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Abstract: This study investigated the effect of the building data knowledge level on seismic risk
estimation for municipal building stocks, focusing on identifying the characteristics that influence
loss estimation bias. Fifteen municipalities in two Slovenian regions were analysed using twelve
building data knowledge levels, defined by combining different knowledge levels about building
location and floor area. The knowledge levels ranged from those using data aggregated at the
municipality level to those using building-specific data. The bias was quantified as the log residual
between the expected annual losses estimated for the given knowledge level and the base-case level,
characterised by building-specific data. The results indicate that loss estimation bias is affected by
both the building location and floor-area knowledge levels. The data on building density distribution
across the municipality and building-class-specific floor areas are sufficient for estimating loss with
low bias with respect to the base-case level. The effect of potential data improvement on bias reduction
can be assessed using building stock homogeneity and hazard variation indexes determined from
readily available data. Further research is needed to explore loss estimation bias for building data
knowledge levels not considered in this study and generalise the concepts to other regions and
building classifications.

Keywords: seismic risk; loss estimation; bias; building data knowledge level; municipal building
stock; limited data

1. Introduction

Information about the seismic risk to building stocks at the level of administrative
units such as municipalities supports decision making about strengthening the community
against earthquakes. Because of the numerous buildings considered in such risk estimation,
the buildings are typically described by a few essential characteristics needed to construct
the building stock exposure model considered in risk assessment (e.g., [1–3]). These
characteristics of buildings can be defined at different knowledge levels. Building-specific
data, accounted for in some studies (e.g., [3,4]), represent a relatively high building stock
knowledge level. However, the knowledge available about the building stock is usually less
comprehensive. It is much more common that only aggregated building data are readily
available for use in seismic risk assessment (e.g., [5]). In such cases, additional bias can be
introduced into the seismic risk estimation.

The effect of the building data knowledge level on seismic risk assessment has been
investigated in several studies. Bal et al. [6] studied the effect of exposure data and ground-
motion field resolution on event loss for an idealised city and a region in Turkey. They
found that a crude resolution level does not imply a significantly biased result. A similar
study by Dabbeek et al. [7] explored the effect of exposure data resolution on the expected
annual loss (EAL) at the national and sub-national levels. In their study, the average bias at
the national level was estimated at 27% with respect to the base-case results. Kalakonas
et al. [8] investigated the effects of various exposure model resolutions on risk estimation
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for Guatemala. They concluded that a coarse resolution at an urban level should be
refined to avoid biased results. The importance of the geographical scale used to represent
the building exposure model was also highlighted by Douglas [9] and Ordaz et al. [10].
Bazzurro and Park [11] studied the effect of location data aggregation for a selected building
type in California. They found that aggregating data affected the loss curve more than the
EAL. Senouci et al. [12] explored different building aggregation options and their effects
on the uncertainties of event loss estimates. Sanderson and Cox [13] compared the losses
estimated using national and local building inventories and found that using the national
inventory underpredicted the losses aggregated at the city level. Some studies have focused
on the feasibility of developing fragility and vulnerability models using limited data. Basic
fragility and vulnerability models can be established using information from freely available
databases (e.g., [14,15]), and additional data obtained using an interview-based approach
(e.g., [16]) can further improve such models (e.g., [17–20]). Methods for incorporating new
data into risk estimation [21,22] and improving the accuracy of risk estimation based on a
given level of data [23–26] have also been developed.

Previous studies have shown that the bias in seismic risk estimation can be reduced
by upgrading the building data knowledge level. However, collecting additional data is a
demanding process that requires resources and is thus not always justified. The decision
about whether upgrading the building data knowledge level is worth the effort requires an
understanding of the effect of new data on the accuracy of risk estimation. Moreover, new
data can affect bias reduction differently for different administrative units. Therefore, an
understanding of which characteristics of administrative units are indicative of the degree
of bias reduction attainable with new data is necessary for additional data collection to
be effective.

The current study addressed the problems described by investigating the effect of
gradually upgrading the building data knowledge level on seismic risk estimation, with
the ultimate goals of (1) identifying which gradual improvements to the knowledge level
significantly contribute to bias reduction and (2) developing indexes based on readily avail-
able data that can be used to estimate in advance the degree of bias reduction achievable
by introducing new data. Fifteen municipalities in two Slovenian regions were analysed
using each municipality’s EAL as the risk indicator. The building data knowledge levels
were defined by combining different knowledge levels about building location (i.e., the
location knowledge level) and floor area (i.e., the floor-area knowledge level). The location
knowledge level affects the EAL because of the potential bias in estimating the seismic
hazard. The floor-area knowledge level determines the accuracy of defining the floor area
of each building, which affects the outcome of the consequence assessment for the selected
risk indicator.

Section 2 describes the seismic risk estimation procedure used in this study. Section 3
presents the building stock data for the investigated municipalities. Section 4 presents
the method for determining the bias in seismic risk estimation for different building data
knowledge levels. The method considers twelve building data knowledge levels, with the
base-case level defined by building-specific data. The bias results are presented in Section 5,
and the municipal characteristics affecting the bias are identified in Section 6.

2. Estimation of Seismic Risk for Municipal Building Stocks

The seismic risk for municipal building stocks was quantified in this study using the
EAL as a measure of the direct economic loss resulting from physical damage to buildings.
The EAL at the municipality level was obtained by summing the EALs of the individual
buildings in the municipality. For the base-case knowledge level, the EALs of individual
buildings were estimated using the available building-specific data. However, for lower
knowledge levels, building data were adjusted to be consistent with the assumptions at
that knowledge level. The assumptions for each knowledge level considered in this study
are presented in Section 4.
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The general methodology used for the estimation of EAL at the building level com-
prises (1) hazard assessment, (2) damage assessment and (3) consequence (loss) assessment
and can be divided into the following sub-steps:

- Step 1: Assessment of seismic hazard in terms of seismic hazard curves Hi(im), each
representing the mean annual frequency of exceedance of a given intensity level (im)
at the location of the ith building.

- Step 2a: Assessment of seismic fragility curves for the designated damage states of
the ith building.

- Step 2b: Estimation of the mean annual frequencies of exceedance of the designated
damage states λi(DS ≥ dsd), where d is the index of the damage state.

- Step 2c: Estimation of the mean annual frequencies of occurrence of the designated
damage states λi(DS = dsd). For the most severe damage state, λi(DS = dsd) is equal
to λi(DS ≥ dsd). For other damage states, λi(DS = dsd) is equal to the difference
between λi(DS ≥ dsd) and λi(DS ≥ dsd+1).

- Step 3a: Estimation of the expected economic losses given the occurrences of the
designated damage states Ci(DS = dsd).

- Step 3b: Calculation of EAL by summing the products of λi(DS = dsd) and Ci(DS = dsd)
over all designated damage states.

In the current study, the first step was performed by using the peak ground acceleration
(PGA) as the ground-motion intensity measure. To assess the seismic hazard curves, the
municipalities were first divided into grid cells with an approximate size of 0.5 × 0.5 km.
The centre of each cell represented the calculation point for the assessment of the hazard
curve, which was then applied to all buildings within the cell. The hazard curves, Hi(pga),
were defined as follows:

Hi(pga) = λi(PGA > pga), (1)

where λi(PGA > pga) is the mean annual frequency of the PGA exceeding the designated
value, pga, for the grid cell containing the ith building. The hazard curves were calculated
for soil type A [27] using the OpenQuake engine [28,29] and the ESHM2020 model [30]. For
other soil types, the PGA values from the hazard curves for soil type A were transformed
based on the soil factors proposed in the draft of the new Eurocode 8 [31], as in a previous
study [32].

In the second step (damage assessment), five damage states were considered, consis-
tent with the HAZUS methodology [33]: no-to-minor damage (DS0), slight damage (DS1),
moderate damage (DS2), extensive damage (DS3) and complete damage (DS4). A detailed
description of damage associated with each damage state can be found elsewhere [33].
The mean annual frequency of exceedance of the dth damage state for the ith building,
λi(DS ≥ dsd), was calculated as follows:

λi(DS ≥ dsd) =
∫ ∞

0
Pi(DS ≥ dsd|PGA = pga)

∣∣∣∣dλi(PGA > pga)
dPGA

∣∣∣∣dPGA, (2)

where Pi(DS ≥ dsd|PGA = pga) is the seismic fragility function of the ith building for the
dth damage state, defined as the conditional probability of exceeding the dth damage state
given the PGA, and

∣∣∣ dλi(PGA>pga)
dPGA

∣∣∣ is the absolute value of the derivative of the seismic
hazard curve at the location of the ith building.

The fragility functions were defined at the building class level, as is typical in large-
scale seismic risk assessment (e.g., [3,33,34]). Twenty building classes were defined based
on the load-bearing structure material, construction period and number of storeys (Table 1),
as in a previous study [3,4].
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Table 1. Definition of building classes based on the material of the load-bearing structure, construction
period and number of storeys.

Building Class Load-Bearing
Structure Material Construction Period Number of Storeys

1

Masonry
(brick, stone)

≤1964
1–32 1965–1981

3 ≥1982
4 ≤1964

4 or more5 1965–1981
6 ≥1982

7

Reinforced concrete

≤1964
1–38 1965–1981

9 ≥1982
10 ≤1964 4 or more
11 1965–1981 4–6
12 ≥1982 4–6
13 1965–1981 7 or more
14 ≥1982 7 or more

15

Unknown, other

≤1964
1–316 1965–1981

17 ≥1982
18 ≤1964

4 or more19 1965–1981
20 ≥1982

In terms of the load-bearing structure material, a distinction between masonry (brick
or stone) and reinforced concrete buildings was made since the vast majority of buildings
in Slovenia are made of these materials. All other load-bearing structure materials (i.e.,
steel and timber buildings and buildings with mixed or unknown materials of the load-
bearing structure) were grouped in a third material class. It is important to highlight that
buildings with steel and timber structures were not segregated into distinct classes due to
their minimal representation in the building stock.

A distinction was made between periods of construction based on standards for
earthquake-resistant design in Slovenia and the former Yugoslavia, which extended to
the territory of today’s Slovenia until 1991 (Table 1). Buildings constructed up to 1964
were designed with no or minimal consideration for lateral loads and represented the first
construction period category. The first building code that explicitly dealt with seismic
actions was effective from 1964 until 1981 and was issued after the Skopje earthquake. The
buildings built in this period constituted the second construction period category. The third
category included buildings constructed after the implementation of the second generation
of earthquake-resistant design codes in 1982. These regulations remained in effect until
2008 when Eurocodes became compulsory in Slovenia. Nonetheless, no distinction was
made between buildings constructed between 1982 and 2008 and those constructed after
2008 due to the relatively limited number of buildings from the latter period and the already
substantial earthquake resistance of buildings from the 1982–2008 timeframe.

In terms of the number of storeys, two or three classes per material and construction
period were defined (Table 1), thus considering that the seismic performance is affected
by the height of the building, mainly due to its direct effect on the building’s vibration
period. Buildings with up to three storeys, four to six storeys and seven storeys or more
were classified as low-, medium- and high-rise buildings, respectively. This classification is
similar to that used in the literature (e.g., [33,35,36]).

The data needed to classify buildings were obtained from the Slovenian Real Estate
Register [37]. In addition to those data, building-specific parameters were obtained, includ-
ing the buildings’ coordinates and net floor areas, for use in the EAL calculation. These
parameters, aggregated at the municipality level, are presented in Section 3.
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For each building class, fragility functions were defined based on the fragility model
presented by Babič et al. [4] in the form of a lognormal cumulative distribution function,
which is typically assumed (e.g., [33,38]). However, a simpler definition of fragility func-
tions was used than that presented by Babič et al. [4], who randomly simulated the fragility
functions for a given building class to account for the uncertainty in the building class’s
median fragility and the variability in building fragility within the class. In this study,
one fragility function per building class and damage state, defined as the average fragility
function of those simulated in [4], was considered, thus disregarding the effect of the
uncertainty in the fragility. There were two reasons for this simplification. Firstly, the study
focused on the bias in EAL resulting from the building data knowledge level rather than
the variability in EAL caused by the uncertainty in the fragility. Secondly, the bias in EAL
was quantified by the log ratio of two EAL values (log residual) (see Section 4). Changes
in the fragility functions have a lower impact on the EAL ratio than on individual EAL
values because they partly cancel each other out. The medians and the lognormal standard
deviations of the fragility function are presented in Table 2.

Table 2. Median (θ) and lognormal standard deviation (β) of the damage-state PGA for each building
class and damage state considered in this study.

Building Class θDS1 βDS1 θDS2 βDS2 θDS3 βDS3 θDS4 βDS4

1 0.13 0.44 0.20 0.47 0.38 0.50 0.71 0.52
2 0.18 0.45 0.27 0.48 0.53 0.51 0.98 0.52
3 0.19 0.44 0.30 0.47 0.58 0.50 1.07 0.52
4 0.12 0.46 0.17 0.51 0.34 0.55 0.62 0.58
5 0.17 0.45 0.24 0.51 0.46 0.55 0.85 0.57
6 0.21 0.45 0.29 0.50 0.55 0.54 1.03 0.57
7 0.10 0.44 0.18 0.47 0.39 0.50 0.80 0.52
8 0.14 0.44 0.25 0.47 0.52 0.50 1.07 0.52
9 0.17 0.44 0.30 0.47 0.64 0.50 1.31 0.52

10 0.13 0.47 0.22 0.54 0.49 0.60 0.95 0.63
11 0.19 0.46 0.31 0.53 0.69 0.59 1.34 0.62
12 0.22 0.45 0.36 0.53 0.81 0.58 1.56 0.61
13 0.16 0.48 0.32 0.59 0.76 0.67 1.47 0.72
14 0.19 0.48 0.38 0.58 0.89 0.67 1.72 0.71
15 0.11 0.62 0.15 0.65 0.33 0.68 0.76 0.69
16 0.14 0.63 0.21 0.65 0.44 0.68 1.03 0.70
17 0.20 0.63 0.28 0.66 0.61 0.69 1.42 0.70
18 0.14 0.64 0.23 0.70 0.51 0.75 0.92 0.78
19 0.21 0.64 0.35 0.70 0.77 0.75 1.41 0.78
20 0.37 0.64 0.61 0.70 1.35 0.75 2.46 0.78

In the third step in estimating EAL at the building level, the EAL was calculated for
each building of the municipality’s building stock as follows:

EALi = ∑4
d=1 λi(DS = dsd)Ci(DS = dsd). (3)

The expected direct economic loss for the ith building in the case of the dth damage
state, Ci(DS = dsd), was calculated as follows:

Ci(DS = dsd) = Ai·CR·cd. (4)

where Ai is the net floor area of the ith building, CR is the average building replacement cost
per m2 of the net floor area, and cd is the ratio between the repair costs for the dth damage
state and CR. The areas Ai were obtained from the Real Estate Register [37] (see Section 3).
The costs of new construction and the demolition and removal of the damaged building
were taken into account in estimating CR. The cost of new construction was estimated to be
EUR 1100 per m2 of net floor area, based on the construction costs for 2020 obtained from a
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Slovenian construction cost database [39]. The estimated value includes a tax rate of 9.5%.
The cost of the demolition and removal of the damaged building was estimated based on
previous studies [40–42], in which it varied between 8% and 15% of the new construction
cost. On that basis, the assumed cost of reconstruction was EUR 1250 per m2 of the net
floor area, which is 13.5% more than the cost of a new building. The cd ratios were defined
based on the HAZUS methodology [33]. For damage states DS1–DS4, they are equal to
0.02, 0.1, 0.4 and 1.0, respectively.

Finally, based on the values of EAL estimated for each building (Equation (3)), the EAL
at the municipality level was calculated as follows:

EAL = ∑ EALi, (5)

thus considering that the EAL for a portfolio of properties can be obtained by summing the
EALs estimated for each of the properties (e.g., [43]).

3. Municipalities Investigated and Their Seismic Hazard

The municipalities investigated are located in two Slovenian regions (Figure 1a). The
first region (the Eastern region) is located in the northeastern part of Slovenia, close to
the Austrian border. It contains nine municipalities, i.e., Tišina, Radenci, Gornja Radgona,
Apače, Sveta Ana, Benedikt, Šentilj, Pesnica and Kungota (see Figure 1b). The second
region (the Western region) is located in the western part of the country, near the Italian
border. It contains six municipalities, i.e., Kanal, Brda, Nova Gorica, Šempeter–Vrtojba,
Renče–Vogrsko and Miren–Kostanjevica (Figure 1c). The two regions are approximately
200 km apart.

The knowledge level of the data on the building stock in Slovenia is relatively good
since quite a significant amount of building characteristics data is stored in the Real Estate
Register [37]. Some of the basic building characteristics aggregated at the municipality
level are presented below. Please note that the data from [37] refer to building units, which
can either be entire buildings or parts of buildings. As the distinction between these two
categories is not evidenced in [37], it is also omitted in this study, and all building units
are termed ‘buildings’. Table 3 shows the number of buildings in a single municipality,
the municipality area, the total net floor area of all buildings in the municipality and the
number of buildings per square kilometre.

Table 3. Number of buildings, total floor area, municipality area and number of buildings per square
kilometre of each municipality.

Municipality Municipality Label Buildings Net Floor Area of
Buildings (m2)

Municipality
Area (km2)

Buildings per
km2

Ea
st

er
n

re
gi

on

Benedikt E-B 775 174,167 24.1 32.2
Radenci E-R 1653 456,914 34.1 48.5
Apače E-A 1219 247,729 53.5 22.8

Gornja Radgona E-GR 2542 762,810 74.6 34.1
Tišina E-T 1274 254,765 38.8 32.8

Sveta Ana E-SA 715 157,652 37.2 19.2
Šentilj E-Š 2550 657,876 65.0 39.2

Pesnica E-P 2441 540,243 75.8 32.2
Kungota E-K 1669 365,958 49.0 34.1

W
es

te
rn

re
gi

on Nova Gorica W-NG 7451 2,903,638 279.5 26.7
Miren–Kostanjevica W-MK 1708 440,786 62.8 27.2

Renče–Vogrsko W-RV 1478 408,520 29.5 50.1
Šempeter–Vrtojba W-ŠV 1878 780,942 14.9 126.0

Brda W-B 1971 527,752 72.1 27.3
Kanal W-K 1638 549,967 146.5 11.2
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Figure 1. (a) Locations of the Western (red) and Eastern (blue) regions and municipalities in the
(b) Eastern and (c) Western region.

In the Western region, the largest municipality is Nova Gorica, with an area of
279.5 km2. Nova Gorica also has the largest number of buildings (7451) and the largest
total net floor area of buildings (2,903,638 m2). However, the buildings are not evenly
distributed across the municipality; most are situated in an urban area around the city of
Nova Gorica, while the rest of the municipality is mostly rural. The smallest municipality
in terms of area is Šempeter pri Gorici, but it has more buildings than, for example, the
municipality of Kanal. Šempeter pri Gorici also has the highest number of buildings per
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square kilometre (126). In terms of the total net floor area, Renče–Vogrsko is the smallest,
with 400,000 m2. It also has the lowest number of buildings.

In the Eastern region, the areas of the municipalities and the number of buildings per
square kilometre are more uniform than in the Western group. The largest municipality
is Gornja Radgona, with 76.6 km2 of total area, followed by Šentilj with 65.0 km2. These
municipalities have almost the same number of buildings (i.e., about 2550), with Gornja
Radgona having approximately 16% more total net floor area. The municipalities with the
fewest buildings are Benedikt and Apače, with only 775 and 715 buildings, respectively.

Based on the Real Estate Register data, the buildings in the municipalities were further
classified into the building classes defined in Section 2. Table 4 reports the percentage of
buildings in each building class relative to the total number of buildings in the municipality
and the percentage of the total net floor area of each building class relative to the total net
floor area in the municipality. In the Western region, most buildings are in building class
1 (low-rise masonry buildings built before 1964). In contrast, in the Eastern region, most
buildings are in building class 3 (low-rise masonry buildings built after 1982). Based on
the net floor area percentages, the municipalities with the highest numbers of high-rise
buildings are Nova Gorica, Šempeter–Vrtojba and Kanal in the Western region and Radenci,
Šentilj and Gornja Radgona in the Eastern region.

Table 4. Percentage of buildings in each building class relative to the total number of buildings in the
municipality and the percentage of the total net floor area of each building class relative to the total net floor
area in the municipality. The green and red colours indicate higher and lower percentages, respectively.

Building Class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E-B
No. Buildings 15 14 38 0 0 1 0 0 1 0 0 0 0 0 9 5 18 0 0 0
Floor area 10 13 40 0 0 5 0 0 2 0 0 0 0 0 6 4 19 0 0 1

E-R
No. Buildings 20 29 28 0 0 0 1 2 2 0 1 0 0 0 3 8 6 0 0 0
Floor area 13 21 22 1 1 1 3 10 5 1 3 3 4 0 2 5 6 0 0 0

E-A
No. Buildings 25 22 39 0 0 0 0 0 0 0 0 0 0 0 6 2 5 0 0 0
Floor area 20 21 41 0 0 0 0 1 0 0 0 0 0 0 5 5 7 0 0 0

E-GR
No. Buildings 23 25 33 1 0 0 1 0 2 0 0 0 0 0 4 3 6 0 0 0
Floor area 15 18 25 2 2 2 1 1 10 0 1 2 0 0 7 4 6 1 1 1

E-T
No. Buildings 28 34 28 0 0 0 0 0 2 0 0 0 0 0 2 2 4 0 0 0
Floor area 25 35 29 0 1 0 0 0 2 0 0 0 0 0 2 1 3 0 0 0

E-SA
No. Buildings 14 15 34 0 0 0 0 0 2 0 0 0 0 0 11 5 16 0 0 0
Floor area 11 14 39 0 0 1 0 2 4 0 0 0 0 0 7 4 17 0 0 0

E-Š
No. Buildings 13 13 29 0 0 0 2 6 7 0 0 0 0 0 9 6 13 0 0 0
Floor area 12 11 23 1 1 1 2 10 9 0 5 1 1 0 6 5 13 0 0 0

E-P
No. Buildings 16 23 34 0 0 0 0 1 2 0 0 0 0 0 9 3 11 0 0 0
Floor area 15 20 35 0 0 0 0 3 2 0 0 2 0 0 8 3 11 0 0 1

E-K
No. Buildings 17 17 39 0 0 0 0 1 2 0 0 0 0 0 9 3 12 0 0 0
Floor area 15 16 36 0 0 1 0 1 4 0 0 0 0 0 8 3 15 0 0 0

W-NG
No. Buildings 32 18 22 1 0 0 1 3 4 0 1 0 0 0 8 3 6 1 0 0
Floor area 18 11 15 2 1 1 2 5 9 1 4 5 3 4 6 2 5 2 2 1

W-MK
No. Buildings 37 11 23 0 0 0 0 1 3 0 0 0 0 0 15 2 6 0 0 0
Floor area 30 11 25 0 0 0 0 3 5 0 0 1 0 0 12 4 8 1 0 1

W-RV
No. Buildings 26 17 25 0 0 0 1 1 2 0 0 0 0 0 19 2 7 0 0 0
Floor area 21 16 26 1 0 1 1 5 5 0 0 0 0 0 15 2 6 0 0 1

W-ŠV
No. Buildings 26 20 21 0 0 0 1 4 5 0 0 1 0 0 13 2 6 0 0 0
Floor area 19 13 14 2 1 0 3 9 10 0 1 5 0 3 9 2 8 0 0 1

W-B
No. Buildings 32 19 24 0 0 0 0 1 3 0 0 0 0 0 10 5 6 0 0 0
Floor area 26 19 25 1 0 0 2 1 5 1 0 1 0 0 9 4 5 1 0 0

W-K
No. Buildings 48 10 11 1 0 0 3 6 5 0 0 0 0 0 7 4 4 1 0 0
Floor area 31 7 8 2 2 0 4 10 6 5 1 2 1 0 8 5 4 2 0 0

To demonstrate the difference in the seismic hazard between the two regions, the PGA
values for the centres of municipalities, soil type A and return periods of 475 and 2475 years
are presented in Table 5. The PGA values were obtained from the hazard curves derived
using the OpenQuake engine [28,29] and ESHM2020 model [30] (see Section 2). Based on
Table 5, it is evident that the seismic hazard in the Western region is higher than in the
Eastern region. The PGAs for the 475-year return period do not vary significantly within a
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given region. However, a slightly larger variation can be observed for the return period
of 2475 years. For the Eastern region, the PGA for the return period of 475 years ranges
between 0.07 g and 0.08 g, while that for the return period of 2475 years is between 0.16 g
and 0.18 g. The range of PGAs in the Western region is between 0.14 g and 0.17 g for the
return period of 475 years and between 0.32 g and 0.43 g for the return period of 2475 years.

Table 5. PGA on soil type A according to Eurocode 8 for return periods of 475 and 2475 years.

Municipality PGA for 475-Year Return
Period (g)

PGA for 2475-Year Return
Period (g)

Ea
st

er
n

re
gi

on

Benedikt 0.08 0.18
Radenci 0.08 0.18
Apače 0.07 0.16

Gornja Radgona 0.08 0.18
Tišina 0.08 0.17

Sveta Ana 0.08 0.17
Šentilj 0.08 0.16

Pesnica 0.08 0.18
Kungota 0.08 0.17

W
es

te
rn

re
gi

on Nova Gorica 0.16 0.43
Miren–Kostanjevica 0.14 0.32

Renče–Vogrsko 0.15 0.37
Šempeter–Vrtojba 0.15 0.34

Brda 0.16 0.35
Kanal 0.17 0.42

4. Methodology for the Estimation of Bias in Loss Estimation for Different Knowledge
Levels of Building Data

The loss estimation bias for a municipal building stock was calculated in terms of log
residuals δEAL,KL:

δEAL,KL = ln
(

EALKL
EALbase

)
, (6)

where EALKL is the municipality’s expected annual loss for the building data knowl-
edge level (KL), and EALbase is the municipality’s expected annual loss for the base-case
KL. A positive and a negative δEAL,KL indicate overestimation and underestimation of
the EAL, respectively. Such a measure of bias was selected because it allows a more
straightforward comparison of negative and positive errors than the relative difference
(EALKL − EALbase)/EALbase, which is bounded by −100% on the negative side and un-
bounded on the positive side. However, for low values of δEAL,KL (up to 0.1), the following
applies:

δEAL,KL ≈
EALKL − EALbase

EALbase
. (7)

Both EALKL and EALbase are calculated as described in Section 2 (Equation (5)). The
base-case KL corresponds to the complete data, as described in Section 3. However, other
KLs represent a variation in the base-case KL defined to be consistent with the assumptions
on the data limitations at those levels. Twelve KLs were defined, including the base-case
KL. KLs were defined as a combination of (1) the location knowledge level (KLL) and (2) the
floor-area knowledge level (KLFA) (Table 6). KLL indicates the accuracy of the definition of
buildings’ locations within a municipality. By lowering KLL, the seismic hazard assigned to
the municipality’s building stock is less accurate, which introduces bias in the estimation
of the EAL. However, because building-specific characteristics that affect the building’s
fragility are location-dependent, KLL also affects the EAL through the damage assessment.
In contrast, KLFA indicates the precision of defining the net floor areas of buildings within a
given building class in a municipality. The term ‘net’ is omitted hereinafter for brevity. The
floor area of a building is the building’s main characteristic affecting the outcome of the
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consequence assessment. Therefore, reducing KLFA also introduces bias in the estimation of
EAL at the building level and, consequently, at the municipality level.

Table 6. Definitions of building data knowledge levels considered.

Floor-Area Knowledge
Level

Location Knowledge
Level

KLFA = ‘a’ KLFA = ‘b’ KLFA = ‘c’

Floor Area of Each
Building Equal to the
Average Floor Area in

the Municipality

Floor Area of Each
Building Equal to
the Average Floor
Area within the

Building Class in
the Municipality

Actual Floor Area
of Each Building

Considered

KLL = ‘1’

All buildings lumped
in one point; hazard
equal to that in the

municipality’s centre

KL = ‘1a’ KL = ‘1b’ KL = ‘1c’

KLL = ‘2’

All buildings lumped
in one point; hazard

equal to the
municipality’s average

KL = ‘2a’ KL = ‘2b’ KL = ‘2c’

KLL = ‘3’

Buildings’ locations are
randomly selected
consistent with the

building density
distribution across the
municipality; hazard

determined for defined
locations

KL = ‘3a’ KL = ‘3b’ KL = ‘3c’

KLL = ‘4’

Actual location of each
building considered;

hazard determined for
defined locations

KL = ‘4a’ KL = ‘4b’ KL = ‘4c’

Four location knowledge levels (KLL = ‘1’, ‘2’, ‘3’ or ‘4’) and three floor-area knowledge
levels (KLFA = ‘a’, ‘b’ or ‘c’) were considered. The highest (base-case) KL combines KLL = ‘4’
and KLFA = ‘c’ and is therefore denoted as ‘4c’. This KL indicates building-specific data,
both in terms of the buildings’ locations and floor areas. Such a KL is available in Slovenia,
as explained in Section 3.

At the lowest KL (‘1a’), no distinction was made between the locations or floor areas
of different buildings in a municipality. Instead, the seismic hazard of all buildings in a
municipality was considered equal to that in the centre of the municipality, taking into
account the municipality’s soil conditions (KLL = ‘1’). Therefore, the hazard curve applied
to each building in a municipality was changed to the hazard curve in the grid point closest
to the municipality’s centre and adjusted for the average soil conditions. Moreover, as no
distinction was considered between the floor areas of different buildings, the floor areas of
all buildings in a municipality were changed to the average floor area in the municipality
(KLFA = ‘a’). Such a KL was selected as the lowest one because it is based on very limited
data while still representing a realistic scenario. It combines the treatment of the seismic
hazard used in a previous study of seismic risk [5] and the availability of floor-area data
observed for Austria [44].

The first intermediate location knowledge level (KLL = ‘2’) was defined similarly
as KLL = ‘1’ in that no distinction was made between the locations of buildings in a
municipality. However, in contrast to KLL = ‘1’, the hazard of buildings at KLL = ‘2’ was
considered equal to the municipality’s average hazard, assuming uniform building density
distribution across the municipality. Therefore, the hazard curve applied to each building
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in a municipality was changed to the average of the hazard curves from all grid points in
the municipality and adjusted for the average soil conditions.

At the second intermediate location knowledge level (KLL = ‘3’), the variation in build-
ings’ locations in a municipality was considered. The locations were selected consistently
with the building density distribution across the municipality. Thus, they were the same as
in the case of KLL = ‘4’. However, level KLL = ‘3’ differed from KLL = ‘4’ in that it did not
allow consideration of the actual building characteristics at a given location. Therefore, the
locations of buildings in the municipality were randomly permuted in a set of simulations,
and the average EAL over all simulations was considered as EALKL.

Moreover, the intermediate floor-area knowledge level (KLFA = ‘b’) indicates that the
distinction is made between the building classes but not between the buildings within a
given building class. Therefore, the floor area of each building was changed to the average
floor area in its building class.

The availability of data can influence the selection of KL. For example, suppose the
coordinates of the municipality’s borders are not fully known, but those of the munic-
ipality’s centre are known. In that case, KLL = ‘1’ can be selected because it does not
require calculation of the hazard over the entire municipality’s area. If the municipality’s
borders are also known, the average hazard over the municipality area can be evaluated,
and KLL = ‘2’ can be applied. If the building density distribution is known, from remote
sensing imagery, for example, KLL = ‘3’ can be used. Finally, if data on the characteristics
of buildings at each specific location are available, the highest location knowledge level
considered in this study, KLL = ‘4’, can be selected. Similarly, if there are no data on the
floor areas typical for different building types, the average floor area in the municipality
may be assigned to each building, which corresponds to KLFA = ‘a’. If the floor areas
typical of the building types considered can be estimated, KLFA can be increased to ‘b’.
Finally, if the variation in floor areas within the building classes is known, KLFA = ‘c’ can be
used. Increasing KL can be quite simple in some cases (e.g., identifying the municipality’s
borders) but more demanding in others (e.g., determining the floor-area variation in the
municipality). However, a KL increase typically requires a certain amount of effort, which
is not necessarily justified given the resources available for the analysis.

It should be noted that the selection of KL can also represent the analyst’s decision to
simplify the analysis despite the available data. For example, the selection of an appropriate
exposure resolution to obtain low-bias results, given that data are available, was explored
in [7]. It should also be noted that the list of KLs considered herein is not exclusive. Addi-
tional KLs could be defined between the lowest and highest KL. For example, the location
and floor-area data could be defined at the census tract level, which is an intermediate
level between the building-specific and municipality levels. In addition, other KLs could be
defined using less accurate data than those representative of KL = ‘1a’ or more accurate data
than those representative of KL = ‘4c’. For example, the number of buildings in different
building classes could be considered unavailable, which would introduce additional uncer-
tainty in the application of the fragility model. Consideration of such options is beyond the
scope of this study.

5. Bias in Seismic Risk for the Selected Building Data Knowledge Levels

The log residuals δEAL,KL (Equation (6)) selected as the measure of bias were estimated
for each KL. At the lowest KL (‘1a’; Figure 2), the highest δEAL,KL was calculated for the mu-
nicipality of Benedikt (+0.17) in the Eastern region, while the lowest δEAL,KL corresponded
to the municipality of Miren–Kostanjevica in the Western region (−0.17). Interestingly,
most municipalities in the Western region had a negative δEAL,KL, while a majority of the
municipalities in the Eastern region had a positive δEAL,KL. Accordingly, the mean δEAL,KL
calculated at the regional scale (rightmost dot in Figure 2) was positive for the Eastern
region and negative for the Western region. The bias was relatively small in both cases, as
the absolute values of δEAL,KL were between 0.05 and 0.06.
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Figure 2. Log residuals δEAL,KL for KL = ‘1a’ for municipalities in the (a) Eastern region and
(b) Western region.

By increasing the building data knowledge level to KL = ‘1b’, the δEAL,KL values of all
municipalities in the Western region shifted by a similar amount (Figure 3b). This shift
was negative (−0.09 on average), thus intensifying the error compared to KL = ‘1a’. The
largest bias was again observed for the municipality of Miren–Kostanjevica (−0.25). Such a
result may be surprising because it implies that by improving the data, the bias increases.
However, it can be explained by the fact that, for this particular region, the bias due to low
KLL was negative, while the bias due to low KLFA was positive. By increasing KLFA from ‘a’
to ‘b’, the positive part of the bias decreased, leading to a lower reduction in the negative
bias and, consequently, to an increase in the absolute values of δEAL,KL. Conversely, in the
case of the Eastern region (Figure 3a), an increase in the building data knowledge level to
KL = ‘1b’ diminished the overall bias so that the maximum municipality δEAL,KL was only
+0.06, and the average δEAL,KL in the region was practically negligible.
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(b) Western region.

An opposite outcome was observed when the floor-area knowledge level was main-
tained at KLFA = ‘a’ and the location knowledge level was increased to KLL = ‘3’ (Figure 4).
In this case, the δEAL,KL values for the municipalities in the Western region generally in-
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creased compared to the values obtained at KL = ‘1a’. However, their absolute values
decreased and were all lower than 0.07, which means that improving KLL had a signifi-
cantly better effect on bias reduction than improving KLFA. On the other hand, δEAL,KL for
the municipalities in the Eastern region did not drastically change when KL increased from
‘1a’ to ‘3a’ (Figure 4a), and the bias reduction was not as pronounced as when KL increased
to ‘1b’. This implies that KLFA was more crucial for this particular region than KLL.
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For other KLs, only the minimum, maximum and average δEAL,KL values for a region
are presented for brevity (Figure 5). Some of the observations mentioned above related
to KL = ‘1a’, ‘1b’ and ‘3a’ can be further generalised. For the Western region (Figure 5b),
an improvement in KLFA from ‘a’ to ‘b’ generally decreased δEAL,KL. However, decreasing
δEAL,KL did not clearly reduce the bias (the absolute value of δEAL,KL did not change notably
or was even further increased), except for KLL = ‘4’. When KLFA improved further to ‘c’, a
small reduction in bias was again observed for KLL = ‘4’, while this reduction was negligible
for other location knowledge levels. In fact, δEAL,KL was exactly the same for KL = ‘1b’ and
‘1c’ and KL = ‘2b’ and ‘2c’. This is to be expected because all buildings were assigned the
same hazard curve at location knowledge levels KLL = ‘1’ and ‘2’. Therefore, dividing the
floor area within a building class evenly (KLFA = ‘b’) and based on the actual data (KLFA = c)
resulted in the same building class’s EAL. In contrast, for the Eastern region (Figure 5a),
increasing KLFA from ‘a’ to ‘b’ clearly improved the accuracy of the risk estimation, as
it resulted in a smaller range of δEAL,KL, centred closer to 0. However, when the level of
this type of knowledge improved further to level ‘c’, the beneficial effect was again less
significant, for the same reasons as in the case of the Western region.

With regard to the location knowledge, the most significant bias reduction was
achieved by increasing KLL from ‘2’ to ‘3’ (Figure 5), i.e., by including data on the building
density distribution across the municipality. However, the effect of these data was much
more pronounced for the municipalities in the Western region than for those in the Eastern
region. Further improving KLL to ‘4’ had a small bias reduction effect, especially for the
Western region, while improving this type of knowledge level from ‘1’ to ‘2’ had a negligible
effect for both regions.

The results indicate that the effect of including different data types on the bias in
seismic risk is municipality-dependent. To improve the understanding of this dependency,
the municipal characteristics that affect the bias in EAL were identified, as presented in the
following section.
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6. Identification of Municipal Characteristics Affecting the Bias in Seismic Risk

Identifying the characteristics of the municipalities affecting the bias reduction can
improve the understanding of why some municipalities are more prone to loss estimation
bias in the case of incomplete data. It can also allow the analyst to predict whether adding
data of a given type can reduce the bias if these characteristics are already available at the
given building data knowledge level.

The municipal characteristics affecting the bias at the selected building data knowledge
levels were identified in two steps. In the first step, the data types that contribute most to
the bias reduction were determined. The results presented in the previous section indicate
that the bias at the regional scale can be most reduced by including the data on building
density distribution across the municipality (transition from KLL = ‘2’ to KLL = ‘3’) and
building-class-specific floor areas (transition from KLFA = ‘a’ to KLFA = ‘b’). However, to
obtain a clearer indication of the effect of different data types, the absolute differences in
δEAL,KL caused by a gradual increase from knowledge level KL to knowledge level KL′, i.e.,
|δEAL,KL′ − δEAL,KL|, were also calculated at the municipality level (Figure 6).
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Consistent with the observations at the regional scale, it was found that the absolute
difference in δEAL,KL at the municipality level was the largest when increasing KLL from
‘2’ to ‘3’ and KLFA from ‘a’ to ‘b’ (Figure 6). All other gradual increases in KL had a much
lower effect on the bias. Including the data on building density distribution across the
municipality in the analysis (KLL from ‘2’ to ‘3’) changed δEAL,KL by as much as 0.21,
regardless of the floor-area knowledge level, while adding the data on building-class-
specific floor areas (KLFA from ‘a’ to ‘b’) resulted in the absolute difference of δEAL,KL
being as high as 0.15, with a small variation across the location knowledge levels. For
both knowledge-level increases, the lowest absolute difference of δEAL,KL was close to 0,
which implies that including new data affects the bias reduction differently for different
municipalities.

In the second step of the identification of the essential municipal characteristics related
to the bias in seismic risk, the variations in the absolute difference of δEAL,KL for the two most
significant increases in KL were analysed further to identify the indicators that correlate
well with the bias reduction. Several simple indicators (e.g., municipality’s area, number of
buildings and average building density) and more advanced indicators were tested. The
indicators that were found to best explain the bias reduction for the two most significant
increases in KL are presented in the following.

The effect of increasing KLFA from ‘a’ to ‘b’ on the bias can be explained by the
municipality’s building stock homogeneity index IBSH, calculated as follows:

IBSH = ∑nc
i=1

(
Nb,i

Nb

)2
, (8)
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where Nb,i is the number of buildings in the ith building class in the municipality, Nb
is the total number of buildings in the municipality and nc is the number of building
classes in the municipality. The value of IBSH is between zero and one. It equals one if
the municipality has only one building class and approaches zero if the buildings are
distributed into more building classes. Moreover, for a given nc, IBSH is equal to 1/nc if the
building class distribution is uniform, while it takes a larger value if most buildings are in
only a few building classes.

IBSH correlated reasonably well with the absolute difference in δEAL,KL caused by the
increase from KLFA = ‘a’ to KLFA = ‘b’, i.e., |δEAL,KL′ − δEAL,KL|a→b (Figure 7). Regardless
of the location knowledge level, the correlation coefficient ρ was about −0.65, and the
coefficient of determination R2 was approximately 0.43. The higher the IBSH is, the lower
the benefit is of adding the data on building-class-specific floor areas in the analysis. In
other words, the higher the IBSH is, the more likely it is that KLFA = ‘a’ results in a low-
bias estimate of EAL. The reason for this is that higher values of IBSH indicate that the
municipality’s building stock is less fragmented and that, consequently, the average floor
area over all buildings in the municipality can better describe the average floor area in
the building class with the predominant contribution to the EAL. For example, almost all
buildings in the municipality of Tišina (E-T) are masonry with a maximum of three storeys
(Table 4). Therefore, the building stock is relatively homogenous, which is reflected by
IBSH = 0.275 (Figure 7), and the average floor area over all buildings in the municipality
(200 m2) is close to the average floor areas of the three building classes that contribute most
to the EAL (182, 202 and 211 m2). Consequently, providing additional data on building-
class-specific floor areas did not reduce the bias significantly (by approximately 3% for all
location knowledge levels). For other municipalities, IBSH ranged from 0.16 to 0.27. In the
case of IBSH greater than 0.25, using floor-area knowledge level KLFA = ‘a’ could produce
relatively accurate results (Figure 7). It should be noted that the absolute values of IBSH
depend on the building classification. For a different number of classes, different IBSH
values would indicate the sufficiency of KLFA = ‘a’.

However, the effect of increasing KLL from ‘2’ to ‘3’ on the loss estimation bias was
found to be explainable by the hazard variation index IHV, calculated as follows:

IHV =
σEALi ,2a,HV

EALi,2a
, (9)

where EALi,2a is the average building-specific EAL in the municipality calculated for
KL = ‘2a’, and σEALi ,2a,HV is defined as follows:

σEALi , 2a,HV =
√

σEAL, 2a,rand − σEAL, 2a. (10)

In Equation (10), σEAL, 2a is the standard deviation of building-specific EALs in the
municipality calculated for KL = ‘2a’. Because buildings are assigned the same hazard
curve and the same floor area at this KL, σEAL,2a reflects only the variability in the buildings’
fragility. However, σEAL, 2a,rand is the average standard deviation of building-specific EALs
in the municipality with randomly distributed building stock. It is calculated as the average
of the standard deviations σEAL,2a,rand obtained in multiple simulations. In each simulation,
each building in the municipality is assigned a random location within the municipality
(disregarding the building density distribution across the municipality), while the fragility
functions and floor area remain the same as in the calculation of σEAL,2a. Building-specific
EALs are then determined, and σEAL,2a,rand is calculated as their standard deviation. In
this study, 50 such simulations were performed. The calculated σEAL,2a,rand reflects the
variability in the buildings’ fragility and the variability in the hazard across the municipality.
Assuming that these two variabilities are uncorrelated and that building-specific EALs
in the municipality are normally distributed, σEALi , 2a,HV in Equation (10) represents the
variation in building-specific EALs resulting only from the municipality’s hazard variability.
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The index IHV can thus be understood as a coefficient of variation of building-specific EALs
resulting only from the hazard variability.
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for all location knowledge levels considered.

IHV is positively correlated with the absolute difference in δEAL,KL caused by a knowl-
edge level increase from KLL = ‘2’ to KLL = ‘3’, i.e., |δEAL,KL′ − δEAL,KL|2→3 (Figure 8).
Regardless of the floor-area knowledge level, ρ was about +0.69, and R2 was approximately
0.47. This positive correlation implies that an increase in IHV intensifies the potential
for the hazard variation to alter the municipality’s EAL when data on building density
distribution across the municipality are included. For example, for the municipality of
Miren–Kostanjevica (W-MK), the average and standard deviation of building-specific
EALs calculated for KL = ‘2a’ (EALi,2a and σEAL,2a, respectively) were EUR 137 and EUR
69, respectively. When the buildings were moved from the municipality’s centre to ran-
dom locations in the municipality, the standard deviation, on average, increased notably
(σEAL,2a,rand = EUR 85), leading to σEALi , 2a,HV = EUR 49 (Equation (10)) and IHV = 0.36
(Equation (9)). Such a high IHV indicates that the municipality’s EAL could change signif-
icantly if the buildings were moved to their actual location. This was also indicated by
|δEAL,KL′ − δEAL,KL|2→3 being equal to 0.21 (Figure 8). For other municipalities, IHV was
between 0.06 and 0.42. The results suggest that for IHV less than 0.1, the hazard variation
in the municipality does not have significant potential to cause bias in the estimation of
seismic risk.
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The indexes IBSH and IHV can therefore be used to estimate whether additional data
would significantly reduce the bias in seismic risk estimation. It is worth emphasising
that IBSH can be calculated at all KLs considered in this study, while IHV can be obtained at
KL = ‘2a’ or higher. Therefore, its application requires at least data on the municipality’s
borders and average floor area over all buildings in the municipalities.

7. Conclusions

The effect of the availability of building data on loss estimation was analysed for fifteen
municipalities in two Slovenian regions. Twelve knowledge levels of building data were
introduced as a combination of the location knowledge level and floor-area knowledge
level. The bias for a given building data knowledge level was defined as the log residual
between the municipality’s expected annual loss (EAL) estimated for that knowledge level
and the municipality’s EAL estimated for the base-case knowledge level.

The log residuals of EAL ranged from −0.25 to +0.16 at the lowest knowledge levels.
The bias was affected by both the location and floor-area knowledge levels. It was found
that introducing more data can reduce the bias but not in general. Among the gradual
knowledge level improvements considered in this study, those corresponding to the in-
clusion of data on the building density distribution across the municipality and data on
the building-class-specific floor areas proved to be the most beneficial. Additional data on
building-specific locations and floor areas reduced the bias only slightly.

The importance of a given type of data was found to be dependent on the municipality.
However, the results suggest that for a given municipality, the reduction in bias caused
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by introducing new data can be estimated in advance based on readily available data.
Introducing building-class-specific floor area data is anticipated to mitigate bias more
effectively in municipalities with a lower building stock homogeneity index (IBSH), which
quantifies the fragmentation of buildings into building classes. For IBSH values greater
than 0.25, using the average floor area for all buildings in the municipality was sufficient
to obtain a relatively accurate estimate of EAL. However, including data on the building
density distribution across the municipality is expected to yield greater advantages for
municipalities with a higher hazard variation index (IHV), which measures the potential for
the hazard variation in the municipality to intensify bias in the estimation of seismic risk.
The findings imply that for IHV values less than 0.1, the bias remains low even if assigning
the average hazard in the municipality to each building. Both indexes were introduced in
this study and require a low knowledge level of readily available data.

The presented findings can be beneficial in making decisions on collecting additional
data when the current data knowledge level is low, especially in the case of limited resources.
In such situations, it is suggested to focus primarily on obtaining data types that proved to
have a higher impact on bias reduction. Moreover, it is suggested that the prioritisation
of municipalities for enhancing their data knowledge levels be guided by indexes such as
IBSH and IHV.

The findings refer to the selected building data knowledge levels and building classifi-
cation. Additional research is needed to identify the sources of loss estimation bias for other
knowledge levels, which may be below, above or between the knowledge levels considered
in this study. Further research is also needed to generalise the concepts introduced in this
study to other regions and building classifications.
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