as the predominant cluster in social pillar research.
However, more recently, the focus has shifted towards other advanced technologies such as
big data, IoT, computer vision, and deep neural networks. These technologies can help to
improve the accessibility and effectiveness of construction services, enhance worker safety,
and promote social equity.

In the context of the environmental pillar (Figure 10d), research has evolved to explore
the potential of AI and other advanced technologies to address environmental challenges. In
the early stages of research, DSS, simulation, and artificial neural networks were identified
as key areas of investigation [47]. These approaches were seen as potential solutions to
address challenges related to energy efficiency, carbon footprint, and waste management.
As the research progressed, the focus shifted towards automation and genetic algorithms
in 2016. These techniques were explored as potential solutions to optimize building
designs and reduce environmental impacts. However, in the following years, deep learning
emerged as a predominant research cluster in the context of environmental sustainability.
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3.7. Research Clusters in the Context of AI in Construction Phases

The network map in Figure 9 depicts research clusters based on construction phases
and the frequency of keyword occurrences. Figure 11a revealed that machine learning is
the most significant keyword during the planning phase, with a cluster of related keywords
emerging around it. This cluster includes neural networks, big data analytics, and genetic
algorithms, which have been identified as key research areas in the construction industry in
recent years. Another key research cluster that emerged is decision-support systems which
focuses on developing systems that can support decision-making processes in construction
by providing real-time information, forecasting capabilities, and optimizing algorithms.
This cluster includes keywords related to scheduling, modular construction, and multi-
agent optimization, which reflect the potential of decision-support systems to improve
project planning and execution, reduce costs, and enhance project sustainability.

In the context of the design phase, as shown in Figure 11b, machine learning has
emerged as the predominant keyword cluster, with a focus on big data, deep learning,
and neural networks. This reflects the potential of these techniques to improve design
processes, reduce errors, and increase efficiency. In addition, decision-support systems
have formed a separate cluster that focuses on risk assessment, value management, and
image processing. DSS can assist in the design process by providing real-time feedback and
analysis, identifying potential risks and opportunities, and enabling collaboration between
different stakeholders.

As shown in Figure 11c, machine learning has emerged as a predominant keyword in
the construction phase. Big data is another important cluster of keywords, and it reflects
the growing use of data analytics in construction, particularly in areas such as simulation,
geographic information systems (GIS), and advanced monitoring. Furthermore, robotics
and automation are separate clusters of keywords in the construction phase network map.
These technologies are increasingly being used in construction to perform repetitive or
dangerous tasks, such as bricklaying, welding, and demolition. By automating these tasks,
construction companies can improve safety, reduce labor costs, and increase efficiency.

In the operation and maintenance (O&M) phase, which is the final phase of a con-
struction project, the network map in Figure 11d revealed that the predominant keyword
shifted from machine learning to risk management. Risk management is a crucial aspect of
the O&M phase, as it involves identifying and mitigating any potential risks or issues that
may arise during the project O&M process. The network map was spread out and formed
three separate clusters. The first cluster was decision-support systems, which can be used
to assist in identifying and assessing potential risks. The second cluster was fuzzy logic,
which can be used in the O&M phase to evaluate the level of risk associated with various
decisions or actions, even when the information is not fully clear or precise. The third
cluster was knowledge-based systems, which can be used to assess the potential impact of
various decisions and actions on the project, as well as to provide recommendations for
mitigating risks and resolving issues. Overall, the use of these advanced technologies in
the O&M phase can help to ensure that construction projects are completed on time, within
budget, and with minimal risk or issues.
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3.8. Historical Research Clusters of the Construction Phases

Figure 12 illustrates a citation network map based on construction phases. Figure 12a
presents a network map that showcases the research trends in the planning phase of
construction. In 2013, the research clusters were mainly focused on neural networks,
genetic algorithms, and robotics. These technologies were applied to predict and optimize
construction schedules, reduce costs, and improve safety. However, over time, the focus
shifted to DSS which aimed to improve scheduling and modular construction. DSS can
help determine the best sequence of activities, identify potential inefficiencies on site, and
optimize resources. By 2019, the research clusters in the planning phase were dominated
by machine learning, which highlighted the use of advanced technologies such as IoT, 3D
printing, object detection, and computer vision [45]. This shift in research clusters indicates
the growing interest and recognition of the potential opportunities of AI and advanced
technologies in the construction industry.
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In contrast to the planning phase, the design phase as seen in Figure 12b revealed a
diverse range of early research clusters. In 2013, focused on exploring different approaches
to decision-making, value management, and multi-agent systems, as these were seen
as critical components of the design phase. However, as research progressed, the focus
shifted toward decision-support systems and knowledge-based systems in 2014, as these
approaches were believed to be more effective in addressing the challenges of the design
phase. In recent years, machine learning has emerged as the predominant keyword and
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promoted deep learning and big data analytics that explored potential solutions to optimize
design sequences and reduce unforeseen costs.

Figure 12c illustrates that the early research in the construction phase was focused on
the use of simulation, decision-support systems, and data fusion as potential solutions to
address challenges related to construction efficiency and productivity. However, in 2020,
the research landscape shifted, and these keywords were replaced by simulation, genetic
algorithms, reinforced learning, and natural language processing. These techniques were
identified as key areas of investigation for optimizing building designs and improving con-
struction processes. Furthermore, in 2021, machine learning emerged as the predominant
research cluster in the construction phases, and it promoted the use of robotics, automation,
and big data. For instance, machine learning can be used in conjunction with big data and
IoT to improve construction scheduling, cost estimation, and quality control.

Finally, the research conducted in the operation and maintenance phase as seen in
Figure 12d was heavily focused in 2004, with a focus on knowledge-based systems, fuzzy
logic, and decision-support systems. However, in recent years, there has been limited
research conducted in this area. Nevertheless, in 2021, there has been a renewed interest in
this phase, with research clusters focusing on risk prediction. This has been facilitated using
risk management techniques, which have helped to identify and mitigate potential risks
associated with project completion and handover. As such, this research has the potential
to make a significant contribution to improving the overall efficiency and effectiveness of a
project operation and maintenance phase.

4. Findings and Discussion

This study conducted a scientometric analysis from the sustainability and construction
phases lenses to map over two decades of AI in construction research. The study analyzed a
total of 3710 literature pieces published between January 2000 and February 2023 (spanning
over two decades), intending to gain a clearer understanding of the historical clusters and
research clusters in construction, as well as in the context of the four pillars of sustainability
and the four construction phases.

The scientometric analysis disclosed that: (a) Literature on AI in construction has
experienced steady growth during the last two decades; (b) Machine learning, deep learning,
and big data are seen as the key enabling digital technologies; (c) Economic and governance
pillars of sustainability exhibit the highest potential for AI adoption; (d) Design and
construction phases demonstrate substantial advantages for AI adoption; (e) AI is, despite
adoption challenges, a strong driver of the construction industry modernization; (f) By
incorporating AI, the construction industry can advance towards a more sustainable future
by consolidating its processes.

The identified research clusters in AI within the construction domain encompass
various areas, including automation, digital twin, big data, deep learning, machine learning,
information systems, and simulation. These clusters have expanded the research scope
beyond their primary focus and have led to the emergence of new directions in the field.
The subsequent overview presents the key findings based on the key research clusters
(see Tables 10–12).

Table 10. Research clusters associated with pillars of sustainability and construction phases.

Research
Clusters Affiliation with Pillars of Sustainability and Construction Phases

Automation

Automation was the most predominant keyword cluster which leverages AI technologies to automate construction
processes. It benefits all four phases of construction and aligns with the four pillars of sustainability. Automation
involves the use of machinery, software, and other technologies to perform tasks that were traditionally manual,
such as bricklaying, painting, and welding [34,48]. Drones are also utilized for site surveying, progress monitoring,
and structural inspection [41]. Digital technologies like BIM automate tasks such as clash detection and cost
estimating. Automation is a central focus in the construction industry, with AI technologies continually evolving
around this cluster [34,48,49]
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Table 10. Cont.

Research
Clusters Affiliation with Pillars of Sustainability and Construction Phases

Digital
Twin

The digital twin cluster is gaining significance in the construction industry, particularly in the economic and
governance pillars and the planning and design phases. Digital twin involves creating virtual replicas of buildings
or infrastructure systems using data from sensors and other sources. It enables simulation and testing of designs
before construction, leading to cost reductions, improved performance, and increased efficiency [15]. Simulating
and testing designs before construction is a key goal aligned with BIM. This model encompasses various dimensions
of a construction project, allowing stakeholders to analyze aspects ranging from architectural design to structural
integrity, systems integration, and operational efficiency [41]. AI enhances the capabilities of the digital twin by
identifying patterns and anomalies and optimizing asset performance. However, the integration of digital twin
technologies with other AI clusters remains relatively weak, indicating a need for further research in this area [2].

Big Data

Big data plays a vital role in the social pillar and the construction phases, aiming to improve project outcomes.
Construction professionals leverage the vast amount of data generated by projects to enhance safety on construction
sites. Analyzing data on accidents and near-misses enables the identification of patterns and the development of
strategies to reduce risks. For instance, training programs and safety protocols can be designed based on the most
frequently occurring accidents [49].

Information
Systems

Information systems, frequently mentioned in the governance pillar and the planning, design, and operation and
maintenance phases, involve AI-powered systems for efficient project management. These systems analyze data
from multiple sources, including project schedules, personnel, equipment, and weather forecasts, to generate
accurate schedules and optimize building design and performance [50]. The use of AI in information systems helps
reduce energy consumption, improve building performance, and enhance occupant comfort [51].

Simulation

Simulation, relevant to the governance and environmental pillars, as well as the planning, design, and operation
and maintenance phases, plays a crucial role in optimizing project outcomes. Simulation techniques provide
insights into the impact of different factors on project performance and identify potential issues before construction
begins testing materials, layouts, and construction techniques, construction professionals can determine the most
effective approach for a project [52]. Furthermore, simulation can predict the long-term performance of buildings
and infrastructure systems, allowing for maintenance planning and asset replacement [15].

Deep
learning

Deep learning, a more recent research cluster, is mainly associated with the economic and social pillars and the
construction phases. It has found application in quality control and defect detection, where AI models are trained to
identify defects and anomalies in construction materials like concrete and steel [52]. Deep learning also improves
resource management, reducing waste and improving efficiency on construction sites. Although the literature on
deep learning in construction is relatively new, it has the potential to revolutionize the industry by enabling more
accurate and cost-effective projects [41].

Table 11. AI adoption opportunities and challenges by construction phases.

Phases Opportunities Challenges

Planning

Optimized project schedule, accurate risk assessment
and mitigation, selection of sustainable design
alternatives, improved design making, enhanced
project outcomes, identification and mitigation of risks,
improved collaboration between stakeholders,
resource optimization, efficient spatial planning,
accurate feasibility by conducting simulations,
assistance in ensuring compliance with regulatory
requirements [41].

Integration complexity, data integration and
collaboration, data availability and quality, gaining
acceptance from all project stakeholders, significant cost
and required allocation of resources, expertise and skill
requirements, data privacy and security, legal and
ethical considerations, change management, uncertainty,
and risk [53].

Design

Parametric designs, design optimization and
intelligent recommendations, cost, and time efficiency,
facilitation of collaboration and data integration
between stakeholders, design flaw identification,
accurate simulation of design performance, and
supporting the integration of sustainable practices and
materials [32].

System integration and data interoperability, industry
standards and regulatory compliances, data quality and
availability, user acceptance and adoption, and bias in
design algorithms, may lead to a limited design
diversity, overcoming technical limitations, data security
and privacy, and continuous learning and adaption [45].
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Table 11. Cont.

Phases Opportunities Challenges

Construction

Real-time monitoring, automation of repetitive tasks,
improved safety by identifying potential hazards,
advanced inspection and defect detection, resource
allocation, enhanced productivity by streamlining
workflows, improved collaboration and
communication between stakeholders, quality control
and assurance, remote construction management and
cost control and budget management [29,33].

Integration complexity with existing systems and
workflows, interoperability with various equipment and
data formats, communication between stakeholders,
data accessibility and quality for up-to-date constriction
data, change management to traditional construction
practices, skill requirements and training, high initial
investment and ongoing costs, limited industry
adoption, system reliability and maintenance and legal
and regulatory compliance [48,54].

Operation
and
maintenance

Digital twins for real-time monitoring, predictive
maintenance, operation and maintenance schedule
generation, energy efficiency optimization, occupant
comfort management, enhanced facility management,
accurate lifecycle cost analysis, improved compliance
and regulatory analytics, enhanced building
performance evaluation, and streamlined
documentation and reporting [2].

Accurate capturing of data, data standardization and
integration, privacy, and data governance, user-friendly
and accessible to different stakeholders, skill
requirements and training, seamless integration with
current automated technologies, system reliability and
maintenance, interdisciplinary collaboration, cost and
resource allocation and change management [55].

Table 12. AI adoption opportunities and challenges by sustainability pillars.

Pillars Opportunities Challenges

Economic

Cost savings through improved project efficiency and
resource management, enhanced project profitability
through optimized schedules, improved cost
estimation accuracy, enhanced decision-making, and
risk assessment, streamlined procurement processes
and supply chain management, improved financial
transparency and long-term cost benefits through
adopting sustainable practices [30].

Higher initial investment costs for implementing AI,
balancing costs, and long-term economic benefits,
ensuring accessibility between all stakeholders,
addressing potential job displacement, overcoming
resistance to change, ensuring data privacy and
security, streamlined integration with existing
technologies, limited availability of skilled AI
professionals and ensuring compliance with legal and
regulatory frameworks [56].

Governance

Improvement transparency and accountability,
enhanced decision-making and risk assessment,
streamlined project approvals and regulatory
compliance processes, efficient collation and
communication between stakeholders, effective project
governance and project monitoring, enhanced contract
management and dispute resolution, and enhanced
project oversight [57].

Potential biases in the algorithms, compliance with
data privacy and regulations, overcoming resistance to
change, ensuring transparency and accountability, and
ensuring compatibility with existing governance
frameworks [58].

Social

Enhance worker safety through risk assessment and
monitoring, improve labor conditions and welfare
through optimizing resource allocation, enhanced
worker productivity, and enhanced stakeholder
involvement in projects [59].

Job displacement and workforce transition, ensuring
equal access to AI technologies, overcoming resistance
to change, ensuring stakeholder engagement, data
privacy and protection, balancing automation, and
human interaction, addressing potential social
disruptions, and ensuring social acceptance [60].
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Table 12. Cont.

Pillars Opportunities Challenges

Environmental

Reduce carbon footprint and emissions through
AI-optimized construction processes, efficient use of
resources and materials, enhanced resource
management and waste reduction, enhanced energy
efficiency and sustainable building designs through
simulation and optimization, improved air and water
quality through pollution monitoring and control
systems, AI-informed environmental impact
assessment and sustainable land use planning g, reduce
environmental risk through AI risk assessment and
mitigation strategies and promote adaptive and
resilience infrastructure designs [32].

Ensuring accurate and reliable data for monitoring and
assessment, overcoming technological limitations and
construction for environmental solutions, Incorporate
complex and dynamic environmental factors into AI
models and simulations, balancing the trade-offs
between environmental considerations and other
project objectives, ensuring compliance with
environmental regulations, addressing conflicts
between economic consideration and environmental
objective, integrating AI technologies with existing
environmental management systems and ensuring
long-term sustainable and maintenance of
environmental solutions [16].

Based on these research clusters, the key opportunities and challenges of each con-
struction phase and sustainability pillar can be identified.

The study’s findings hold significant implications with actionable recommendations
for the construction industry. First, it is imperative to recognize the steady growth of
AI literature within the construction realm over the span of the last two decades. This
awareness can serve as a vital starting point, prompting industry stakeholders to remain
vigilant and responsive to the evolving landscape of AI advancements. By staying informed
about the latest AI trends and research developments, the industry can proactively position
itself for growth and innovation [7,8].

Second, an emphasis on prioritizing the integration of key enabling technologies is
paramount. Machine learning, deep learning, and big data have emerged as foundational
pillars for driving effective digital transformation. To navigate the complexities of modern
construction challenges, embracing these technologies can empower the industry with
data-driven insights, predictive capabilities, and enhanced decision-making [50]. The
following are key opportunities that AI can provide to the construction industry:

• Design Complexity and Optimization: Modern construction projects involve complex
designs that must be optimized for various factors, including structural stability,
energy efficiency, and cost-effectiveness. AI-powered algorithms can analyze countless
design variations to identify optimal solutions quickly, enhancing design efficiency
and accuracy [41].

• Project Planning and Scheduling: The complexity of construction project schedules often
leads to delays, resource conflicts, and cost overruns. AI can analyze historical project
data, real-time progress, and external factors to generate dynamic and adaptable
schedules that account for uncertainties and potential disruptions [45].

• Risk Assessment and Management: The construction industry has constant uncertainties
that can lead to project risks. AI’s predictive analytics can forecast potential risks by
analyzing historical data and project parameters, enabling proactive risk mitigation
strategies and better-informed decision-making [33].

• Quality Control and Defect Detection: Ensuring the quality of construction work is
a persistent challenge. AI-powered visual recognition systems can detect defects,
discrepancies, and deviations from design plans by comparing real-time construction
progress to digital models, ensuring adherence to specifications and standards [48].

• Resource Allocation and Management: Efficiently allocating labor, materials, and equip-
ment is vital for project success. AI can optimize resource allocation by analyzing
project requirements, availability, and constraints, thus minimizing waste, and enhanc-
ing resource utilization [2].

• Safety Monitoring and Compliance: Safety concerns are paramount in construction. AI-
driven sensors, cameras, and wearable devices can monitor work environments for



Buildings 2023, 13, 2346 33 of 36

potential safety hazards in real time, alerting workers, and supervisors to risks and
ensuring compliance with safety regulations [35].

• Data Integration and Collaboration: Construction projects involve multiple stakeholders,
each contributing diverse data sources. AI can facilitate seamless data integration, en-
abling improved collaboration among project teams and decision-makers by providing
a unified platform for information sharing and analysis [47].

• Supply Chain Optimization: Managing the supply chain efficiently to ensure timely delivery
of materials and resources is a significant challenge. AI algorithms can predict demand,
optimize procurement, and monitor logistics to prevent disruptions and delays [52].

• Environmental Impact Mitigation: Sustainable construction practices are essential for
minimizing the industry’s environmental footprint. AI can assess and model the
environmental impact of construction activities, suggesting eco-friendly materials,
energy-efficient designs, and waste reduction strategies [10].

• Post-Construction Maintenance and Operations: Maintaining and operating constructed
assets efficiently is an ongoing challenge. AI-powered predictive maintenance algo-
rithms can analyze real-time data from sensors to anticipate maintenance needs and
optimize asset performance [26].

The third key recommendation centers on the strategic allocation of efforts toward
the economic and governance pillars of sustainability. The study’s findings underscore
the substantial potential for AI adoption in these areas, showcasing its capacity to stream-
line operations, optimize resource allocation, and strengthen compliance measures. This
strategic alignment between AI and sustainability objectives can foster improved economic
outcomes while concurrently bolstering social and governance standards [52]. Furthermore,
tapping into the substantial advantages outlined in AI adoption, particularly within the
design and construction phases, can drive substantial performance improvements. Lastly,
by leveraging AI-powered tools for efficient project planning, risk assessment, and real-time
monitoring, the industry can elevate project execution while minimizing errors and delays.

Amid the challenges mentioned, the integration of AI into construction and the adop-
tion of sustainable practices across the pillars of sustainability present noteworthy op-
portunities for the industry. Embracing these technologies and principles could catalyze
transformative shifts in project planning, design, construction, and management [15]. The
advantages of AI, encompassing automation, data-driven decision-making, and advanced
analytics, could yield enhanced project efficiency, cost reduction, and heightened produc-
tivity. In parallel, the adoption of sustainable practices might drive resource optimization,
minimize environmental impact, and improve social outcomes. By proactively addressing
challenges and capitalizing on the potential of AI and sustainability, the construction indus-
try can steer itself toward a more sustainable trajectory. This approach aligns projects not
only with economic viability but also with environmental and social responsibility [5]. This
cohesive strategy contributes to the broader goals of sustainable development, paving the
way for more sustainable urban futures [29,61].

5. Conclusions

This study presents a comprehensive scientometric analysis of 3710 published papers
on AI in construction over the past two decades with a particular angle from sustainability
and construction phases. By examining the existing literature, this study provides an
updated and concise overview of the field’s knowledge structure and evolution. The
findings reveal a progression from basic automation to more advanced neural network
platforms, with a strong focus on machine learning, deep learning, big data, and IoT. The
concept of AI in construction has expanded over time, encompassing emerging technologies
such as natural language processing, virtual reality, and augmented reality [41]. The
integration of intelligent systems and algorithms has shown great potential in improving
productivity, efficiency, safety, and sustainability within the construction industry [62]. As
technology continues to advance, AI is expected to play an even larger role in driving
innovation and transforming traditional construction practices [5,29,46,63].
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Additionally, this comprehensive analysis of the integration of the pillars of sus-
tainability into the various construction phases highlights the benefits, challenges, and
opportunities associated with each phase. By identifying the specific contributions and
implications of AI technologies in conjunction with sustainability principles, this research
provides valuable insights for industry professionals, policymakers, and researchers seek-
ing to drive sustainable transformations in the construction industry. The synthesized
information on the benefits, challenges, and opportunities serves as a foundation for in-
formed decision-making and strategic planning in implementing AI-driven solutions while
considering sustainability goals. This study provides valuable insights into the present state
of AI in construction, paves the way for future research and development, and underscores
the significance of sustainable practices in shaping the industry’s future.

Although this research provides a sound foundation, several areas warrant further
investigation. Future research can focus on addressing the identified challenges, such
as the cost-effectiveness of implementing AI technologies in the construction industry,
ensuring equitable access to AI-driven solutions, and resolving issues related to data
integration and interoperability. Moreover, it should delve into the legal consequences
that AI may introduce concerning intellectual property ownership, liability, data privacy,
standards, ethics, contracts, cybersecurity, employment impact, transparency, and the
evolving legal landscape. Additionally, it should investigate the potential societal and
ethical impacts of AI adoption in construction, encompassing employment effects and
the role of human workers in an increasingly automated setting. Further studies could
focus on enhancing AI algorithms and models for more precise and streamlined decision-
making in sustainability-related domains. Furthermore, the formulation of comprehensive
frameworks and guidelines for seamlessly integrating AI technologies with sustainability
principles throughout various construction phases would prove advantageous. By pursuing
these research avenues, scholars can continue advancing the field, paving the way for future
construction practices that are both sustainable and efficient.
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