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Abstract: This paper studied the seismic performance of corrugated steel plate shear walls with verti-
cal corrugated steel plates connected with beams only (CboSPSWs). A numerical model of a CboSPSW
was developed. Then, a series of parametric analyses were conducted to determine the effects of the
related parameters on the hysteretic performance of CboSPSWs, including the height–thickness ratio,
aspect ratio, corrugation angle, stiffness of the free-edge stiffener, and surrounding frame stiffness.
In addition, the limit of the stiffness of the free-edge stiffener of the CboSPSW was investigated.
Finally, the serviceability of the existing design method, the Plate-Frame Interaction model (PFI),
for CboSPSWs was examined. The results show that CboSPSWs have high values of strength and
initial stiffness as well as good and stable energy dissipation capacities. The ultimate strength of the
corrugated steel plate (CSP) can be improved significantly by free-edge stiffeners. When the flexural
stiffness ratio exceeds 1.0, the increase of the average stress of the CSPs close to the beams is less than
20%, and the tension field develops fully in the CSPs in CboSPSWs. The PFI model can predict the
shear strength and initial stiffness values of the hysteretic curves of CboSPSWs with good accuracy,
which can be used in the design and plastic analyses of CboSPSWs.

Keywords: corrugated steel plate shear wall; tension field; PFI model; corrugated steel plate;
free-edge stiffener

1. Introduction

Flat steel plate shear walls (FSPSWs) have been widely used in the lateral force resis-
tance systems of multi-story and high-rise building structures [1–3]. When infilled plates
are replaced with corrugated steel plates, corrugated steel plate shear walls with vertical
corrugated steel plates connected with beams only (CboSPSWs) are formed. CboSPSWs
have several tangible benefits. The shear strengths of the infilled plates are improved
significantly without increasing the thickness of the infilled plates owing to the corru-
gated sections of the corrugated steel plates (CSPs). Layouts and openings for shear wall
structures can be designed and adjusted with more flexibility by changing the CSP width
compared to the corrugated steel plate shear walls with connections on four sides (con-
nected with beams and columns) [4–7], and CboSPSWs (connections on two sides) can
reduce the construction times and costs of shear walls. In addition, CboSPSWs can reduce
the anchoring forces on columns from CSPs and the requirements of the surrounding
columns. However, studies on the seismic performances of CboSPSWs under lateral loads
are limited. Therefore, it is imperative to study the seismic performances of CboSPSWs
under lateral loads for the design and application of shear walls.

Many researchers have studied the static and seismic performances of corrugated
steel plate shear walls with corrugation laid horizontally (ChSPSWs) with experimental
and numerical investigations [8–10]. The effects of various geometric parameters on the
buckling strength and post-buckling behavior of CSPs were investigated [11–14]. According
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to the differences in the buckling modes of CSPs, the ChSPSWs with different geometric
parameters showed three buckling modes: the yielding, interactive, and elastic buckling
of CSPs [15]. The ChSPSWs with elastic buckling of CSPs buckled in the early loading
stages, and the behavior of the CSPs after buckling was a concerning issue [15,16]. With
an increase in the thickness of the CSPs, the ChSPSWs showed interactive buckling of the
CSPs [17]. The interactive buckling and the ultimate strength after the buckling of CSPs
were research highlights in the shear walls [18]. In order to avoid the buckling of CSPs,
ChSPSWs with properly designed geometric parameters of CSPs were investigated [19,20].
The results showed that the CSPs could avoid elastic and interactive buckling by adjusting
their parameters. In addition, setting stiffeners on the CSPs was another effective way
to improve the elastic buckling strength of CSPs in the ChSPSWs [21]. Besides these, the
seismic performance of the ChSPSWs with openings were investigated. The ultimate
capacity of CSPSWs with openings was predicted using linear regression analysis [22].

Studies on the structural performances of steel plate shear walls with corrugation laid
vertically (CvSPSWs) are limited and have focused on the static performances of the shear
walls. Parametric analyses were performed to determine the effects of related parameters
on the structural performances of shear walls with connections on four sides [16,23,24]. The
effects of vertical loads on the strengths of CvSPSWs with connections on four sides were
determined with numerical simulations [25]. The elastic buckling strength of the CvSPSW
was investigated based on the minimum potential energy theory [26]. The research on
the CvSPSW mainly focused on the parametric analyses, and the loading mechanism and
analysis methods were rarely involved. Besides the studies on CvSPSWs with connections
on four sides, few studies of CboSPSWs have been carried out to investigate the parameters’
effects on the structural performances of the shear walls [27,28]. In the studies on the
load transfer path, failure modes of the CboSPSWs were not fully investigated. Besides
these, the artificial intelligence methods developed well and rapidly, and the artificial
intelligence methods possess potential advantages to seismic performance analyses of
building structures [29–33].

As presented above, extensive research has been conducted on the structural perfor-
mance of ChSPSWs, including the buckling strength, ultimate strength, failure modes,
and behavior after the buckling of CSPs, and there are limited studies on the shear and
seismic performances of CvSPSWs. However, the studies on the seismic performance of
CboSPSWs are limited, and the loading mechanism, failure modes, and analysis meth-
ods of the CboSPSWs with free-edge stiffeners are not described clearly. In light of the
above advantages of CboSPSWs, this paper investigated the seismic behavior of CboSPSWs
with free-edge stiffeners under seismic loads. The effects of related parameters on the
seismic performance were evaluated. The loading mechanism and the failure modes of
the CboSPSWs with different parameters were investigated. In addition, the minimum
stiffnesses of the free-edge stiffeners of the CboSPSW was proposed, and the existing design
method for the CboSPSW was examined.

2. Finite Element Simulation and Verification

The seismic performance of the CboSPSW was evaluated using the finite element
(FE) software ANSYS. A single-bay, one-story specimen of the CboSPSW was designed, as
shown in Figure 1. In the specimen, the beams were welded to adjacent beams, and the
CSPs were welded to the surrounding beams. The free edges of the CSPs were stiffened
with stiffeners, and the stiffeners used were rectangular plates.

In accordance with the designed model, an FE model of the CboSPSW was developed,
and the shell 181 element was adopted to simulate the performances of the columns, beams,
CSPs, and stiffeners. The rigid connections between columns and beams and between CSPs
and beams simulated the welded connections. The bottoms of columns were fixed, and
the out-of-plane displacements of the beams and columns were constrained. Horizontal
loads were applied on one end of the column. The loading protocol is shown in Figure 2.
The elastic–perfectly plastic model was applied, and the corresponding von Mises yield
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criterion and the associated flow rule were adopted in the model. CSP imperfections were
taken into consideration in the simulation, and the imperfection value of the CSP was
obtained by multiplying 1/750 of the CSP height by the results of the out-of-displacement
deformation from the eigenvalue buckling of the FE model. The mesh sensitivity analyses
for the FE model were carried out, shown in Figure 3. The results show that when the mesh
sizes of the FE models are 40 mm × 40 mm, the results obtained by the FE model tend to
be stable. The developed meshed FE model is shown in Figure 4.
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Figure 4. Meshed FE model of a CboSPSW.

2.1. FE Model Verification

The rationality and accuracy of the developed FE model were verified with a laboratory
test [34]. In the test, the sections of columns were H-200 mm × 200 mm × 8 mm × 12 mm,
and the top and bottom beams were H-175 mm × 175 mm × 8 mm × 10 mm and
H-250 mm × 200 mm × 8 mm × 14 mm. The CSP thickness was 2.0 mm. Compar-
isons of the hysteretic curves and failure modes obtained from the FE model and test
specimen are shown in Figures 5 and 6. From Figure 5, the ultimate load ratio of the FE
model to the test specimen was 1.08, and the displacement corresponding to the ultimate
load ratio of the FE model to the test specimen was 0.91. Figure 6 shows that the failure
modes simulated by the FE model are compressive buckling of the column base under
compression and shear loads, which are in line with that of the test. The obtained hysteretic
curves and failure modes show that the developed FE model can be used to capture the
seismic performance of the CboSPSW.
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2.2. Dynamics Analyses

Based on the verified model, some modal analyses of the CboSPSWs were conducted
to investigate the dynamic characteristics of CboSPSWs and evaluate rationality of the
design of CboSPSWs.

To investigate the dynamic characteristics of the CboSPSWs, the CboSPSWs with
and without free-edge stiffeners were developed. The detailed parameters of the CboSP-
SWs are shown in Table 1. The first six vibration modals of these models are shown in
Figures 7 and 8. The first six vibration modals of the CboSPSW without free-edge stiffen-
ers were free edge deformation, free edge deformation, lateral displacement, free edge
deformation, free edge deformation, and free edge deformation, as shown in Figure 7.
From Figure 8, the first six vibration modals of the CboSPSW with free-edge stiffeners
were out-of-plane deformation, lateral displacement, out-of-plane deformation, free edge
deformation, free edge deformation, and out-of-plane deformation. It was indicated that
the free edge stiffener can avoid the free edge deformation before out-of-plane deformation
of CSPs and lateral displacement of the shear wall. Besides these, the first natural frequency
of the first vibration modals of the CboSPSW with free edge stiffeners were close to that of
the second vibration modal.

Table 1. Geometric characteristics of CboSPSWs.

Stiffener Section Size
(mm ×mm)

tw
(mm)

H B hr b d
(mm) (mm) (mm) (mm) (mm)

- 10.0 3000 3100 77 110 77
300 × 40 10.0 3000 3100 77 110 77
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3. Parametric Analyses and Discussions

In this section, based on the verified model, a series of parametric analyses were
carried out to investigate the related parameters’ effects on the seismic performances of
CboSPSWs, including the height–thickness ratio, aspect ratio, corrugation angle, stiffness
of free-edge stiffeners, and surrounding frame stiffness.
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3.1. Effect of Height–Thickness Ratio

Six specimens with different height–thickness ratios λ (200, 300, 400, 500, 600, and
700) were developed to investigate the effect of the height–thickness ratio on the seismic
performances of CboSPSWs. The corresponding thicknesses of the CSPs tw were 30.0, 15.0,
7.5, 6.0, 5.0, and 4.3 mm, respectively. The CSP heights of these models H were 3100, CSP
width 3000 mm, corrugation depth hr 77 mm, horizontal projection of the inclined panel
width d 77 mm. The other parameters remained unchanged. The geometric parameters of
these models are shown in Table 2. The hysteretic curves and skeleton curves are shown in
Figures 9 and 10.

Table 2. Geometric parameters of CboSPSWs.

tw λ H B d hr

(mm) (mm) (mm) (mm) (mm)

15.0, 10.0, 7.5, 6.0, 5.0,
4.3

200, 300, 400, 500,
600, 700 3100 3000 77 77
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The detailed results of the ductility coefficients are shown in Table 3. From Table 3, 
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Figure 9 shows that the hysteresis curves of the CboSPSWs are spindle-shaped. With a
decrease in the height–thickness ratio, the shapes of these hysteresis curves became much
fuller. It is noted that a pinching phenomenon and strength degradation occurred in the
curve of the shear wall with a height–thickness ratio of 700. The ultimate shear stress of
the shear wall with a height–thickness ratio of 700 was 170.5 Mpa, which was lower than
the critical value of the elastic buckling stress of the CSPs (0.8τy). The buckling mode of
the CSP in the CboSPSW with a height–thickness ratio of λ = 700 was the elastic buckling
of the CSP. The CSP buckled in the early loading stages and then continued to resist a
greater lateral load with a tension field. The hysteretic curve was similar to that of an
FSPSW or a thin ChSPSW [16]. When the height–thickness ratios were 300–600, the ultimate
shear stresses of the CSPs varied from 191. 7 to 208.2 Mpa, and the buckling mode of the
models was the inelastic buckling of CSPs. In addition, there was no obvious pinching
phenomenon or strength degradation. The shapes of these models were much fuller than
those of FSPSWs and thin ChSPSWs. This was because the compressive strength of CSPs
cannot be ignored due to the corrugation of CSPs. When the height–thickness ratio was 200,
the ultimate stress of the CSP reached the yield strength, and the manner that the CboSPSW
resisted the lateral load relied on pure shear, as shown in Figures 10 and 11.
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The corresponding failure modes of the CSPs in the CboSPSWs with height–thickness
ratios of λ = 200 and 700 are shown in Figure 11. The inclination angles of the tension
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fields of the CSPs were about 60◦, and the tension field of the CSP with λ = 200 developed
much more fully than that of the CSP with λ = 700.

The ductility coefficient µ is also an effective indictor of the deformation capacity of
shear walls [34]. The ductility coefficient µ is the ratio of the displacement corresponding
to the ultimate load (∆u) to the yield displacement (∆y), which can be expressed as:

µ =
∆u

∆y
(1)

The detailed results of the ductility coefficients are shown in Table 3. From Table 3,
the ductility coefficients of the CboSPSWs were 1.94, 1.54, 1.55, 1.48, 1.30, and 1.26 when
the height–thickness ratios were 200, 300, 400, 500, 600, and 700. The ductility coefficient
showed a negative relationship with the increase in the height–thickness ratio. The shear
walls with height–thickness ratios of 600 and 700 had bad plastic deformation capacities
under seismic loads.

Table 3. Results of CboSPSWs with different thickness ratios.

λ

Yield
Displacement ∆y

Yield Load Vy
Ultimate

Displacement ∆u
Ultimate Load Vu

Ductility
Coefficient µ

(mm) (kN) (mm) (kN)

200 10.7 9213 17.9 9755.2 1.95
300 9.1 5522 14.0 6453.4 1.54
400 9.0 4022 14.0 4769.5 1.55
500 8.8 3147 13.1 3681.1 1.48
600 9.6 2814 12.4 2898.2 1.30
700 9.5 2404 12.0 2454.2 1.26

In addition, the energy dissipation coefficient En is used to present the energy dissipa-
tion capacities of shear walls, which is the ratio of the area enclosed by hysteretic curves
(Ah) to the elastic strain energy (Ae) in each hysteresis loop, which can be expressed as:

En =
Ah
Ae

(2)

The energy dissipation coefficients En of the CboSPSWs with different height–thickness
ratios are shown in Figure 12. As can be seen in Figure 12, the energy dissipation coefficients
En of the shear walls increased with the drift ratios, which indicates that the CboSPSWs
had stable energy dissipation capacities. In addition, the energy dissipation coefficients
of the shear walls showed opposite trends with increases in the height–thickness ratios.
When the height–thickness ratio was 700, the energy dissipation coefficient En decreased
significantly. It is suggested that the height–thickness ratio should be less than 600 for
stable energy dissipation in the design and application of CboSPSWs.

Buildings 2023, 13, x FOR PEER REVIEW 9 of 25 
 

showed a negative relationship with the increase in the height–thickness ratio. The shear 
walls with height–thickness ratios of 600 and 700 had bad plastic deformation capacities 
under seismic loads. 

Table 3. Results of CboSPSWs with different thickness ratios. 

λ  

Yield  
Displacement 

Δ y  

Yield 
Load 

yV  

Ultimate 
Displacement  

Δu  

Ultimate  
Load 

uV  

Ductility 
Coefficient 

μ  
(mm) (kN) (mm) (kN)  

200 10.7 9213 17.9 9755.2 1.95 
300 9.1 5522 14.0 6453.4 1.54 
400 9.0 4022 14.0 4769.5 1.55 
500 8.8 3147 13.1 3681.1 1.48 
600 9.6 2814 12.4 2898.2 1.30 
700 9.5 2404 12.0 2454.2 1.26 

In addition, the energy dissipation coefficient nE   is used to present the energy 
dissipation capacities of shear walls, which is the ratio of the area enclosed by hysteretic 
curves ( hA  ) to the elastic strain energy ( eA  ) in each hysteresis loop, which can be 
expressed as: 

= h
n

e

A
E

A
 (2) 

The energy dissipation coefficients nE   of the CboSPSWs with different height–
thickness ratios are shown in Figure 12. As can be seen in Figure 12, the energy dissipation 
coefficients nE  of the shear walls increased with the drift ratios, which indicates that the 
CboSPSWs had stable energy dissipation capacities. In addition, the energy dissipation 
coefficients of the shear walls showed opposite trends with increases in the height–
thickness ratios. When the height–thickness ratio was 700, the energy dissipation 
coefficient nE   decreased significantly. It is suggested that the height–thickness ratio 
should be less than 600 for stable energy dissipation in the design and application of 
CboSPSWs. 

 
Figure 12. Energy dissipation coefficients with different height–thickness ratios. 

3.2. Effect of Aspect Ratio 
The effect of the aspect ratio on the hysteretic performances of CboSPSWs was 

investigated. Six CboSPSW specimens with different aspect ratios ( /B H  = 0.5, 1.0, 1.5, 
2.0, 2.5, and 3.0) were developed, and the CSP heights remained unchanged. The 

Figure 12. Energy dissipation coefficients with different height–thickness ratios.



Buildings 2023, 13, 2220 9 of 23

3.2. Effect of Aspect Ratio

The effect of the aspect ratio on the hysteretic performances of CboSPSWs was investi-
gated. Six CboSPSW specimens with different aspect ratios (B/H = 0.5, 1.0, 1.5, 2.0, 2.5, and
3.0) were developed, and the CSP heights remained unchanged. The geometric parameters
of these models are shown in Table 4. The hysteretic curves and skeleton curves of these
models are shown in Figures 13 and 14.

Table 4. Geometric characteristics of CboSPSWs.

B
B/H λ

d hr b
H

(mm) (mm) (mm) (mm)

1500, 3000,
4500, 6000,
7500, 9000

0.5, 1.0, 1.5,
2.0, 2.5, 3.0 300 77 77 110 3100
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Figure 13. Hysteresis curves of CboSPSWs with different aspect ratios. (a) B/H = 0.5; (b) B/H = 1.0;
(c) B/H = 1.5; (d) B/H = 2.0; (e) B/H = 2.5; (f) B/H = 3.0.
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Figure 14. Skeleton curves of CboSPSWs with different aspect ratios.

Figures 13 and 14 show that there were no obvious pinching phenomena in these
models and that the shear strength and initial stiffness increased with an increase in the
aspect ratio. After the peak loads, the decrease rates of the strengths of the shear walls
increased as the aspect ratio increased, as shown in Figure 14.

The out-of-plane deformation of the CboSPSWs with aspect ratios of B/H = 1.0 and
3.0 are shown in Figure 15. There were three half-waves in the CboSPSW with B/H = 1.0,
while there were nine half-waves in the CboSPSW with B/H = 3.0, and the inclination
angles were approximately 60◦.
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Figure 15. Out-of-plane deformation of CboSPSWs with different aspect ratios.

The curves of the energy dissipation coefficients versus the aspect ratio are shown
in Figure 16. The dissipation coefficient increased with an increase in the drift ratio,
which shows the shear walls had stable dissipation capacities, and the energy dissipation
coefficient increased with increases in the aspect ratios when the drift ratios were fixed.
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3.3. Effect of Corrugation Angle

The corrugation angle influences the area moment of inertia and the out-of-plane
stiffness of CSPs. Five specimens with different angles (30◦, 37.5◦, 45◦, 52.5◦, and 60◦) were
established to study the effect of the corrugation angle. In these models, the corrugation
angles were changed by adjusting the depths of corrugation in the CSPs, and the corre-
sponding corrugation depths were 44, 59, 77, 100, and 133 mm. The CSP height (H) and
subpanel width (b) remained unchanged. The detailed parameters of the CboSPSWs are
shown in Table 5. Hysteresis curves and skeleton curves with various corrugation angles
are shown in Figures 17 and 18.

Table 5. Geometric characteristics of CboSPSWs.

θ λ
d H B hr b

(mm) (mm) (mm) (mm) (mm)

30◦, 37.5◦, 45◦,
52.5◦, 60◦ 300 44, 59, 77, 100, 133 3000 3100 77 110
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Figure 17. Hysteretic curves of CboSPSWs with different corrugation angles. (a) θ = 30◦;
(b) θ = 37.5◦; (c) θ = 45◦; (d) θ = 52.5◦; (e) θ = 60◦.
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Figure 20 shows the mechanical behavior of the CSP with free-edge stiffeners. The 
areas away from the free edges are high-efficiency zones for resisting the shear loads, 

Figure 18. Skeleton curves of CboSPSWs with different corrugation angles.

Figure 17 shows that the shapes of the CboSPSWs became much fuller as the corruga-
tion angles increased. The ultimate strengths of the CSPs showed a positive relationship
with the corrugation angle, as shown in Figure 18. This was because the in-plane bending
stiffness and out-of-plane strength increased as the corrugation depths increased. Curves
of the energy dissipation coefficients versus the corrugation angle are shown in Figure 19.
When the corrugation angle was 30◦, the dissipation coefficient En was small, and the
corresponding hysteresis loop area and the displacement ductility were small. When the
corrugation angles were 45◦ and 52.5◦, the dissipation coefficient En showed large and
stable energy dissipation capacities and large ultimate strengths.
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3.4. Stiffness of Free-Edge Stiffeners

The stiffeners of free edges play an important part in the strength and development of
tension fields in CSPs. In order to discuss the stiffness of the free-edge stiffener effect, the
flexural stiffness ratio of the stiffener of the free edge to the CSP η is introduced, which can
be expressed as:

η =
2Es Is

Dx Hw
(3)

where Es and Is are the elastic modulus and moment of inertia of the free-edge stiffener, Dx
is the sectional moment of inertia of the CSP, and Hw is the CSP height.

Figure 20 shows the mechanical behavior of the CSP with free-edge stiffeners. The
areas away from the free edges are high-efficiency zones for resisting the shear loads, while
the areas close to the free edges are low-efficiency zones for resisting the lateral load. The
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stiffeners can provide constraints for the free-edge zones to develop tension fields to resist
greater loads compared to those without edge stiffeners. When the moments of inertia of
the free-edge stiffeners were calculated, the benefits of the T sections developed by the
stiffeners and the connected CSPs with a length of 15tw could be taken into consideration,
as shown in Figure 20.
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Figure 20. Diagram of calculation model of free-edge stiffener.

Eight CboSPSW specimens (λ = 300) with different flexural stiffness ratios (η = 0, 1, 2,
3, 4, 5, 6, and 7) were developed. The detailed parameters of these models are shown in
Table 6. Hysteresis curves and skeleton curves with different flexural stiffness ratios η are
shown in Figures 21 and 22.

Table 6. Geometric characteristics of CboSPSWs.

η λ
H B hr b d

(mm) (mm) (mm) (mm) (mm)

0, 1, 2, 3, 4, 5, 6, 7 300 3000 3100 77 110 77

From Figures 21 and 22, the shapes of the hysteretic curves became much fuller with
increases in the stiffener stiffness. The buckling and ultimate strength showed a positive
relationship as the edge stiffener stiffness increased. The ultimate load of the CboSPSW
without edge stiffeners was 4890 kN, and the mechanical properties of the CSPs with no
stiffeners were not fully utilized. The ultimate loads of the CboSPSWs with two stiffeners
increased from 5563 to 6351 kN as the stiffness of the free-edge stiffeners increased. The
ultimate loads of the shear walls with free-edge stiffeners were improved by 14–30%. This
is because the low efficiency shear zones distribute the areas the near the free edges of the
CSPs show in Figure 20, and the parts of the CSPs in the low efficiency shear zones are easy
to buckle and deform. With the increase of the stiffener stiffness, the free-edge stiffeners
increase buckling strength and shear load of the parts of the CSPs in the low efficiency shear
zones. When the flexural stiffness ratio η reaches 1.0, the ultimate strengths of CSPs tend to
be stable. This is because the edge stiffeners can be regarded as constraints of CSPs. When
the free-edge stiffeners have adequate stiffness, the tension fields of CSPs develop fully.
Otherwise, the tension fields of CSPs cannot develop fully, and the mechanical properties
of the CSPs in the CboSPSWs are not fully utilized. The tension fields of CSPs can also
verify this phenomenon, as shown in Figure 23.
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Figure 21. Hysteresis curves of CboSPSWs with different flexural stiffness ratios η . (a) 0η = ; (b) 
1η = ; (c) 2η = ; (d) 3η = ; (e) 4η = ; (f) 5η = ; (g) 6η = ; (h) 7η = . 

 

Figure 21. Hysteresis curves of CboSPSWs with different flexural stiffness ratios η. (a) η = 0;
(b) η = 1; (c) η = 2; (d) η = 3; (e) η = 4; (f) η = 5; (g) η = 6; (h) η = 7.
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Figure 23. Failure modes of CboSPSWs with different flexural stiffness ratios η. (a) η = 0; (b) η = 7.

Figure 23 shows the failure modes of CboSPSWs with different flexural stiffness ratios
(η = 0 and 7). It can be seen that the tension field of the CSP in the CboSPSW with η = 7
developed more fully than that of the CboSPSW with η = 0. In addition, the CboSPSWs
with free-edge stiffeners of different stiffnesses showed large and stable energy dissipation
capacities, as shown in Figure 24.
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constraints for the tension field and buckling strength for the infilled plates of FSPSWs,
which can be expressed as [35]:

Ibmin ≥ 0.0031twBc
4/Hb (4)

where tw is the thickness of the infilled plates, Bc is the center distance between adjacent
columns, and Hb is the center distance between adjacent beams.

The formation mechanism of the tension field and the boundary constraints of the infilled
plates in CboSPSWs are different from those of FSPSWs. The effect of the surrounding beam
stiffness on the seismic performance of the CboSPSWs is worth exploring. As stiffeners of
CSPs, the surrounding beams provide constraints for CSPs in the CboSPSWs. To investigate
the effect of surrounding beam stiffness on the hysteretic performance of CboSPSWs, six spec-
imens with different surrounding beam stiffnesses (0.25Ibmin, 0.5Ibmin, 0.75Ibmin, 1.0Ibmin,
2.0Ibmin, and 10.0Icmin) were developed. In these models, the corresponding sections of the
beams were HW260 × 260 × 26 × 26, HW310 × 310 × 31 × 31, HW340 × 340 × 34 × 34,
HW370 × 370 × 37 × 37, HW410 × 410 × 41 × 41, and HW650 × 650 × 65 × 65, respec-
tively. Hysteretic and skeleton curves of CboSPSWs with various surrounding beam
stiffnesses are shown in Figures 25 and 26.
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(f) Ib = 10.0Ibmin.
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Figure 26. Skeleton curves of CboSPSWs with different surrounding beam stiffnesses.

Figures 25 and 26 show that the shapes of the CboSPSWs were fuller as the stiffness
of the surrounding beams increased. The initial stiffness and shear strength increased
with increases in the surrounding beam stiffness. When the surrounding beam stiffness
reached 0.25Ibmin, the ultimate strength of the CSPs in the CboSPSWs tended to be stable.
The stiffness requirements of the surrounding beams were less than those of the FSPSWs.
In addition, the energy dissipation coefficient of the CSPs increased with increases in the
surrounding beam stiffness, as shown in Figure 27.
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4. Limit of the Stiffness of the Free-Edge Stiffeners

According to Section 3.4, the stiffness of the free-edge stiffener plays an important role
in the ultimate load and the development of the tension field in the CSP. As the stiffeners
of the infilled plates, free-edge stiffeners should have enough out-of-plane stiffness and
strength to provide enough boundary constraints for CSPs. Given this, the limits of the
stiffness of the free-edge stiffeners of CboSPSWs with different geometric parameters
were investigated.

In order to determine the limits of the stiffness of the free-edge stiffeners of CboSPSWs,
a series of CboSPSWs with different height–thickness ratios were developed. In these
models, the height–thickness ratio varied from 100 to 600. The CSP heights and widths
were all 3000 mm. The section sizes of the surrounding columns and columns were
HW-600 mm × 600 mm × 60 mm × 60 mm. The curves of the ultimate loads of CSPs
versus the flexural stiffness ratio η are shown in Figure 28.
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Therefore, the limit of the stiffness of the free-edge stiffeners can be obtained as:

η =
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2
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12
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In Figure 28, the ultimate loads of the tension fields formed in CSPs increased with
increases in the flexural stiffness ratio η. As the stiffeners of infilled plates, the loading
mechanisms of free-edge stiffeners were affected the surrounding columns in FSPSWs.
Therefore, the stiffness limits of the free-edge stiffeners can be determined according to the
analysis method of the stiffness limits of the surrounding columns in FSPSWs [36]. When
the increases in the average stress of the CSPs close to the beams were less than 20%, the
stiffnesses of the edge stiffeners increased. The curves of the shear loads of CSPs close to
the beams versus the flexural stiffness ratio are shown in Figure 28. The shear loads of the
CSPs close to the beams in the CboSPSWs with no stiffeners were 15, 125, 7418, 4110, 3647,
2887, and 2409 kN, respectively, when the height–thickness ratios λ were 100, 200, 300, 400,
500, and 600. The shear loads of the CSPs close to the beams in the CboSPSWs with flexural
stiffness ratios η = 1.0 increased to 16026, 8081, 4679, 4063, 3273, and 2721 kN, respectively,
when the height–thickness ratios λ were 100, 200, 300, 400, 500, and 600. It is shown that
increases of the shear loads were less than 20% with increases in the edge stiffness, and the
ultimate loads of the CSPs tended to be stable, as shown in Figure 28. It is suggested that
the flexural stiffness ratio η should be greater than 1.0 in the design of free-edge stiffeners
in the CboSPSWs.

Besides the constraints for the tension field, the free-edge stiffeners should have
enough strength. A study in the literature [27] investigated the minimum sectional areas
of the free-edge stiffeners according to the strength requirements of the CSPs, which were
obtained via the mechanical equilibrium equations in Figure 20, and the minimum sectional
area of a free-edge stiffener As can be expressed as [27]:

As =
τytwHw

2 fys
(8)

where fys is the yield stress of the free-edge stiffener.

5. Analysis Method for a CboSPSW Based on PFI

The above plastic analyses for CboSPSWs are time-consuming, difficult, and complex.
The Plate–Frame Interaction model (PFI) [36] provides convenient insights into the funda-
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mental features of the seismic analyses of shear walls, including the buckling strength, yield
displacement, yield load, ultimate load, and displacement corresponding to the ultimate
load. The overall mechanical properties of CboSPSWs can be obtained by superposing the
mechanical properties of the frames and CSPs in the CboSPSWs.

When the free-edge stiffeners have enough strength and stiffness, the mechanical
properties of the CSPs in CboSPSWs are consistent with those of CbcSPSWs (CSPs connected
with beams and columns).

The buckling load of a CSP Vcr can be obtained as:

Vcr = τcrBtw (9)

where τcr is the buckling stress of the CSP.
The buckling stress of the CSP τcr can be obtained as [15]:

τcr
τy

=


1 λs < 0.6
1− 0.614(λs − 0.6) 0.6 ≤ λs <

√
2

1/λ2
s λs ≥

√
2

(10)

λs =
(

τy/τE
cr

)0.5
(11)

where λs is the slenderness ratio of the CSP, τE
cr is the elastic buckling stress of the CSP, τy is

yield stress of the CSP.
The elastic buckling stress of the CSP τE

cr can be expressed as [37,38]:

τE
cr =

τE
cr,G
× τE

cr,L

τE
cr,G

+ τE
cr,L

(12)

τE
cr,L

= [5 .34 + 4(
b
B
)2]

π2Ew

12(1− µ2)
(

tw

b
)2 (13)

τE
cr,G

= 36βEw
1

12(1− µ2)1/4


(

hr
tw

)2
+ 1

6ηw


3/4

(
tw

B
)

2
(14)

where τE
cr,L

and τE
cr,G

are the elastic local and global buckling stresses of the CSP, τE
cr is the

first-order buckling stress of the CSP, β is global buckling coefficient of the CSP, ηw is
strength reduction factor of the CSP, and µ is the Poisson ratio of the CSP material.

The initial stiffness of the CSPs in CboSPSWs Kc can be expressed as [35]:

Kc = ϕKw (15)

ϕ = 0.014 ln(B/Hw)− 0.118 ln(λ) + 1.24 (16)

Kw =
GBtw

Hw
(17)

where G is the shear modulus of the CSP, Kw is the initial stiffness of the CSP, and ϕ is the
reduction factor for the initial stiffness of the CSP due to the initial imperfection of the CSP.

The initial stiffness of CboSPSWs can be obtained as:

K = Kc + 24
E f I f

Hb
(18)

where E f is the elastic modulus of the surrounding column and I f is the cross-sectional
moment of inertia of the column.



Buildings 2023, 13, 2220 20 of 23

Then, the buckling displacement of the CboSPSWs ∆cr can be calculated as:

∆cr =
Vcr(Kc + K f )

Kc2 (19)

The ultimate load of the CSPs in CboSPSWs Vu can be obtained as [22]:

Vu =
(
τcr + 0.5σty sin 2α

)
Btw (20)

The displacements corresponding to the ultimate loads of CboSPSWs can be calculated as:

∆u = (
τcr

G
+

2σty

Ew sin 2α
)Hw (21)

Figure 29 provides a comparison of the load–displacement curves between the FE
models (λ = 200 and 500) and PFI models. From Figure 29, the ultimate load ratio of the PFI
model (λ = 200) to the FE model (λ = 200) was 1.05, and the displacement corresponding
to ultimate load ratio of the former one to the latter one was 0.92. In the CboSPSW (λ = 500),
the ultimate load ratio of the PFI model (λ = 500) to the FE model (λ = 500) was 1.12, and
the displacement corresponding to ultimate load ratio of the former one to the latter one
was 0.94. The results show that the PFI models can effectively predict the initial stiffness
and ultimate loads of CboSPSWs, which can be used in the design and plastic analyses
of CboSPSWs.
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6. Conclusions

This paper investigated the seismic performance of CboSPSWs using numerical simu-
lations. The effects of key parameters on the hysteretic performance of the CboSPSWs were
studied, including the height–thickness ratio, aspect ratio, corrugation angle, stiffnesses of
free-edge stiffeners, and surrounding frame stiffness. In addition, the limit of the stiffness of
the free-edge stiffener in CboSPSWs was proposed, and the analysis method for CboSPSWs
was examined. The main conclusions are as follows:

(1) The ultimate load, initial stiffness, and energy dissipation increase with increases
in the height–thickness ratio. When the height–thickness ratio reaches 700, the energy
dissipation capacity of the CSP decreases significantly. It is suggested that the height–
thickness ratio should be less than 600 in the design and application of CboSPSWs for stable
energy dissipation. The suitable range of corrugation angles of CSPs is from 45◦ to 60◦.

(2) The stiffness of the free-edge stiffener has a significant impact on the strength and
development of the tension field. Due to the low efficiency shear zones distributed in
the areas the near the free edges, the mechanical properties of the CSPs in the CboSPSWs
with no stiffeners are not fully utilized, and the tension field of the CSPs cannot develop
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fully. The ultimate strength of the CSP increases with increases in the stiffness of the edge
stiffener. The ultimate loads of the CboSPSWs with free-edge stiffeners were improved by
14–30% compared to those without free-edge stiffeners.

(3) The limit of the stiffness of the free-edge stiffeners can be obtained using the flexural
stiffness ratio η. When the flexural stiffness ratio η exceeds 1.0, the average stress of the
CSPs close to the beams was less than 20%, and the tension field develops fully in the CSPs
in CboSPSWs. It is suggested that the flexural stiffness ratio η should be greater than 1.0 in
the design of free-edge stiffeners in the CboSPSWs.

(4) The PFI model can effectively predict the shear strength and initial stiffness of
CboSPSWs with good accuracy, and the PFI model can be used in the design and plastic
analyses of CboSPSWs.

This paper investigates the seismic performance of the CboSPSW, and more cyclic
loading tests of CboSPSWs are essential. Besides this, the artificial intelligence methods
provide new sights for the static and seismic performances of CboSPSWs.
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Abbreviations

List of symbols/abbreviations:

As Minimum sectional area of a free-edge stiffener
b Horizontal subpanel width of the CSP
B Width of the CSP
Bc Ccenter distance between adjacent columns
d Horizontal projection of inclined subpanel width
Dx Sectional moment of inertia of the CSP
En Energy dissipation coefficients of the CSP
Ew Elastic modulus of the CSP
E f Elastic modulus of the surrounding column
I f Cross-sectional moment of inertia of the column.
∆cr Buckling displacement of the CboSPSW
Es Elastic modulus of the free free edge
fys Yield stress of a free-edge stiffener
hr Corrugation depth of the CSP
H CSP height
Hb Center distance between adjacent beams
Is Moment of inertia of the free-edge stiffener
Ibmin Minimum area moment of inertia of the surrounding beam
Kc Initial stiffness of the CSP
ϕ Reduction factor for the initial stiffness of the CSP
Kc Initial stiffness of the CSP
K Initial stiffness of CboSPSWs
tw Thickness of the CSP
Vcr Buckling load of a CSP
Vu Ultimate load of the CSP
∆y Yield displacement of the CSP
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∆u Displacement corresponding to the ultimate load
µ Ductility coefficient
θ Corrugation angle
α Inclination angle of the tension field in the CSP
η Flexural stiffness ratio of the stiffener of the free edge
λ Height-thickness ratio of the CSP
λs Slenderness ratio of the CSP
τE

cr Elastic buckling stress of the CSP
τE

cr,L
Elastic buckling stresses of the CSP

τE
cr,G

Elastic global buckling stresses of the CSP
τy Yield stress of a corrugated steel plate
τcr Buckling stress of the CSP
G Shear modulus of the CSP
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