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Abstract: A severe seismic event can cause significant damage to infrastructure systems, resulting in
severe direct and indirect consequences. A comprehensive risk-management approach is required
for earthquake-resilient infrastructure. This study presents an innovative approach to seismic risk
assessment and aims to integrate maintenance considerations with seismic fragility curves. The
proposed methodology uniquely quantifies the impact of maintenance conditions on seismic risk,
presenting a dynamic perspective of risk changes attributable to maintenance and deterioration.
The methodology hinges on the hypothesis that the maintenance condition of the infrastructure
and the level of deterioration impacts the seismic resilience of the infrastructure. The methodology
synergizes the Building Performance Index (BPI) and the deterioration over time to evaluate their
cumulative effect on fragility curves to estimate the infrastructure’s total risk over the lifecycle (TRLC).
This proposed methodology is demonstrated through a case study of a low-voltage substation in
Bik’at HaYarden, Israel. A Monte Carlo simulation was carried out for the specific conditions
of the analyzed substation. A comprehensive sensitivity analysis was performed to understand
better the effect of maintenance conditions over time on the TRLC. Key insights reveal a statistically
significant correlation between infrastructure performance and maintenance and their consequential
impact on the TRLC. Notably, declining maintenance conditions intensify seismic risk uncertainties.
The research proposes to researchers, stakeholders, and decision-makers a novel comprehensive
perspective on the indispensability of maintenance for seismic risk management and mitigation.

Keywords: building performance indicator; fragility curves; maintenance; risk; seismic resilience

1. Introduction

Infrastructure systems, such as transportation, energy, water, wastewater, telecommu-
nications, healthcare facilities, financial systems, educational institutions, and emergency
services, are essential for the continuous performance of modern society and the economy
in ordinary times and during emergencies. Infrastructures are complex systems composed
of structural and nonstructural components [1]. Damage to a single component can lead to
the disruption of the entire system, and the latter implies that the vulnerability of the infras-
tructure depends on its layout and functional–topological relationships. Therefore, when
considering the seismic performance of the system, it is crucial to consider the vulnerability
at the component level.

A severe seismic event can cause significant damage to infrastructure systems, result-
ing in severe direct and indirect consequences, as was recently catastrophically demon-
strated in the Turkey–Syria earthquake [2,3]. These outcomes can trigger cascading and
rippling effects across various sectors, leading to economic losses, physical destruction, and
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human casualties [1]. Therefore, the resilience of infrastructures after seismic events is a
critical aspect of ensuring the safety and functionality of communities.

Infrastructure resilience is an increasingly important multidisciplinary field that inte-
grates technical, social, and economic dimensions to prepare for, respond to, and recover
from disasters. Cimellaro et al. presented an analytical framework [4] in which resilience
is understood as a time-dependent recovery process influenced by societal preparedness
and public policies. Rasulo et al. extended this to the seismic resilience of road networks,
emphasizing the critical role of bridges in maintaining network functionality [5]. Bocchini
et al. [6] argued that resilience and sustainability are complementary, both involving lifecy-
cle analyses and social–economic impacts. Those works suggest that resilience is not just
about recovery but also about adaptive evolution in the face of disruptions, making it a key
consideration for both policy and engineering decisions.

Seismic fragility curves are a common method for assessing the expected damage
of various types of infrastructure due to seismic events. The fragility curve represents
the probability that a component or system will reach or exceed a given damage state
as a function of an earthquake’s intensity-measure (IM) parameter, such as peak ground
acceleration (PGA), peak ground velocity (PGV), and peak ground displacement (PGD) [7].
Fragility curves can be used for individual components or the entire systems [8,9].

The general formulation of a fragility function of a structure or system is framed as
a lognormal cumulative distribution function (CDF) [10–12]. To accurately define this
function, it is essential to determine two parameters: the median capacity of the component
to resist the damage state (θds) and the standard deviation of the capacity (βds), as presented
in Equation (1).

P[DS ≥ ds|IM = x] = Φ
(

ln(x/θds)

βds

)
; ds ∈ {1, 2, . . . NDS} (1)

where P stands for a conditional probability of being at or exceeding a particular damage
state (DS) for a given seismic intensity and x is defined by the earthquake-intensity measure
(IM).
where,

DS: The uncertain damage state of a particular component, {0, 1, . . .NDS};
ds: A particular value of the DS;
NDS: The number of possible damage states;
IM: Uncertain excitation, the ground-motion-intensity measure (i.e., PGA, PGD, or PGV);
X: A particular value of the IM;
Φ: The standard cumulative normal distribution function;
θds: The median capacity of the component to resist a damage state ds measured in terms
of the IM;
βds: The logarithmic standard deviation of the uncertain capacity of the component to
resist a damage state ds.

In instances where more than one damage state is defined, the damage states are
ordered by damage severity (from the least severe to the most severe damage), and the
fragility function defines the cumulative probability of being in a specified damage state.
Equation (2) expresses the distribution of probabilities of exceeding different levels of
damage for a given IM value.

P(DS = dsi|IM) =


1− P(DS ≥ dsi|IM)

P(DS ≥ dsi|IM)− P(DS ≥ dsi+1|IM)
P(DS ≥ dsi|IM)

i = 0
1 ≤ i ≤ n− 1

i = n
(2)

Many studies have focused on the development and application of seismic fragility
curves for different types of infrastructure, including different types of buildings [13–15]
and special structures, such as churches [16], bridges [17], different steel tanks [18–20],
power grids [21], water networks [22], transportation infrastructure [23], oil-pumping
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stations [9], and concrete dams [24]. The fragility curves are developed regarding various
factors, such as the geometry of the elements, the materials, the overall capacity of the
system, and several other factors. However, one aspect that has received less attention in
developing seismic fragility curves is the integration of maintenance considerations with
seismic resistance.

Maintenance of infrastructures is critical to ensuring durability, functionality, and
effectiveness [25]. Maintenance activities include routine inspections, required repairs
and replacements, and upgrades to maintain the structural integrity, reliability, and per-
formance of the infrastructure system. Several studies have explored different aspects
of infrastructure maintenance, including planning and scheduling [26,27], maintenance
expenditures [28,29], maintenance practice challenges [30], monitoring, and climate-related
disaster planning in asset management [31].

The maintenance level of the infrastructure is a significant factor that can impact the
vulnerability of the infrastructure system to seismic events [32,33]. Furthermore, the func-
tionality of the infrastructure depends on the continuous performance of each component
within the system. Therefore, the system components’ maintenance level can significantly
impact the seismic vulnerability of the entire system. Proper maintenance can prevent
deficiencies or wear and tear, ensure the system is in a suitable condition, and better resist
seismic impact. In contrast, improper maintenance can increase the probability of failure
and compromise the system’s seismic resistance. In addition, most maintenance practices
often do not consider the vulnerability of the components to seismic events, resulting
in a gap between maintenance operations and seismic-risk-reduction strategies. Thus,
maintenance activities affect seismic performance and may foster resilience to seismic
events.

Shohet [34] introduced a Building Performance Indicator (BPI) in order to quantify the
performance of an entire building, relying on the performance assessment of its particular
systems and components. The methodology introduces the implementation of systematic
rating scales to evaluate the condition of the building’s components and combining them
using lifecycle cost principles. Subsequently, the overall state of the infrastructure is
assessed via the BPI, which is derived from the weighted average of the scores attributed
to the various building systems and components and their LCC significance in the overall
building LCC. The BPI considers several criteria, such as the actual physical performance
of the systems, the frequency of failures in building systems, and the actual preventive
maintenance carried out on the building structure and systems.

Several studies aimed to consider maintenance parameters regarding seismic vulnera-
bility. Manos et al. [35] discussed maintenance issues related to the structural integrity of
stone-masonry bridges. However, no analytical process was introduced. Crespi et al. [36]
investigated the seismic performance of reinforced-concrete bridges under several corro-
sion scenarios, as the corrosion levels represent the maintenance status. Zanini et al. [37]
analyzed the seismic vulnerability of corroded bridges in transport networks by developing
fragility curves that accounted for steel-reinforcement corrosion. Soltani et al. [38] presented
the relationship between the maintenance cost and the engineering-demand parameters
(EDPs) for the case of infill walls. Tecchio et al. [39] intended to provide seismic fragility
models for two generalized classes of single-span masonry arch bridges considering the
material degradation and longitudinal cracks [39]. It was found that the seismic fragility of
masonry bridges increases when the effects of degradation are considered, as the loss of
material was found to be the most influential defect. Moreover, an integrated approach
that includes infrastructure maintenance was presented by [40]. The paper proposed an
integrated maintenance–safety framework, demonstrating a strong correlation between
maintenance and safety levels. A case study of a public facility validated the framework,
emphasizing unified maintenance–safety procedures to enhance facility performance.

Various analytical frameworks and indicators have been proposed to enable risk-
informed decision-making for the seismic mitigation of critical infrastructure. Wang et al.
presented a methodology integrating adjusted fragility curves into risk functions to evaluate
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mitigation strategies quantitatively [41]. Furthermore, Urlainis and Shohet incorporated
fragility analysis with fault-tree modeling to assess risk expectancy and proposed a Risk
Mitigation to Investment Ratio indicator for prioritizing retrofitting alternatives based on
risk-reduction cost-effectiveness [42]. Wei et al. developed a benefit–cost analysis approach
to evaluate the economic feasibility of seismic retrofitting in moderate-seismicity regions,
demonstrating its application through a case study in Tiberias, Israel [43]. These studies
exemplify different tools and techniques to appraise seismic risk and guide mitigation
decisions through analytical indicators.

Moreover, it should be noted that the risk assessment for infrastructures with more
than one component is a complex task. Nuti et al. developed a model to evaluate the
seismic fragility of electric power network components and the overall network capability
considering component damage states, power flow, and soil conditions. The analysis em-
phasized the importance of accurate geotechnical modeling for predicting seismic response
and safety [44]. Furthermore, Nuti et al. (2010) discussed modeling approaches for the seis-
mic risk assessment of large-scale-infrastructure networks, including electric power, water,
and transportation systems. The analysis emphasized need for network-level modeling to
capture component interactions and cascading failures. Case studies demonstrated Monte
Carlo simulations for the probabilistic seismic analysis of networks [45].

Rasulo et al. presented a modeling framework combining GIS, seismic risk analysis,
and traffic simulation to assess direct and indirect earthquake impacts on road networks.
The methodology was demonstrated through a case study of a bridge network in Central
Italy, emphasizing the importance of calibrated traffic models for quantifying postseismic
network accessibility and delays [46].

This review sheds light on the gap between the analytical models in seismic resis-
tance and the analytical–empirical models in maintenance that can be integrated into a
comprehensive synergetic framework. Therefore, this research aims to establish fragility
curves that integrate seismic and maintenance factors, thereby enabling a comprehensive
performance methodology.

This study proposes a comprehensive approach toward earthquake-resilient infras-
tructures by incorporating maintenance factors into the seismic-risk-analysis process. By
incorporating the maintenance-level data into the seismic fragility curves, this paper hypoth-
esizes that an advanced, innovative, and reliable representation of the system vulnerability
will be produced. By integrating maintenance considerations with seismic fragility curves,
infrastructure owners and managers can make informed decisions regarding maintenance
strategies and investments to enhance the resilience of their assets.

The uniqueness of our work lies in the pioneering integration of maintenance consid-
erations with seismic fragility curves, a feature which is distinctly absent in the existing
literature. This groundbreaking consolidation allows us to present a more comprehensive,
holistic view of infrastructure resilience that goes beyond immediate seismic resistance
to include long-term sustainability through effective maintenance. In traditional seismic
fragility models, the focus is primarily on understanding how infrastructure responds
to earthquakes without considering how ongoing maintenance activities can impact this
response. Our integrated approach aims to bridge this gap.

2. Integration of the Building Performance Indicator with Seismic Fragility Curves
2.1. Baseline Seismic Fragility Curves

The baseline fragility curves were developed based on typical methodologies without
considering the maintenance. Those curves can be developed for a specific component, a
generic system, or an exclusive infrastructure system layout. Fragility-curve parameters for
a specific component can be found in the FEMA P-58 component fragility function database
(FEMA database [47]). A generic system or infrastructure type provides different types of
buildings and infrastructure-fragility parameters. For an exclusive layout of infrastructure,
Urlainis and Shohet developed a comprehensive methodology based on fault-tree analy-
sis [9]. In each of these cases, the baseline fragility curves provide a probabilistic measure
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of the structure’s seismic vulnerability without considering the influence of maintenance.
These curves serve as a benchmark against which maintenance effects can be evaluated in
the subsequent steps of the integration process. The baseline seismic fragility curves are
formulated in Equations (1) and (2).

2.2. Building Performance Indicator of Critical Infrastructures

In this step, the determination of the maintenance state of the infrastructure is per-
formed. This includes evaluation of the physical condition, the quality of materials, age,
the level of wear and tear, and the maintenance activities performed. This determines
the infrastructure’s maintenance state, which can be crucial for evaluating its seismic
vulnerability.

It aims to consider the two main parameters: (1) the current maintenance condition of
the infrastructure and the (2) level of deterioration over the years. For that purpose, two
coefficients are attributed for the infrastructure: Mc for the maintenance level and Dc for
deterioration.

To validate the proposed model, its representation of maintenance and deterioration
impacts on seismic responses was cross-referenced with findings by [36] concerning the
effects of the corrosion of steel on the seismic capacity of bridges. Crespi [36] delineated
various risk indices’ values acquired across different deterioration scenarios over a lifecycle
and elucidated their implications on the seismic capacity. Consequently, in this study, the
model’s coefficients were calibrated and validated using that dataset.

2.2.1. The Maintenance Coefficient

The maintenance-level coefficient Mc is a quantitative measure that expresses the
informed state of the maintenance of a component, a system, or the entire infrastructure. It
provides a standardized metric to measure the extent to which maintenance activities have
been performed on a particular infrastructure.

The maintenance coefficient (Mc) can be evaluated according to maintenance records,
condition assessments, or expert evaluations. In general, it aims to represent various factors,
such as:

• Frequency of Maintenance: how regular maintenance activities are performed. Regular,
scheduled maintenance usually indicates a higher maintenance level.

• Quality of Maintenance: the thoroughness and effectiveness of maintenance proce-
dures. High-quality maintenance that addresses potential issues proactively con-
tributes to a higher maintenance level.

• Maintenance History: past maintenance records, including any instances of delayed
or skipped maintenance, which might impact the current condition of the component
or system.

• Current Condition: the current physical condition of the component or system, as-
sessed through inspections or condition-monitoring systems. This could include
factors such as wear and tear, damage state, degradation, etc.

• Performance Metrics: operational data indicating the performance of the component or
system. This might include efficiency, reliability, or failure rates, among other metrics.

In this research, the maintenance-condition coefficient is calculated based on the eval-
uation of the system using the Building Performance Indicator (BPI). The BPI is calculated
as a compounded score of several components of the infrastructure system.

BPI =
N

∑
n=1

Pn·Wn (3)

where,

BPI—Building Performance Indicator (0–100);
Pn—Performance level for system n (on a scale of 0 to 100);
Wn—Weight of system n in the BPI.
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The BPI value reflects the performance level of the building, where a lower value
indicates poor or neglected maintenance and a higher value represents the well-maintained
condition. The BPI is designed to account for various aspects of maintenance, including the
frequency and quality of maintenance activities, current condition, and additional metrics,
such as the repair rate and failure rate. Shohet [34] divided the BPI values into the following
general categories:

• BPI > 80 indicates that the state of the building and its resultant performance are good
or better;

• 70 < BPI < 80 indicates that the state of the building is such that some of the systems
are in marginal condition, i.e., some preventive maintenance measures must be taken;

• 60 < BPI < 70 indicates deterioration of the building, i.e., preventive and breakdown
maintenance activities must be carried out;

• BPI < 60 means that the building is run-down.

In this study, the BPI values act as an indicator of the system’s maintenance level.
The maintenance coefficient, represented as Mc, is elaborated upon in Equation. This
equation delineates a direct linear relationship between the maintenance coefficient and
the building’s performance. As the BPI rises, signifying enhanced building performance,
the maintenance coefficient correspondingly increases, denoting improved maintenance
conditions. This relationship is based and validated on the findings presented in [36].

Mc = 0.01·BPI + 0.1 (4)

2.2.2. The Rate of the Deterioration-over-Time Coefficient

Despite even rigorous maintenance practices, all infrastructural elements experience a
certain level of degradation due to various factors, such as weather, an intensive service
regime, the design lifecycle, and inherent material properties. The deterioration-over-time
coefficient DC(t) is a measure that captures the progressive degradation or wear-and-tear
of a component or system in an infrastructure due to factors such as age, service regime,
environmental conditions, and inherent material properties. It essentially encapsulates the
natural aging process and lifecycle deterioration of infrastructure elements, even under
ideal maintenance practices. The indicator is time-dependent, as the indicator value changes
as a function of the duration since the infrastructure was built or renovated. Several factors
impact on the deterioration-over-time indicator DC(t), such as:

• Age of the System: the period since the component or system was installed or last
renovated. Older components typically show more signs of wear and tear.

• Designed Lifecycle: the lifecycle for which the component or system was initially
designed also impacts its rate of deterioration. Components designed for a longer
lifespan may have higher durability and slower deterioration compared to those
designed for shorter lifecycles.

• Service regime: the degree and nature of usage can accelerate the deterioration process.
• Environmental Conditions: exposure to harsh environmental conditions, such as

temperature fluctuations, humidity, salinity, etc., can influence the rate of deterioration.
• Material Properties: different construction materials have different inherent lifespans

and susceptibility to deterioration. For instance, steel might corrode over time while
concrete may experience spalling, cracking, and corrosion.

The proposed model for assessing infrastructure deterioration over time is imple-
mented in two distinct steps: initially, the deterioration score of the infrastructure is
established, considering various construction properties, such as material durability, envi-
ronmental conditions, and the service regime. Subsequently, the deterioration coefficient,
which encapsulates the rate of infrastructure degradation, is determined using an exponen-
tial decay model, thereby establishing a time-dependent function that accurately represents
the infrastructure’s deterioration over time.

The infrastructure deterioration score is evaluated on the base of three factors: the ser-
vice regime (SR), environmental conditions (EC), and the infrastructure material properties
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(MP). Each factor is scored on a scale from 1 to 5, with 1 representing the most favorable
conditions and 5 representing the most unfavorable conditions (e.g., heavy usage, harsh
environmental conditions, materials highly susceptible to deterioration). The detailed
elaboration of the scoring metric is provided in the Appendix A.

The model assigns a weight to each factor, denoted as WSR, WEC, and WMP, reflecting
its relative contribution to the rate of the building’s systems deterioration. These weights
can be adjusted based on specific circumstances and expert judgment, and can be infer-
entially statistically analyzed. In this formula, Equation (5), S is the weighted sum of the
factor scores and P is the performance score, Equation (6), normalized to a range from
a0 to 99. As a0 is a calibration coefficient, it stands for the performance score for perfect
conditions.

S = SR·WSR + EC·WEC + MP·WMP (5)

P = a0 + (99− a0)·
[

S− (WSR + WEC + WMP)

4·(WSR + WEC + WMP)

]
(6)

where,

SR: Service-regime-intensity factor;
EC: Environmental-conditions factor;
MP: Material-properties factor;
WSR, WEC, WMP: Weights associated with each factor;
a0: Calibration coefficient for the performance score for perfect conditions;
P: Performance score of the infrastructure.

The proposed coefficient for infrastructure deterioration over time is formulated in
Equation (7). This equation represents an exponential decay model, where Dc(t) is the
deterioration-over-time coefficient at a given time t. This coefficient provides a quantifiable
measure of the infrastructure’s state at a specific time, with a higher value indicating a
higher level of deterioration. The variable t represents the number of years elapsed since the
start of the evaluation period. P0 is the initial performance, typically set at 1.0, representing
the infrastructure’s state at the start of the evaluation period. The performance score is
represented by P, ranging between a0 and 99. LC represents the designed lifecycle of
the infrastructure. The equation calculates the deterioration-over-time coefficient as an
exponential function of time, with the rate of increase determined by the performance score
and the designed lifecycle. This model provides a simple yet effective way to assess the
infrastructure deterioration over time.

Dc(t) = P0·e−P· t
LC ·100 (7)

where,

Dc(t): Deterioration-over-time coefficient at time t;
t: Time. The number of years since the start of the evaluation period;
P0: Initial performance (usually set a 1.0);
LC: Designed lifecycle of the infrastructure.

2.2.3. Integrating Uncertainty to the Model

In the field of infrastructure management, it is crucial to acknowledge that maintenance
conditions are not deterministic. They are subject to inherent uncertainties and temporal
variations. To include these uncertainties within the proposed model, the coefficient Mc,
which signifies the maintenance condition, can be defined as a lognormally distributed
random variable. The lognormal distribution is characterized by two parameters: the
mean (µMc ) and the standard deviation (σMc ). The mean, µMc , a function of the Building
Performance Indicator (BPI), expresses the relationship between the m coefficient and the
building’s performance. The standard deviation, σMc , represents the uncertainty in the
maintenance condition. It can be estimated from historical data, surveys, expert opinion, or
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as a combination in a hybrid approach. In situations where such resources are unavailable,
a heuristic approach can be adopted, setting the standard deviation as a fraction of the
mean (10–20%).

The uncertainty associated with the deterioration over time should also be considered.
The deterioration-over-time coefficient, Dc(t), which quantifies the rate of infrastructure
degradation, can be modeled as a lognormally distributed random variable. This distri-
bution can be determined based on historical data, expert opinion, or a hybrid approach,
providing a probabilistic measure of the infrastructure’s state at a specific time. The lognor-
mal distribution is defined by two parameters: the mean µDc and the standard deviation
σDc , which represent the expected value and the uncertainty of the deterioration coeffi-
cient, respectively. This approach enhances the robustness of the model, making it more
adaptable to real-world scenarios and better equipped to capture the complex dynamics of
infrastructure deterioration over time.

The lognormal distribution is proposed for this model due to its inherent properties.
It is characterized by two parameters: the mean µ and the standard deviation σ. These
parameters enable the distribution to encapsulate the inherent uncertainty and variability
in the deterioration process and maintenance conditions. Additionally, the lognormal
distribution is defined exclusively for positive real numbers. This aligns with the context
of the deterioration coefficient and the performance score, which cannot assume negative
values. This positivity property ensures that the modeled quantities adhere to their logical
and physical constraints.

2.2.4. Calibration and Validation of the Coefficients

A crucial aspect of the proposed methodology is the calibration and validation of the
maintenance coefficient (Mc) and deterioration coefficient (Dc). At present, there are lim-
ited datasets directly relating the observed seismic damage to the quantified maintenance
conditions of infrastructure components or systems. Further research should prioritize the
compilation of empirical seismic–maintenance datasets across diverse infrastructure ty-
pologies, components, and seismic events. These empirical datasets can enable continuous
calibration and validation of the coefficients underlying the fragility models.

Moreover, it is essential to leverage ongoing advancements in complementary fields to
refine the calibration methodology. For instance, integrating machine-learning techniques
such as artificial neural networks (ANNs) could assist in analyzing large empirical datasets
and identifying key correlations, and coupling ML predictions with numerical analysis
provides a means for the virtual validation of deterioration models [48,49]. Transfer-
learning methods may also help overcome limitations posed by small sample sizes [50].
Dabiri et al. [51] developed ML-based models using decision trees, ANNs, and other
techniques to predict the dispersion and median PGA parameters of building fragility
curves. Training on a database of 214 published datasets demonstrated the accurate
prediction of fragility parameters based on key building inputs, such as material, geometry,
period, etc.

By unifying empirical data collection with cutting-edge analytical techniques, the
accuracy and robustness of the coefficients can be enhanced incrementally. The fragility
models can be updated and validated in turn. This can enable the methodology to become
more precise and comprehensive over time through continual empirical grounding and
analytical refinement.

2.3. Adjust Fragility Curves Based on the Maintenance Level and the Rate of Deterioration

In this step, the baseline seismic fragility curves are adjusted based on the maintenance
level and the rate of deterioration of the infrastructure or the components. For instance,
well-maintained structures may be less vulnerable to earthquakes, resulting in shifts in
their fragility curves. In contrast, structures with poor or neglected maintenance may show
increased vulnerability, leading to adjustments in their fragility curves. The adjustment
process is intended to account for two specific parameters: the current state of the com-
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ponent or a system, based on the maintenance-level indicator (Mc), and the rate of the
deterioration-over-time indicator (D(t)).

In this step, the baseline fragility curve parameters for each damage state i are updated.
A general adjustment of θds and βds is implemented in expression (8):

θ′dsi
(t) = θdsi ·fθi(Mc, Dc(t)) = θdsi ·Dc(t)·Mc (8)

2.4. Dynamic Update of the Fragility Curves

The previous steps change the infrastructure state over time due to maintenance-
level and time-dependent deterioration, and it is essential that the seismic fragility curves
will be reupdated to reflect these changes. Thus, this step implements the re-evaluation
and reassessments of the infrastructure’s vulnerability and subsequent adjustments to
the fragility curves. Furthermore, the maintenance parameters (the maintenance-level
indicator (Mc) and the deterioration-over-time indicator (Dc)) must be monitored and
updated correspondingly. The process will be iterative, as new data will be available and
enable the refinement of the maintenance indicators and the fragility parameters.

2.5. Assessment of the Seismic Risk

In this step, the seismic risk expectancy of the infrastructure, taking into account the
maintenance indicators, is calculated. Equation (9) expresses the cumulative risk expectancy
for a T-years lifespan of the system, denoted as the TRLC. This expression comprehensively
captures the overall risk the system may encounter due to earthquake events throughout
its design lifecycle. The TRLC is calculated based on possible seismic scenarios, their
occurrence probability, and the expected consequences. Furthermore, RU expresses the
overall consequences that are expected in case of complete damage to the system, quantified
in terms of cost (US$). Figure 1 presents a general flow of the methodology.

TRCL =
[
∑T

t=1 ∑IM
m=1

(
∑N

i=1 P(dsi|IM)·DRdsi

)
·PEA(IM)

]
·RU (9)

RU =
(
∑ CR + ∑ CD

)
·CI (10)

where,

TRLC—Total risk for the infrastructure design life cycle;
DRdsi

—Damage rate of damage state i;
P(dsi|IM)—Conditional probability of being in a certain damage state i for a given IM;
T—Design lifecycle;
PEA(IM)—Annual rate of exceedance of a given IM;
CR—Repair cost (US$);
CD—Direct loss (US$);
CI—Indirect loss coefficient;
RU—Overall consequences (US$).
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3. Case Study

In this section, the methodology is demonstrated through a case study of an energy
building. Due to security concerns, the detailed plan and the actual location of the building
cannot be disclosed. However, for the purpose of demonstrating the methodology, an
alternative location will be used throughout this case study.

The infrastructure under investigation in this study is a low-voltage substation for a
hi-tech industrial complex. A low-voltage substation is primarily designed to distribute
electrical power at a lower voltage level from the main power grid to end-use consumers.
It acts as an intermediary, ensuring the efficient transmission of power to various units or
buildings within a complex. In the context of our case study, the substation is housed within
a one-story, shear-moment reinforced-concrete structure. This facility is equipped with
essential components, such as transformers, switchgear, circuits, and an uninterruptible
power supply (UPS). Additionally, it includes a comprehensive HVAC system and a
comprehensive fire-detection and suppression system to ensure safety and functionality.
The substation is in the region of Bik’at HaYarden in Israel.

3.1. Baseline Seismic Fragility Curves

The baseline seismic fragility curve for the substation is defined based on the HAZUS
methodology. The fragility curve includes four damage states: slight, moderate, extensive,
and complete. Each of these damage states is associated with a set of parameters and
conditions that are defined according to the HAZUS methodology [52]. The parameters
of each state, including the median (θi) and standard deviation (βi), of the lognormal
cumulative distribution function are included (Figure 2). Furthermore, each damage state
is coupled with a specific damage ratio. In our case, the total replacement value of the
substation is evaluated to be 10 million US dollars. Detailed information about the damage
states, descriptions, the associated parameters, and the corresponding damage ratios, are
elaborated in Tables 1 and 2.
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Table 1. Baseline fragility curve parameters and damage ratio.

Damage State θi βi Damage Ratio

DS1 Slight 0.13 0.65 0.05
DS2 Moderate 0.26 0.50 0.11
DS3 Extensive 0.34 0.40 0.55
DS4 Complete 0.74 0.40 1

Table 2. Damage state description.

Damage State Description

DS1 Slight Failure of 5% of the disconnect switches or circuit breakers, or by the
building being in the slight damage state

DS2 Moderate Failure of 40% of disconnect switches, circuit breakers, or current
transformers, or by the building being in the moderate damage state

DS3 Extensive
Failure of 70% of disconnect switches, circuit breakers, current

transformers, or transformers, or by the building being in the extensive
damage state

DS4 Complete
Failure of all disconnect switches, all circuit breakers, all transformers,
or all current transformers, or by the building being in the complete

damage state

3.2. Analysis of Building Performance Coefficients

The building maintenance conditions were surveyed several times, and the total
score of the Building Performance Indicator (BPI) from six recorded surveys is detailed in
Table 3. The surveys included records on building structure, exterior envelope, interior
finishes, power supply, water and sewerage systems, HVAC (heating, ventilation, and
air conditioning), fire detection and suppression, elevators and escalators, and peripheral
infrastructure.

The average BPI score is 85.50, with a standard deviation of 1.58. In this case study,
it is intended to consider the uncertainty of the maintenance conditions. Therefore, the
BPI score is determined as a lognormal distributed variable, as described in Equation (11).
Based on the dataset with an observed mean of 85.5 and a standard deviation of 1.58,
the parameters of the normal distribution were determined. The mean of the normal
distribution, corresponding to the logarithm of the variable, is found to be approximately
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4.448, and the standard deviation of the normal distribution is identified as approximately
0.018 (as described in Equation (11)).

BPI ∼ logN ( µBPI = 4.448, σBPI = 0.018) (11)

Table 3. Building Performance Indicator (BPI) records.

System Jan-17 Jan-19 Jan-21 Apr-22 Jul-22 Oct-22 Feb-23

Structure 80.0 88.0 90.0 90.0 90.0 90.0 90.0
Exterior Envelope 80.7 89.3 82.2 82.2 87.0 87.0 90.0
Interior Finishes 86.2 86.2 86.2 83.7 84.7 84.7 86.7
Power Supply 87.1 84.0 86.2 86.2 86.2 86.2 88.0

Water and Sewerage System 70.0 70.0 70.0 70.0 80.2 85.0 85.0
HVAC 64.8 70.0 90.0 90.0 90.0 90.0 90.0

Fire Detection and Suppression 95.0 95.0 90.0 90.0 90.0 87.0 90.0
Elevators and Escalators - - - - - - -
Peripheral Infrastructure 90.0 82.5 67.5 67.5 75.0 75.0 75.0

BPI Score 84.0 83.3 85.3 84.5 86.5 86.8 88.1

The rate of the deterioration-over-time coefficient (D) is evaluated based on the in-
frastructure properties. It is required to determine the factors (SR, EC, and MP) and the
corresponding weights (WUI , WEC, WMP). In our case, the service regime is determined
as intensive service (4), the environmental conditions are moderate (3), and the material
properties are durable materials (2). The weights are equally defined and were set to 1.0.
The initial performance (P0) was set to 1.0, the a0 set to 10.0, and the designed lifecycle
(LC) of the infrastructure was determined to be 75 years. In this case, the P variable was
also defined with uncertainty, and the P score was determined as a lognormal distributed
variable, as described in Equation (12).

P ∼ logN ( µP = 3.03, σP = 0.198) (12)

3.3. Risk Calculations

The location of the substation is in the Bik’at HaYarden region. In order to get a full
hazard curve for the location, an approximation of the curve was executed based on the
Geophysical Institute of Israel (GII) data of the annual-rate ground-motion probabilities
of exceedance for 2%, 5%, and 10% probability in 50 years [53]. The full hazard curve is
presented in Figure 3.
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In the subsequent phase of our analysis, we computed the risk associated with the
substation. To account for uncertainty, a Monte Carlo simulation was utilized. A total of
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1000 simulations were performed (n = 1000) for the described case study. Figure 4 presents
the variation of the annual risk across 1000 simulations over the lifecycle of the substation.
Each simulation is represented in gray, with the mean risk across all simulations highlighted
in dark blue. The risk for Year 0 (beginning of Year 1) represents the scenario without
considering maintenance and deterioration. Table 4 displays the mean value, standard
deviation, minimum and maximum values, as well as the 25th, 50th, and 75th percentile
values of the generated data for the BPI and P, and the results for the total risk over the
lifecycle (TRLC). For the scope of this case study, we primarily focused on the risk derived
from the repair costs of the substation. However, for a comprehensive risk assessment, it is
essential to incorporate both direct and indirect impacts, as described in Equation (9).
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Table 4. Simulation values description.

P BPI TRLC (US$)

Mean 21.05 85.45 1,330,458
Std. 4.23 1.57 50,953

Min Value 10.55 80.03 1,205,265
25% (1st Quartile) 17.89 84.39 1,292,154

50% (Median) 20.81 85.35 1,327,313
75% (3rd Quartile) 23.75 86.49 1,362,107

Max Value 38.13 90.27 1,543,828

Furthermore, Figure 5 displays the distribution of the generated P values and BPI
values from the Monte Carlo simulation. Meanwhile, Figure 6 illustrates the distribution
of the total risk over the lifecycle based on 1000 Monte Carlo simulations. The histogram
emphasizes the frequency of various risk outcomes, offering insights into the variance and
central tendency of the anticipated lifecycle risks. However, it should be noted that the
histograms of the TRLC are not always a good visual for risk managers; therefore, it is
proposed to add specific percentiles (90%, 95%, 99%) as a more targeted and actionable
metric of risk reliability and power for risk managers. These percentiles can serve as more
precise indicators, offering a focused approach to seismic risk evaluation and maintenance
planning.
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4. Sensitivity Analysis

In this section, a sensitivity analysis is conducted. Sensitivity analyses assess how
varying values of independent variables, such as the BPI score and P score, influence a
specific dependent variable. In our context, the dependent variable of interest is the TRLC.
Therefore, the sensitivity analysis is aimed at analyzing the BPI score and the P score.

In order to gain a comprehensive understanding of the BPI score’s influence, a set
of five distinct Monte Carlo simulations were conducted, each with n = 500 trials. These
simulations were performed for five different mean BPI-score values: 75, 80, 85, 90, and
95. In this set of simulations, the standard deviation was set at 20% of the mean BPI value,
and any generated BPI values exceeding 100 were regenerated. In total, an additional
2500 simulations were carried out.

Figure 7 illustrates the sensitivity of the total risk to variations of the mean BPI.
As the mean BPI ascends, there is a discernible decline in the total risk. This inverse
relationship suggests that, as the building performance index improves (i.e., increases), the
associated risk is reduced. This aligns with the expectation that buildings with superior
performance metrics would likely possess a reduced risk of incurring damage or failure.
Then, for a deeper understanding of the relationship, and to quantify the change in risk
for a unit change in BPI, a regression model was executed. The linear regression model
is demonstrated in Figure 7, exhibiting an R2 value of 0.982. According to the regression
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model, each unit increase in BPI corresponds to a decrease in risk by USD 13,971. In other
words, a change of one unit in the BPI will impact 0.1% of the TRLC. Additionally, Figure 8
presents a box plot illustrating the distribution of the TRLC for each distinct BPI value.
The figure presents the median risk, and as the BPI increases, the median risk decreases,
aligning with our earlier findings. The height of each box represents the interquartile
range (IQR), which is the interval between the 25th and 75th percentiles. The IQR remains
relatively consistent across different BPI values, indicating that the spread or variability
in risk is consistent. The points outside the whiskers represent potential outliers. It is
noticeable that there are some outliers in the data. This indicated the higher possibility of
extreme scenarios.
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Analysis of the distribution of risks for each BPI value was carried out. Table 5 and
Figure 9 present the distribution of the TRLC for different BPI values. It can be noticed that,
as the BPI increases, there is a shift to the left in the distributions, indicating a decrease
in the total risk, which aligns with our earlier findings from the regression analysis. This
indicates that effective maintenance significantly mitigates the seismic risk, while lack of
maintenance increases the seismic risk.

Table 5. Descriptive statistics of the total risk over the lifecycle (TRLC) for various BPI values,
showcasing the mean, standard deviation, minimum, interquartile ranges, and maximum values for
each set of simulations (n = 500).

Mean BPI BPI = 75 BPI = 80 BPI = 85 BPI = 90 BPI = 95

n= 500 500 400,500 500 500
Mean 1,450,061 1,359,205 1,276,655 1,219,459 1,170,639
Std. 62,848 57,358 59,670 51,481 51,742
min. 1,271,963 1,184,940 1,135,168 1,061,887 1,059,202
25% 1,407,262 1,318,910 1,234,882 1,184,530 1,135,560
50% 1,443,205 1,355,042 1,274,359 1,214,930 1,166,577
75% 1,490,181 1,398,849 1,316,040 1,251,680 1,201,536
max. 1,645,999 1,531,222 1,514,449 1,391,572 1,360,661

To analyze the P-score value, an additional five distinct Monte Carlo simulations were
carried out, each consisting of n = 400 trials (a total of an additional 2000 simulations).
These simulations were implemented for five different mean P-score values. These values
were determined based on variations in a single factor, MP. The MP values were set to 1, 2,
3, 4, and 5, corresponding to P scores of 17.42, 21.13, 24.83, 28.54, and 32.25, respectively.
Table 6 portrays a summary of the total risk over the lifecycle (TRLC) statistics for the
various P scores, detailing the mean, standard deviation, minimum, interquartile ranges,
99th percentile, and maximum values for each simulation set. Figure 10 presents that the
linear relationship between the parameter P and the mean total risk over the lifecycle (LC)
is evident. An R2 value of near 1.00 indicates a very strong positive correlation. As the P
score increases, there is a corresponding rise in the mean total risk over the LC. In addition,
an increase of one unit of the P-score value will increase the TRLC by USD 12,071. Figure 11
provides a detailed perspective of the risk distribution patterns associated with different
P values. The figure highlights the variance shift in the TRLC as P increases. For lower P
values, the total risk is relatively more concentrated, as shown by the narrower interquartile
range (IQR). As P grows, the spread of the risk data becomes more expansive, indicating a
broader dispersion and higher variability in the TRLC. This trend is particularly visible in
the lengthening of the boxplots’ whiskers and the increased number of outliers at higher P
values.

Table 6. Descriptive statistics of the total risk over the lifecycle (TRLC) for various P scores, showcas-
ing the mean, standard deviation, minimum, interquartile ranges, 99th percentile, and maximum
values for each set of simulations (n = 400).

Mean P P = 17.42 P = 21.13 P = 24.83 P = 28.54 P = 32.25

n= 400 400 400 400 400
Mean 1,285,687 1,331,761 1,376,718 1,427,703 1,475,491
Std. 40,487 50,175 60,222 72,433 87,367
min. 1,191,755 1,218,358 1,247,397 1,265,752 1,291,696
25% 1,256,330 1,293,241 1,336,244 1,375,846 1,414,411
50% 1,281,857 1,324,765 1,371,375 1,417,702 1,464,657
75% 1,310,973 1,362,096 1,409,387 1,471,124 1,524,204
99% 1,419,327 1,460,045 1,549,155 1,619,376 1,699,655
max. 1,439,320 1,504,185 1,579,054 1,720,524 1,822,565
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Figure 10. Regression analysis of the relationship between P and the mean total risk over the lifecycle
across different simulations. The blue dots represent the mean total risks obtained from simulations at
different P values. The red dashed line depicts the linear regression fit, characterized by the equation
and a coefficient of determination R2.
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Figure 12 provides a comprehensive visualization of the risk distribution for the
lifecycle across a range of P scores. Each histogram represents the frequency distribution of
total risks associated with a specific P value. It is noticeable that the distribution of risks
shifts as the P value changes; it fits to earlier findings.
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Figure 12. Distributions of the total risk over the lifecycle (TRLC) for different mean P-score values.
Each subplot represents the histogram of the TRLC outcomes from the Monte Carlo simulations for a
specific mean P-score value.

5. Results and Discussion

The results from the Monte Carlo simulation illustrated a comprehensive analysis of
the risk patterns for an infrastructure project spanning a 75-year design lifecycle. These
results clarify the interaction between the BPI and P scores and their cumulative effect
on the total risk over the lifecycle (TRLC). Specifically, it was observed that both the BPI
and the P score possess statistically significant correlations with the TRLC. This finding
indicates that, as the infrastructure’s performance enhances, there is a concurrent mitigation
in the associated risk.
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In addition to the primary simulation, a sensitivity analysis was undertaken to delve
deeper into the specific influences of the BPI score and the P score on the total risk over the
lifecycle (TRLC). This rigorous analysis aimed to recognize the individual and comparative
impacts of these two parameters on the overall risk dynamics of the infrastructure project.

The sensitivity analysis relating to the BPI score revealed that, as the BPI score ascends,
indicating an enhanced performance index of the infrastructure, there is a concurrent reduc-
tion in the associated risk. This trend signifies the inherent balance between infrastructure
performance and the potential risks associated with it. A higher BPI score is synonymous
with a better-performing infrastructure, and it is intuitively understood that better perfor-
mance equates to reduced risks. However, the exact quantification and relationship were
established through this analysis, enabling more informed decision-making.

The sensitivity analysis concerning the P score highlighted its strong correlation with
the TRLC. A notable trend observed was that higher P values, indicative of deteriorating
infrastructure conditions, were associated with increased seismic risk variance. Scenarios
characterized by elevated P scores intrinsically possess a wider spectrum of potential risks.
This suggests that infrastructures in poorer conditions come with greater uncertainties
concerning potential risks. In practical terms, for stakeholders or decision-makers, a higher
P value does not only translate to an increase in risk, but also signifies a heightened
unpredictability in potential outcomes. This insight underscores the importance of robust
risk-mitigation strategies, especially in high-P scenarios, to cater to the broader range of
potential risks.

6. Practical Applicability of the Research

The methodology proposed in this paper offers a comprehensive approach to assess
and manage the seismic risks associated with infrastructure systems, specifically focusing
on integrating maintenance considerations with seismic fragility curves. The practical
applicability of this research can be broadly classified into the following domains:

• Decision-making for infrastructure maintenance—The framework provides a quantita-
tive basis for making maintenance decisions. By considering not just the structural
attributes but also the state of maintenance, decision-makers can allocate resources
more efficiently, targeting the most vulnerable components for repair or upgrades.

• Seismic risk assessment—Integrating maintenance factors into seismic fragility curves
allows for a more realistic and dynamic evaluation of seismic risks. This approach is
precious for areas prone to seismic events, as it enhances preparedness and response
strategies.

• Policy and Regulation—Our methodology can serve as a foundation for develop-
ing more comprehensive policies and regulations related to infrastructure resilience
against seismic events. Regulatory bodies can adopt our study’s metrics and indicators
for standardization.

• Economic efficiency—The proposed framework enables a more efficient allocation of
resources by focusing on both maintenance and seismic resilience, potentially leading
to significant cost savings in the long term.

7. Conclusions

This paper aims to contribute to seismic risk management by providing a comprehensive–
innovative approach towards earthquake-resilient infrastructure. A novel approach to
seismic risk management by integrating maintenance factors into seismic fragility curves
is introduced. The model uniquely focuses on both maintenance conditions and natural
infrastructure deterioration, offering a holistic perspective on seismic risk assessment.

The methodology is validated through a case study on a low-voltage substation in
Bik’at HaYarden, utilizing a Monte Carlo simulation and sensitivity analysis. Findings re-
veal a significant correlation between maintenance practices and seismic risks, highlighting
the importance of maintenance. Poor maintenance was also found to increase uncertainties
in seismic risk assessments, emphasizing the need for thorough analysis by stakeholders.
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In summation, the essence of this research lies in its revelation of the pivotal role main-
tenance plays in seismic risk management for infrastructure. By integrating maintenance
parameters with seismic considerations, this study paves the way for a more holistic and
deeper understanding of infrastructures’ earthquake resilience. The implications of this
work are profound, presenting stakeholders with a paradigm that emphasizes proactive
maintenance as a cornerstone for seismic risk mitigation.

The adaptable framework presented allows for calibration to incorporate new data
for robust decision-making. Further work can focus on extending this approach across
infrastructure typologies and validation through physical models. This study launches
new opportunities for creating earthquake-resilient built environments by bridging the
maintenance–seismicity interplay.

8. Limitations

This study is constrained by the lack of comprehensive data to further calibrate the
proposed equations. While the methodology was applied to a specific case, the absence of
extensive datasets may limit its abstraction. These limitations highlight areas for future
research and data-gathering.
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Appendix A. Classification and Grading of Service Regime, Environmental
Conditions, and Material Properties

Service regime (SR): This is measured on a scale from 1 to 5, where 1 is very-light
usage and 5 is very-high usage.

1. Very-light service regime (e.g., a residential road)
2. Light service regime (e.g., a small-town main road)
3. Moderate service regime (e.g., a city street)
4. Intensive service regime (e.g., a busy city street)
5. Very-intensive service regime (e.g., a highway or freeway)

Environmental conditions (EC): This is measured on a scale from 1 to 5, where 1 is
very-light environmental conditions and 5 is very-harsh conditions.

1. Very-mild conditions (e.g., indoor, climate-controlled, stable temperature and humid-
ity, no exposure to weather or environmental stressors such as extreme wind storms,
no heat and tow cycles)

2. Mild conditions (e.g., outdoor in a region with mild weather, moderate temperature
and humidity, limited exposure to weather extremes)

3. Moderate conditions (e.g., outdoor with some weather extremes, occasional exposure
to high or low temperatures, humidity variations, or mild salinity)

4. Harsh conditions (e.g., outdoor with regular weather extremes, frequent exposure to
high or low temperatures, humidity variations, or moderate salinity)

5. Very-harsh conditions (e.g., coastal areas with high salinity, areas with extreme tem-
peratures or humidity, frequent exposure to severe weather conditions)

Material properties (MP). This is measured on a scale from 1 to 5, where 1 is very-
durable materials and 5 is materials highly susceptible to deterioration.

1. Extremely durable materials (e.g., advanced composites)
2. Durable materials (e.g., stainless steel, concrete)
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3. Moderately durable materials (e.g., steel)
4. Less-durable materials (e.g., URM—unreinforced masonry wall)
5. Highly susceptible to deterioration (e.g., wood, porose concrete)
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