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Abstract: Natural disasters and warfare lead to the destruction of city buildings and infrastructure,
leaving large numbers of people homeless. The rebuilding of destroyed cities needs to be carried
out promptly while maintaining a balance between construction quality and duration. Rework due
to defects and the lengthy approval of non-conformances significantly increases the duration of
construction. This study aimed to develop a decision support system to fix or negotiate strategies to
address construction defects, depending on their level of risk. The paper addresses the following
objectives: classifying defects by the quality of construction that they affect; building a tree of
construction defect risks; and developing an artificial neural network (ANN) to assess the defect
risk. The weights of the links are represented by posterior probabilities of damage calculated using
the Bayes’ theorem in the pre-training stage. The ANN has been adapted to cast-in-place reinforced
concrete structures. When training the resulting ANN on a sample of precedents, the test sample
demonstrated convergence and low errors. The resulting model will accelerate construction by
automating assessments of defect severity and reducing the time spent on reworking defects with
low quality risk.

Keywords: construction; city rebuilding; risk management; defect risk; quality control; risk-based
approach

1. Introduction

Residential communities, and sometimes, entire cities, are destroyed as a result of
warfare or natural disasters, with their residents losing their homes and apartments while
key infrastructure supporting normal life stops functioning during the permanent relocation
of residents [1]. In similar conditions, when rebuilding cities, the construction of buildings
must be carried out promptly and with a sufficient level of quality. In such a situation,
the duration of the construction project is the decisive criterion [2]. Moreover, the rebuilt
building must have a sufficient level of quality so that it could be used for its intended
purpose [3]. The regulatory and industry literature details all requirements for the quality
of work in civil engineering. The problem is that all these requirements are intended
for construction under normal conditions, such as scheduled urban development, the
implementation of a government housing policy, commercial investment projects, etc.
There are a number of studies in the scientific community dedicated to the construction of
prefabricated buildings and temporary housing for the resettlement of people who have
lost their homes [4–8]; however, rebuilding urban infrastructure and cities itself is a problem
that is not sufficiently studied. The rebuilding of cities after destruction is complicated by a
number of factors, so it has a longer duration, which adversely affects the population [9].
There are requirements for construction quality applicable to the rebuilding of destroyed
cities, when buildings need to be constructed faster than in normal conditions. Applying
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the existing requirements for construction quality and safety will prevent the rebuilding of
buildings ahead of regulatory construction timelines.

Construction quality is ensured through a complex of various factors: the qualification
of workers and engineers, a quality control system, design and process documentation,
machinery, and tools. In the case of city rebuilding, the quality of construction is neg-
atively affected by a large number of factors that complicate the work. City rebuilding
requires prompt fulfillment of all pre-construction FEED and design procedure prepara-
tions [10]. Conducting engineering surveys of destroyed buildings is complicated by a
number of factors, and takes more time than under normal conditions [11]. In such a
situation, engineering surveys are often carried out in parallel with the development of
design documentation, with design documentation undergoing accelerated verification
and approval procedures for contractors to start work. As a result, detailed design and
engineering documentation used for city rebuilding often have inaccuracies, errors, and
deficiencies, which adversely affect the quality of construction [12]. When rebuilding cities
after warfare or natural disasters, contractors are selected via a simplified and accelerated
bidding procedure against cost and timing criteria, without multi-stage competitions, with-
out reviewing their portfolios and qualifications, etc. In such cases, the contractor is often a
state construction organization [13]. In this regard, the contractor involved in the rebuilding
of destroyed cities often does not have a high level of quality control organization and
may lack the necessary technical resources. In the case of city quality control, the initial
preparatory period is almost non-existent; thus, the contractor does not always have time to
recruit the necessary number of highly skilled engineers and workers. Specific conditions
of city rebuilding at all stages require a scientific approach and the development of various
decision support systems [14].

Summarizing the above, we can conclude that all factors that influence the quality of
construction initially have a low weight in the specific conditions of city rebuilding after
natural disasters or warfare. If the contractor initially has low capabilities affecting the
quality of construction, this leads to a large number of construction defects of different
types, which, in turn, leads to longer construction times due to rework or downtime caused
by the search for more qualified contractors. However, in addition, there are external
risk factors [15] that complicate the quality of construction even for highly organized
contractors: infrastructure disruption, problems with energy supply [16], and disruptions
in logistics [17]. Therefore, in order to accelerate construction in the specific conditions of
rebuilding destroyed cities, we need to establish more flexible requirements for the quality
of construction that allow for defects while maintaining the overall quality of construction.

Currently, there are no regulatory documents that set out nominal requirements for
the quality and safety of construction during the rebuilding of destroyed cities. At the
same time, there are no guidelines for determining the necessary and sufficient range of
requirements for the quality of construction depending on the project and construction
conditions, particularly for the rebuilding of cities, when construction timing is decisive.
There are some scientific studies on instrumental quality assessment and determination of
the damage causes [18], and separate studies on the assessment of the significance of cracks
in monolithic structures for the reliability and safety of operation [19]; however, these
studies do not establish a methodological approach to assess the significance of various
defects and the degree of their joint influence on the quality of structures according to
several criteria.

The solution to this problem is only possible with the use of a risk-based approach [20]
to assess the significance of construction defects. The risk-based approach has been suc-
cessfully used to assess the duration and cost risks of construction projects [21–23], as well
as other construction project risks [24]. This study aimed to develop a decision support
model for construction quality control systems in the rebuilding of destroyed cities, when
construction timing is the decisive criterion of effectiveness. The objectives of this study
were reviewing the literature on the current topic; building a tree of construction quality
risks; classifying defects by quality, and developing a model for assessing the defect risk;
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and training and validating the resulting model for cast-in-place reinforced concrete struc-
tures. The theoretical value of this study consists of the creation of new approaches for the
assessment of construction defects and their classification based on the construction quality
risk. Its practical value lies in the accelerated timing of construction due to preventing
wasted time on reworking defects that do not carry a significant risk to the quality of work,
as well as through the automation of the decision-making process to assess the significance
of the defect.

2. Literature Review

Contemporary construction problems during the rebuilding of cities after natural
disasters and warfare are highly relevant; however, scientific research in this area has
not really advanced. There have been some studies on the introduction of information
modeling into the process of project documentation approval and permission process [10],
and the need to introduce special urban planning technologies for city rebuilding has
been established [2,12,25]. Several studies have been performed on the analysis of the
causes and nature of destruction caused by natural disasters [26–28]; risks of damage
to buildings and structures during earthquakes have been analyzed [29], and methods
of designing buildings to minimize damage from natural disasters, such as hurricanes,
have been developed [30]. However, there are currently no studies on the organization
of construction and quality control during the rebuilding of cities after natural disasters
or warfare. In these circumstances, when construction timing is the decisive criterion, it
is necessary to find a balance (“golden mean”) between quality and timing. Excessively
stringent requirements of construction supervision authorities for the quality of construc-
tion and, as a consequence, systematic correction of identified defects, lead to construction
delays [31]. Rework due to errors during construction is one of the most significant causes
of construction delays [32–34]; therefore, reducing the impact of this problem is relevant
for all construction projects. To solve this problem, a tool is needed to assess the risk of
construction defects. Additionally, one of the significant reasons for construction delays
is slow decision-making [35–37]; a solution to this problem requires the development of
decision support systems, including for quality control systems.

Scientific research is ongoing in this area: a model based on Bayes’ neural network and
fuzzy logic has been developed, linking quality control with defects in cement coatings [38];
the connection between the organizational structure of a construction company and the
risk of defects in construction and rework [39] has been established; a Bayesian network
has been built to take the impact of risks on the timing of the construction of infrastructure
into account [40]; and a model to assess the risk of construction defects has been developed
using fuzzy logic [41]. Methods to automate quality monitoring using image recognition
technologies have been studied [42,43]; defect classifications of cast-in-place reinforced
concrete bridges have been automated [44]; risks of defects in wet areas of buildings have
been estimated [45]; causes of defects in paint and varnish coatings of building walls have
been studied using a risk-oriented approach [46]; and an AR defect management prototype
has been evaluated [47]. Research has been performed to assess the causes of defects and to
manage the quality of finishing work [48]. However, there are no studies on construction
defect risk assessments, which would facilitate making decisions on the acceptability of a
given defect in a structure. As a rule, defects are broken down into three categories, i.e.,
acceptable, significant, and critical, but no unified methodology exists to classify defects
into these categories. The “permissible defect” has not been sufficiently studied, with
construction quality standards of different countries featuring a description of the types and
nature of permissible defects for welded seams of metal structures and geometric deviations
in various building structures. These guidelines, however, are advisory in nature, and
in most construction projects, defects are classified as “permissible” by involving design
organizations and the project’s chief engineers as experts.

In their previous studies, authors have assessed the comprehensive quality metrics of
a construction project at each stage of its life cycle [49], and developed a model to assess
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the risks of a construction project in terms of its timing and cost, based on fuzzy logic [50].
Researchers have examined the classification of defects depending on the degree of damage,
as well as the classification of construction projects and building structures according to
the degree of construction quality risk [51]; in their recent study, other researchers have
developed a model to assess a priori risks of defects in various construction processes [52].

3. Materials and Methods

Analysis of scientific research [53–55] and our own developments indicated that con-
struction quality is assessed against six basic criteria (Figure 1): Q1—purpose (strength,
rigidity for load-bearing structures, tightness, for waterproofing coatings, thermal con-
ductivity for thermal insulation, etc.); Q2—constructability (geometric dimensions, shape,
composition, and structure); Q3—reliability (probability of failure, resistance to corrosion,
and service life); Q4—maintainability (duration, labor intensity, and cost of recovery in
the case of failure); Q5—operational safety (danger to human life and health during opera-
tion, and compliance with fire, sanitary, and environmental standards); and Q6—esthetics
(design, appearance, and quality of surfaces).
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Figure 1. Construction quality assessment criteria.

Construction defects are broken down into three categories according to the degree of
danger: permissible, significant, and critical. A critical defect is a defect in which normal
operation of the structure is impossible.

This paper proposes the danger assessment of a defect using a risk-based approach [56],

R(Di) = P(U|Di)U(Di), (1)

where Di is the construction defect, P(U|Di) is the probability of damage from the defect,
and U(Di) is the damage from the defect.

Defect damage should be assessed against the criteria detailed in Figure 1. At the same
time, each defect can deteriorate construction quality in terms of a number of criteria.

The defect risk for each criterion can be considered separately. An expert at the
construction site assesses the defect against one of the criteria, choosing the most significant.
Evaluation against several criteria is a difficult task for any expert. If there are several
defects, their simultaneous impact on construction quality is even more difficult to assess
for any expert. Multi-criteria assessment requires the use of mathematical models.

Multi-criteria assessment of the impact of defects on construction quality using a
risk-based approach also requires building a risk tree, as presented in Figure 2 in its general
form. Building a risk tree or an event tree presents the overall risk as a system of elementary
risks, then highlights all the main risk factors—events leading to damage, and group them
according to the nature of the impact on elementary risks. Thus, building a risk tree or an
event tree structures the overall risk [57–59].
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According to the resulting tree, construction quality risk against one criterion can be
calculated using the following formula:

R(Qn|Di) = ∑i=N
i=1 P(U|Di)U(Qn|Di), (2)

The total risk against all criteria is calculated according to the following formula:

R(D) = ∑n=6
n=1 R(Qn|Di), (3)

Depending on the type of construction, and the type and purpose of building struc-
tures, various defects can affect the quality as assessed against a limited number of criteria
Q. Each defect has an impact on the maintainability of the structure, and defects in con-
cealed works have a greater impact on maintainability than defects of finished surfaces. Let
us take the construction of load-bearing cast-in-place reinforced concrete structures as an
example. The “reduced number or diameter of reinforcing bars” defect only has an impact
against four criteria: Q1, Q3, Q4, and Q5. Therefore, the number of links or their weights
in the risk tree will vary depending on the type of work and type of defects. An artificial
neural network (ANN) methodology was used for mathematical interpretation of the re-
sulting model. The structure of the resulting risk tree with a large number of connections is
accurately interpreted using the ANN methodology. ANNs are an effective tool for multi-
objective optimization, because they work well with a large set of input values and are
suitable for approximating various dependencies. These features make ANNs preferable
for the mathematical formalization of a hierarchical structure, when it is not possible to
set a rule for each node, or it is incorrect to use recursive binary splitting (as, for example,
in the decision tree model). ANNs are a flexible model and when the structure changes,
for example, with an exclusion of one or more neurons from the hidden layer, they can
effectively learn from existing samples of precedents, which also make them preferable for
the decision tree model. This property is important because, for various building structures,
the number of the most important quality criteria Q, used for the evaluation of defects, will
change. Additionally, the structure of the resulting risk tree with a large number of links is
well interpreted by the ANN structure. ANNs consist of three layers: the first layer is the
network input values (defects); the second layer is neuron Q (quality criteria); and the third
layer consists of one neuron R (defect risk). The input layer is the defects of the structure.
A separate ANN is developed for each separate type of construction work. To determine
the number of ANN inputs, it is necessary to classify defects for each type of construction
processes by type of impact on the quality criteria Q. Table 1 shows the classification of
defects for load-bearing cast-in-place reinforced concrete structures.
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Table 1. Classification of defects in cast-in-place reinforced concrete structures.

No Name of the Defect (Di) Quality Criteria (Qn)

1 Reduction in the strength of the concrete structure Q1, Q3, Q4, Q5

2 Reduction in frost resistance, water resistance of concrete Q3, Q4

3 Cracks in concrete with an opening width of more than 0.2 mm Q1, Q3, Q5, Q6, Q4

4 Areas of unconsolidated concrete Q1, Q3, Q5, Q6, Q4

5 Reduction in the concrete cover Q3, Q5, Q4

6 Vertical deviation, straightness, horizontality of structure, deviations of
the cross-section dimensions Q1, Q2, Q3, Q5, Q4, Q6

7 Irregularities and chips on the concrete surface Q3, Q4

8 Grease and rust stains on the concrete surface Q6, Q4

9 Reduction in the diameter, distance and/or quantity of the reinforcement Q1, Q3, Q4, Q5

10 Violations when connecting reinforcement Q1, Q3, Q4, Q5

11 Increased level of chemical/radiation contamination of concrete Q5, Q4

12 Reduction in the strength of the concrete structure Q1, Q3, Q4, Q5

13 Reduction in frost resistance, water resistance of concrete Q1, Q3, Q4, Q5

This classifier defines the quality criteria that are affected by defects. Each defect
generates six input values according to the number of quality criteria. The estimated
potential damage from defect D1 against quality criterion Qn is the input value of neuron
Qn. If, according to the classifier, a defect does not affect a certain criterion, then the input
value from such defect for such neuron will be equal to 0. Potential damage is estimated on
a scale from 0 to 1 according to Table 2.

Table 2. Classification of defects of cast-in-place reinforced concrete structures by the degree of
potential damage.

No Defect Category by Potential Damage ANN Input Value

1 Permissible defect 0

2 Significant defect where the structure with reduced
quality against the Qn criterion can be operated 0.5

3 Critical defect where the use of construction products is
limited or impossible against the Qn quality criterion 1

Classification of a defect into categories from Table 2 depends on many factors. For
example, the potential damage from a crack in a reinforced concrete structure depends
on the width of its opening, surface requirements, the nature of the opening (branched
ends or not), location in the structure (tensile or compressed zone), orientation (inclined
with reinforcement intersection, longitudinal along the reinforcement), etc. Therefore,
an assessment of defect damage requires a separate research study. However, at the
construction stage, especially during the rebuilding of destroyed cities, decisions need to
be made fast; thus, only three categories are selected for damage assessment, according to
Table 2.

Let us take defect No. 4 “Areas of Discontinuous Concrete” in Figure 3 as an example.
Defect “a” has a vector of input values uDaQn = {0.5; 0; 0.5; 1; 0; 0}; defect “b” generates the
following vector of input values: uDbQn = {1; 0; 1; 1; 0.5; 0}.



Buildings 2023, 13, 2142 7 of 16

Buildings 2023, 13, x FOR PEER REVIEW 7 of 17 
 

Let us take defect No. 4 “Areas of Discontinuous Concrete” in Figure 3 as an example. 

Defect “a” has a vector of input values 𝑢𝐷𝑎𝑄𝑛 = {0.5; 0; 0.5; 1; 0; 0}; defect “b” generates 

the following vector of input values: 𝑢𝐷𝑏𝑄𝑛 = {1; 0; 1; 1; 0.5; 0}. 

  
(a) (b) 

Figure 3. Classification of defects at the input to the ANN, with an estimation of defect damage. (a) 

Defect No. 4, for Q1, Q3—significant defect, for Q5, Q6—permissible defect, for Q4—critical defect. 

(b) Defect No. 4, for Q1, Q3, Q4—critical defect, for Q5—significant defect, for Q6—permissible defect. 

Therefore, a vector of values corresponding to the damage category for each criterion, 

which is the input vector of ANN signals, is assigned to each defect in the classifier. Then, 

the input signals are sent via synapses to the corresponding neuron Qn, which is affected 

by the defect. Each link in the ANN has its own weight, 𝑤, by which the input signal is 

multiplied. The link weight 𝑤𝐷i𝑄n at the first layer of the ANN is the probability of poten-

tial damage 𝑈(𝑄𝑛|𝐷𝑖) from defect Di as assessed against criterion Qn. 

The probability of potential damage is estimated using Bayes’ theorem 

𝑃(𝑈𝑄𝑛|𝐷𝑖) =
𝑃(𝐷𝑖|𝑈)×𝑃(𝑈𝑄𝑛)

𝑃(𝐷𝑖)
, (4) 

where 𝑃(𝑈𝑄𝑛|𝐷𝑖) is the predicted (a posteriori) probability of damage as assessed against 

criterion Qn on occurrence of the ith defect; 𝑃(𝐷𝑖|𝑈) is the a priori probability of damage 

due to the ith defect, which probability indicates how often damage to the structure is 

caused by the ith defect; 𝑃(𝑈𝑄𝑛) is the probability of damage for this quality criterion for 

the relevant structures; and 𝑃(𝐷𝑖) is the a priori probability of the ith defect. 

Therefore, a signal comes from one defect to each neuron Qn, representing the ele-

mentary risk for such quality criterion, as calculated by Equation (1). If several defects are 

detected, the neuron may receive several signals as shown in Figure 4. Then, the neuron 

Qn adder sums up the elementary risks from all detected defects using Equation (2). The 

induced local field of neuron 𝑣𝑄𝑛 then enters the activation function of neuron Qn, which 

is taken as a classical logistic function. 

Figure 3. Classification of defects at the input to the ANN, with an estimation of defect damage.
(a) Defect No. 4, for Q1, Q3—significant defect, for Q5, Q6—permissible defect, for Q4—critical defect.
(b) Defect No. 4, for Q1, Q3, Q4—critical defect, for Q5—significant defect, for Q6—permissible defect.

Therefore, a vector of values corresponding to the damage category for each criterion,
which is the input vector of ANN signals, is assigned to each defect in the classifier. Then,
the input signals are sent via synapses to the corresponding neuron Qn, which is affected
by the defect. Each link in the ANN has its own weight, w, by which the input signal
is multiplied. The link weight wDiQn at the first layer of the ANN is the probability of
potential damage U(Qn|Di) from defect Di as assessed against criterion Qn.

The probability of potential damage is estimated using Bayes’ theorem

P
(
UQn

∣∣Di
)
=

P(Di|U)× P
(
UQn

)
P(Di)

, (4)

where P
(
UQn

∣∣Di
)

is the predicted (a posteriori) probability of damage as assessed against
criterion Qn on occurrence of the ith defect; P(Di|U) is the a priori probability of damage
due to the ith defect, which probability indicates how often damage to the structure is
caused by the ith defect; P

(
UQn

)
is the probability of damage for this quality criterion for

the relevant structures; and P(Di) is the a priori probability of the ith defect.
Therefore, a signal comes from one defect to each neuron Qn, representing the ele-

mentary risk for such quality criterion, as calculated by Equation (1). If several defects are
detected, the neuron may receive several signals as shown in Figure 4. Then, the neuron
Qn adder sums up the elementary risks from all detected defects using Equation (2). The
induced local field of neuron vQn then enters the activation function of neuron Qn, which is
taken as a classical logistic function.
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The coefficients of the logistic function of activating neurons Qn of the ANN’s hidden
layer are selected in such a way that the area of the neuron output values should be within
the range from 0 to 1. Then, the output of each neuron of the hidden layer qn is fed
into one neuron of the ANN output layer, R, along the relevant links. Each link has its
own weight, wQn, which reflects the significance of each quality criterion for a particular
structure. These weights will vary depending on the type of structures, the risk of defects
of which is measured by the ANN. Neuron R sums up all risks for each criterion according
to Equation (3), considers the significance coefficients of each criterion, wQn, as shown in
Figure 5.
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Then, using the Heaviside Step Activation Function, neuron R generates “0” or “1”,
which mean a low risk of construction defect or a high risk of construction defect, respec-
tively. The resulting ANN predicts whether a construction defect will occur as a result of a
detected defect or group of defects. This facilitates making a decision to fix a defect or to
recognize it as a “permissible defect” and save time on rework.

The methodology for implementing a decision support system based on the signifi-
cance of a defect is shown in Figure 6. Notably, after training the ANN for a certain type of
building structure according to the specified quality criteria, the decision support system
will function throughout the construction without the need for retraining. Therefore, the
first step of the algorithm in Figure 6 is applied only at the beginning of construction when
adapting the ANN for a certain type of building structure at a specific site.
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4. Results

This section presents the implementation of the developed decision support system
based on an ANN. According to the methodological diagram in Figure 6, the first step is
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to perform ANN training for a certain type of building structures according to specified
criteria. ANN training is performed in two stages: the first stage, preliminary training,
consists of determining a posteriori damage probabilities from the main types of defects,
which are the initial connection strength of the ANN; in the second stage, additional
training of the ANN is performed on a sample of precedents with a check of the predictive
validity on a validation set.

4.1. Preliminary Training of ANNs

The ANN was adapted and trained for cast-in-place reinforced concrete structures
in multi-story buildings. In the ANN’s preliminary training stage, the initial weights
of links of the first wDiQn and second wQn ANN layers were established. The weights
denoting the significance of criterion Q for the relevant type of construction products
were determined through a survey among 32 experts. The experts included employees
of companies performing construction supervision and EPCM contractor functions. The
results of the survey after statistical data processing (removal of outliers) are shown in
Figure 7. Thus, we can conclude that the most significant quality criteria for cast-in-place
reinforced concrete structures include purpose Q1, reliability Q3, and constructability Q2.

Buildings 2023, 13, x FOR PEER REVIEW 9 of 17 
 

 

Figure 6. Methodological diagram for the implementation of the decision support system. 

4. Results 

This section presents the implementation of the developed decision support system 

based on an ANN. According to the methodological diagram in Figure 6, the first step is 

to perform ANN training for a certain type of building structures according to specified 

criteria. ANN training is performed in two stages: the first stage, preliminary training, 

consists of determining a posteriori damage probabilities from the main types of defects, 

which are the initial connection strength of the ANN; in the second stage, additional train-

ing of the ANN is performed on a sample of precedents with a check of the predictive 

validity on a validation set. 

4.1. Preliminary Training of ANNs 

The ANN was adapted and trained for cast-in-place reinforced concrete structures in 

multi-story buildings. In the ANN’s preliminary training stage, the initial weights of links 

of the first 𝑤𝐷i𝑄n and second 𝑤𝑄𝑛 ANN layers were established. The weights denoting 

the significance of criterion Q for the relevant type of construction products were deter-

mined through a survey among 32 experts. The experts included employees of companies 

performing construction supervision and EPCM contractor functions. The results of the 

survey after statistical data processing (removal of outliers) are shown in Figure 7. Thus, 

we can conclude that the most significant quality criteria for cast-in-place reinforced con-

crete structures include purpose Q1, reliability Q3, and constructability Q2. 

 

Figure 7. Results of the expert survey on the significance of quality criteria for cast-in-place rein-

forced concrete structures with weights 𝑤𝑄𝑛 of the ANN’s second layer links. 

The weights of links 𝑤𝐷i𝑄n of the ANN’s first input layer are found using Equation 

(4). For this purpose, the probabilities of damage 𝑃(𝑈𝑄𝑛) for cast-in-place reinforced con-

crete structures from defects listed in Table 1 were first found for each of the six criteria Q. 

0.27

0.18
0.22

0.11
0.15

0.07

0.00

0.10

0.20

0.30

Q1 Q2 Q3 Q4 Q5 Q6

𝑤
Q

Quality criteria 

Figure 7. Results of the expert survey on the significance of quality criteria for cast-in-place reinforced
concrete structures with weights wQn of the ANN’s second layer links.

The weights of links wDiQn of the ANN’s first input layer are found using Equation (4).
For this purpose, the probabilities of damage P

(
UQn

)
for cast-in-place reinforced concrete

structures from defects listed in Table 1 were first found for each of the six criteria Q.
During the second round of the expert survey, the experts were asked a question: “Which
quality criterion is most often affected when cast-in-place reinforced concrete structures
are damaged during their operation (owners’ complaints, defects found as a result of an
expert review, surveys, etc.)?” The experts ranked six quality criteria as shown in Figure 1,
relative to each other. The results of the survey after statistical data processing (removal
of outliers) are shown in Figure 8. Relative probabilities of damage for each of the criteria
were obtained, which can be used to judge which quality criteria are more likely to cause
damage. The results lead us to a conclusion that damage to cast-in-place reinforced concrete
structures can most often be qualified under the first three quality criteria Q1, Q2, and Q3.

The probability of each defect P(Di) listed in Table 1 was also determined during the
third round of the expert survey. In this case, the experts assigned a score from 1 to 10,
where each score correlated with the frequency of defect occurrence, expressed verbally:
1—“I have never met such a defect in my practice”; 2—“very rarely (once or twice during a
construction project)”; 3–4—“rarely (every four to five floors)”; 5–6—“from time to time”
(on one or two floors); 7–8—“often” (on every floor); and 9–10—“constantly” (in almost
every structure). The results of the survey after statistical data processing (removal of
outliers) are shown in Figure 9 and labeled as P1(D).
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Figure 8. Damage probability P
(
UQn

)
to cast-in-place reinforced concrete structures during operation

against six quality criteria.
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Figure 9. Defect probability P(Di) during the construction of cast-in-place reinforced concrete
structures of multi-story buildings.

Defect probability P(Di) was also established experimentally through a statistical
analysis of registers of non-conformance reports generated by the construction supervision
service during the construction of twelve multi-story buildings in Moscow. An array
of statistical data on quality breaches with respect to cast-in-place reinforced concrete
structures found in the archives of a construction company performing the EPCM contractor
and construction supervision functions was analyzed and processed. The relative defect
probability was calculated using the following formula:

P(Di) =
NDi
Nd

, (5)

where NDi is the number of occurrences of the ith defect during the construction of cast-in-
place reinforced concrete structures, and Nd is the total number of defects in cast-in-place
reinforced concrete structures. The probability of defects listed in Table 1 occurring at each
construction site was calculated using Equation (5). Figure 8 shows defect probabilities
averaged over 12 construction projects and labeled as P2(D). Both methods used the above
to determine the probability P(Di) with their advantages and disadvantages. An expert
opinion can highlight patterns, but it can be biased; statistical data are unbiased, but a
significant number of defects and violations are not entered into the database, as many
defects are fixed “in the here and now” during the delivery and acceptance of a completed
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project and they are not reflected in non-conformance reports. Taking this into account, in
order to obtain more reliable values of probabilities P(Di), the probabilities obtained by the
two above methods can be averaged to address defect probabilities, denoted in Figure 8
as P3(D).

To determine the a priori probability of damage P(Di|U) due to the ith defect, it is
necessary to determine the frequency at which the defect causes damage. Damage caused
by construction defects is more often manifested in the stage of the building’s operation and
the cause of such damage is established during the inspection of buildings and structures
before major repairs or rebuilding, or after destruction caused by natural disasters [10] or
warfare. To determine this probability, another second expert survey was conducted among
28 experts involved in building and structure inspections. In this survey, the experts gave
a score from 1 to 10, where each score correlated with the frequency of defect occurrence
during the inspection of buildings and structures, expressed verbally as: 1—“I have never
met such a defect in my inspection practice”; 2—“very rarely (not more than 10 cases over
my entire practice)”; 3–4—“rarely (every three to four inspections)”; 5–6—“from time to
time (in one or two inspections)”; 7–8—“often (during every inspection)”, and 9–10—“very
often (several times per every inspection)”. The results of the survey after statistical data
processing (removal of outliers) are shown in Table 3. This table also presents the results of
calculating a posteriori probabilities of damage caused by defects, as assessed against the
purpose criterion Q1 according to Equation (4).

Table 3. Results of calculating a priori and a posteriori probabilities of damage caused by construction
defects in cast-in-place reinforced concrete structures, as assessed against criterion Q1 (purpose).

No Name of the Defect (Di) P(Di) P(Di|U) P
(
UQ1

)
P
(
UQ1|Di

)
1 Reduction in the strength of the concrete structure 0.02 0.07 0.21 0.60

2 Reduction in frost resistance, water resistance
of concrete 0.01 0.03 0 0

3 Cracks in concrete with an opening width of more than
0.2 mm 0.09 0.12 0.21 0.27

4 Areas of unconsolidated concrete 0.15 0.11 0.21 0.15

5 Reduction in the concrete cover 0.10 0.13 0 0

6 Vertical deviation, straightness, horizontality of
structure, deviations of the cross-section dimensions 0.15 0.11 0.21 0.15

7 Irregularities and chips on the concrete surface 0.15 0.14 0 0

8 Grease and rust stains on the concrete surface 0.03 0.05 0 0

9 Reduction in the diameter, distance and/or quantity of
the reinforcement 0.05 0.08 0.21 0.33

10 Violations when connecting reinforcement 0.11 0.05 0.21 0.10

11 Increased level of chemical/radiation contamination
of concrete 0 0.01 0 0

12 Reduction in the strength of the concrete structure 0.08 0.01 0.21 0.02

13 Reduction in frost resistance, water resistance
of concrete 0.05 0.05 0.21 0.24

4.2. ANN Training

The ANN was trained and verified for the convergence of data to monitor the quality
of cast-in-place reinforced concrete structures. Expert surveys, the results of which are
presented above, showed that three criteria were of the greatest importance: purpose Q1,
constructability Q2, and reliability Q3. Given the purpose of our study, we will discard the
other quality criteria and train the ANN on the most significant criteria.
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Retrieving a training sample for the study’s subject is a very labor-intensive process.
The ANN input is the construction defects, and the ANN output is the risk of construction
defects. In this study, the risk could take two values: ANN output is “1”—the structure
needs to be redone; and ANN output is “0”—the structure can be operated. The authors
analyzed more than 100 orders from construction supervision services from 12 different
construction projects, after which the structure was redone (ANN output is “1”) or kept the
same (ANN output is “0”). Photographs of defects were selected to evaluate the defects
according to Table 2 (ANN input). Thus, a sample of 40 precedents was obtained.

A lot of time can pass between events such as the “occurrence of a defect during
construction” and “defective construction” that cannot be operated. Part of the training
sample array was retrieved from the materials of inspections of buildings and structures
before major repairs and rebuilding. During the visual inspection of cast-in-place reinforced
concrete structures of various buildings and structures, a defect of the building structure
was recorded (ANN output is “1”); this defect made further safe operation no longer
possible. Then, during a more detailed inspection its cause is determined, which is quite
often a construction defect, as listed in Table 1. The training sample was composed of
defects (ANN output is “1”) actually recorded in cast-in-place reinforced concrete structures
and defects that caused such consequences. Defects were assessed against each criterion in
accordance with Table 2. Ten reports of technical inspection of buildings and structures
were analyzed, from which construction defects were identified that led to unsafe operation
(ANN output of “1”), and those which did not affect the operation of structures (ANN
output of “0”).

As a result, a sample with a length L = 60 precedents was generated in this way. For
training, we divided the sample into a learning sample with a length Ltrain = 50 precedents,
and a test sample with a length Ltest = 10.

Considering the small size of the training sample, we applied statistical bootstrap
technology [60] to expand it. The length of the bootstrap sample was equal to the length
of the training sample. The ANN was trained using the bootstrap aggregating technol-
ogy [61], which consisted of training the ANN on several separate bootstrap samples and
further averaging the generated weights. The ANN’s convergence process, including the
calculation of the mean square error (MSE) on the train and test samples, is shown in
Figure 10. The quality of the ANN’s training was verified using cross-validation [62], and
the ANN featuring the lowest MSE was selected, which required 10 bootstrap samples for
training. To control overfitting, we used the sixfold cross-validation method. The resulting
six models had approximately the same MSE in the range of 0–0.2.
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The convergence of the ANN data demonstrated by the test sample indicated that the
model had been successfully trained. Convergence of the ANN was achieved; therefore,
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the error value can be taken as a random variable distributed according to the normal
law of distribution. Then, it is possible to calculate the upper confidence limit of the error
through estimation of the expected value E(ε) of error ε on the control sample according to
the formula

E(ε) ≺ ε +
tvs√
Ltest

(6)

where ε is the arithmetic mean error, tv is the value for t-distribution with the number of
degrees of freedom v = Ltest − 1, and s is the corrected sample standard deviation.

For an ANN that did not give errors on the control sample, the upper limit of the
expected value according to Equation (6) is 0.11 with a confidence level of 85%, which
means that the developed ANN in 85% of cases will give a correct prediction or make a
mistake 1 time out of 10. The prediction reliability of the trained ANN was 85% on the test
sample, which is quite high, given the small sample of precedents. The results indicate
that the use of the generated model to predict the significance of a construction defect was
effective. This result was ensured due to pre-training of the ANN.

5. Discussion

The proposed classification of defects according to quality criteria specifies the type of
damage from this defect, which contributes to a more reliable assessment of defect significance.

Compared with previous studies, the authors have developed an artificial neural
network that predicts the significance of structural defects according to several quality
criteria. Multi-criteria defect risk assessments enable a more complete analysis of defect
significance. The obtained model features an ability to select the criteria that are most
important for a particular case, and to assess the risk of defects according to these criteria.
The ANN methodology facilitates an easier and faster adaptation of the resulting model
for various construction projects due to the high ability of ANNs to learn. This study
found a posteriori damage probabilities from the main defects during the construction
of monolithic reinforced concrete structures, which represent a scientific novelty and
can be used to classify defects according to the degree of potential damage. This result
is useful both to civil engineers for solving practical daily tasks at construction sites,
and for further theoretical research, including the development of quality standards and
professional guidance. Using obtained posterior probabilities to pre-tune the ANN link
weights confirmed the effectiveness of this method for further ANN training to predict the
risk of defects.

We were able to use the generated model to reliably determine whether the detected
defect would lead to a failure of cast-in-place reinforced concrete structures or not. The
ANN model also enabled automation of the defect risk assessment process, which allowed
faster decision-making, as compared with existing methods, on whether rework is needed
or the defect is permissible. The obtained results will speed up the decision-making process
for assessing the significance of defects that appear during the construction of monolithic
reinforced concrete structures, and will help to avoid redoing work with defects that have
low risk to further structure operation. Thus, the decision support model developed in the
study can help to reduce the duration of construction projects.

The above advantages are of particular importance when rebuilding destroyed cities,
because reducing the duration of construction while maintaining a sufficient level of quality
contributes to the earliest return of residents, the normalization of urban environment
functioning, and reductions in social and economic tension.

6. Conclusions

This study has developed a model for the calculation and assessment of construction
defect risks. The model serves as the basis for a decision support system for the organization
of construction quality control during the rebuilding of destroyed cities. Currently, the
model is being tested at a construction company involved in the rebuilding of the city of
Mariupol after warfare. The results of the study can organize a quality control system that
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will ensure construction project effectiveness in terms of its timing, while also ensuring a
sufficient level of quality for the normal operation of facilities. The quality control system
proposed in the study has the following practical significance:

1. Reducing construction duration due to reduced costs of defect rework with a low
risk level;

2. Reduction in time for decision-making on defect criticality assessments;
3. Reduction in financial costs by involving fewer experts for defect criticality assessments.

The methodology presented in the article and the results obtained are of theoretical
significance for the classification of defects in the development of quality standards and
professional guidance, and an approach has been proposed to organize a quality control
system based on how the risk of a defect contributes to the theoretical development of areas
of knowledge such as construction quality management and construction management in
the context of rebuilding destroyed cities.

Further research will require adapting and training the resulting ANN on other key
construction processes.
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23. Kozień, E.; Kozień, M. Ex-Ante Risk Estimation in the Production Project. Syst. Saf. Hum. Tech. Facil. Environ. 2019, 1, 708–715.
[CrossRef]

24. Enny, M.; Purba, H. Construction Project Risk Analysis Based on Fuzzy Analytical Hierarchy Process (F-AHP): A Literature
Review. Adv. Res. Civ. Eng. 2021, 3, 1–20.

25. Belal, A.; Shcherbina, E. Heritage in post-war period challenges and solutions. IFAC Pap. 2019, 52, 252–257. [CrossRef]
26. Junichi, K.; Masayuki, K.; Shinji, M.; Hideaki, T.; Torajiro, F. Damage to railway earth structures and foundations caused by the

2011 off the Pacific Coast of Tohoku Earthquake. Soils Found. 2012, 52, 872–889. [CrossRef]
27. Lozano, J.; Tien, I. Data collection tools for post-disaster damage assessment of building and lifeline infrastructure systems.

International. J. Disaster Risk Reduct. 2023, 94, 103819. [CrossRef]
28. Goyal, P.; Datta, T. Effect of wind directionality on the vulnerability of rural houses due to cyclonic wind. Nat. Hazards Rev. 2013,

14, 258–267. [CrossRef]
29. Fujiwara, T.; Suzuki, Y.; Kitahara, A. Risk management for urban planning against strong earthquakes. In Post-Earthquake

Rehabilitation and Reconstruction; Cheng, F., Wang, Y., Eds.; Pergamon Press: Oxford, UK, 1996; pp. 131–145. [CrossRef]
30. Owen, J. Windborne debris in the urban environment. Tech. Trans. 2015, 112, 145–165.
31. Mashwama, N.; Aigbavboa, C.; Thwala, D. An Assessment of the Critical Success factor for The Reduction of Cost of Poor Quality

in Construction Projects in Swaziland. Procedia Eng. 2017, 196, 447–453. [CrossRef]
32. Oshungade, O.; Kruger, D. A comparative study of causes and effects of project delays and disruptions in construction projects in

the south african construction industry. J. Constr. Eng. Proj. Manag. 2017, 7, 13–25. [CrossRef]
33. Adeyemi, A.; Masalil, K. Delay Factors and Time-Cost Performance of Construction Projects in Gaborone City Council, Botswana.

J. Adv. Perform. Inf. Value 2016, 8, 4–18. [CrossRef]
34. Viles, E.; Rudell, N.; Santilli, A. Causes of delay in construction projects: A quantitative analysis. Eng. Constr. Archit. Manag. 2019,

27, 917–935. [CrossRef]
35. Qudah, A.; Battaineh, H. Causes of construction delay: Traditional contracts. Int. J. Proj. Manag. 2002, 20, 67–73. [CrossRef]
36. Tahmasebinia, F. Significant Factors Causing Delay in the Cambodian Construction Industry. Sustainability 2022, 14, 3521.

[CrossRef]
37. Adamu, N. Time implication of delays in construction projects in Addis Ababa city. SSRN Electron. J. 2022, 2022, 1–17. [CrossRef]
38. Mamdouh, M.; Tran, D. Risk-based inspection for concrete pavement construction using fuzzy sets and bayesian networks.

Autom. Constr. 2021, 128, 103761. [CrossRef]
39. Love, P.; Matthews, J. Quality, requisite imagination and resilience: Managing risk and uncertainty in construction. Reliability Eng.

Syst. Saf. 2020, 204, 107172. [CrossRef]
40. Chen, L.; Lu, Q.; Han, D. A Bayesian-driven Monte Carlo approach for managing construction schedule risks of infrastructures

under uncertainty. Expert Syst. Appl. 2023, 212, 118810. [CrossRef]
41. Nasirzadeh, F.; Kashi, M.; Khanzadi, M.; Carmichael, D.; Akbarnezhad, A. A hybrid approach for quantitative assessment of

construction projects risks: The case study of poor quality concrete. Comput. Ind. Eng. 2019, 131, 306–319. [CrossRef]
42. Ma, G.; Wu, M.; Wu, Z.; Yang, W. Single-shot multibox detector- and building information modeling-based quality inspection

model for construction projects. J. Build. Eng. 2021, 38, 102216. [CrossRef]
43. Chow, J.; Liu, K.; Tan, P.; Su, Z.; Wu, J.; Li, Z.; Wang, Y. Automated defect inspection of concrete structures. Autom. Constr. 2021,

132, 103959. [CrossRef]
44. Hüthwohl, P.; Lu, R.; Brilakis, I. Multi-classifier for reinforced concrete bridge defects. Autom. Constr. 2019, 105, 102824. [CrossRef]
45. Chew, M. Defect analysis in wet areas of buildings. Constr. Build. Mater. 2005, 19, 165–173. [CrossRef]

https://doi.org/10.1016/j.jobe.2023.107359
https://doi.org/10.1016/j.matpr.2020.11.315
https://doi.org/10.1016/j.ress.2018.04.029
https://doi.org/10.1080/15623599.2023.2230397
https://doi.org/10.1007/978-3-031-11058-0_125
https://doi.org/10.1016/j.jobe.2021.103564
https://doi.org/10.1016/j.ecoinf.2021.101439
https://doi.org/10.1115/1.4030779
https://doi.org/10.2478/czoto-2019-0090
https://doi.org/10.1016/j.ifacol.2019.12.491
https://doi.org/10.1016/j.sandf.2012.11.009
https://doi.org/10.1016/j.ijdrr.2023.103819
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000103
https://doi.org/10.1016/B978-008042825-3/50015-6
https://doi.org/10.1016/j.proeng.2017.07.223
https://doi.org/10.6106/JCEPM.2017.3.30.013
https://doi.org/10.37265/japiv.v8i1.46
https://doi.org/10.1108/ECAM-01-2019-0024
https://doi.org/10.1016/S0263-7863(00)00037-5
https://doi.org/10.3390/su14063521
https://doi.org/10.2139/ssrn.4044604
https://doi.org/10.1016/j.autcon.2021.103761
https://doi.org/10.1016/j.ress.2020.107172
https://doi.org/10.1016/j.eswa.2022.118810
https://doi.org/10.1016/j.cie.2019.03.045
https://doi.org/10.1016/j.jobe.2021.102216
https://doi.org/10.1016/j.autcon.2021.103959
https://doi.org/10.1016/j.autcon.2019.04.019
https://doi.org/10.1016/j.conbuildmat.2004.07.005


Buildings 2023, 13, 2142 16 of 16

46. Uchaeva, T.V.; Loganina, V.I. Analysis of the risk at the finishing of the building products and construction of paint compositions.
Case Stud. Constr. Mater. 2018, 8, 213–216. [CrossRef]

47. May, K.W.; KC, C.; Ochoa, J.J.; Gu, N.; Walsh, J.; Smith, R.T.; Thomas, B.H. The Identification, Development, and Evaluation of
BIM-ARDM: A BIM-Based AR Defect Management System for Construction Inspections. Buildings 2022, 12, 140. [CrossRef]

48. Yoon, S.; Son, S.; Kim, S. Design, Construction, and Curing Integrated Management of Defects in Finishing Works of Apartment
Buildings. Sustainability 2021, 13, 5382. [CrossRef]

49. Lapidus, A.; Topchiy, D.; Kuzmina, T.; Shesterikova, Y.; Bidov, T. An integrated quality index of high-rise residential buildings for
all lifecycle stages of a construction facility. Appl. Sci. 2023, 13, 2014. [CrossRef]

50. Lapidus, A.; Topchiy, D.; Kuzmina, T.; Chapidze, O. Influence of the Construction Risks on the Cost and Duration of a Project.
Buildings 2022, 12, 484. [CrossRef]

51. Lapidus, A.A.; Makarov, A.N. Risk-based approach for the organization of construction supervision of the developer. AIP Conf.
Proc. 2022, 2559, 060003. [CrossRef]

52. Makarov, A. Organization of construction quality control based on a priori risks of works. International. J. Eng. Trends Technol.
2023, 71, 134–140. [CrossRef]

53. Meijer, F.; Visscher, H. Quality control of constructions: European trends and developments. Int. J. Law Built Environ. 2017, 9,
143–161. [CrossRef]

54. Baiburin, A. Civil Engineering Quality Assessment in Terms of Construction Safety Index. Procedia Eng. 2017, 206, 800–806.
[CrossRef]

55. Park, Y.-J.; Yi, C.-Y. Resource-Based Quality Performance Estimation Method for Construction Operations. Appl. Sci. 2021,
11, 4122. [CrossRef]

56. ISO 13824:2009; Bases for Design of Structures—General Principles on Risk Assessment of Systems Involving Structures.
International Organization for Standardization (ISO): Geneva, Switzerland, 2009.

57. Kaneko, F.; Yuzui, T. Novel method of dynamic event tree keeping the number of simulations in risk analysis small. Reliab. Eng.
Syst. Saf. 2023, 231, 109009. [CrossRef]

58. Yılmaz, E.; German, B.; Pritchett, A. Optimizing resource allocations to improve system reliability via the propagation of statistical
moments through fault trees. Reliab. Eng. Syst. Saf. 2023, 230, 108873. [CrossRef]

59. Andrews, J.; Tolo, S. Dynamic and dependent tree theory (D2T2): A framework for the analysis of fault trees with dependent
basic events. Reliab. Eng. Syst. Saf. 2023, 230, 108959. [CrossRef]

60. Efron, B. Bootstrap methods: Another look at the Jackknife. Ann. Stat. 1979, 7, 1–26. [CrossRef]
61. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
62. Tibshirani, R.; Tibshirani, R. A bias correction for the minimum error rate in cross-validation. Ann. Appl. Stat. 2009, 3, 822–829.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cscm.2018.01.001
https://doi.org/10.3390/buildings12020140
https://doi.org/10.3390/su13105382
https://doi.org/10.3390/app13032014
https://doi.org/10.3390/buildings12040484
https://doi.org/10.1063/5.0099138
https://doi.org/10.14445/22315381/IJETT-V71I1P212
https://doi.org/10.1108/IJLBE-02-2017-0003
https://doi.org/10.1016/j.proeng.2017.10.554
https://doi.org/10.3390/app11094122
https://doi.org/10.1016/j.ress.2022.109009
https://doi.org/10.1016/j.ress.2022.108873
https://doi.org/10.1016/j.ress.2022.108959
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1007/BF00058655
https://doi.org/10.1214/08-AOAS224

	Introduction 
	Literature Review 
	Materials and Methods 
	Results 
	Preliminary Training of ANNs 
	ANN Training 

	Discussion 
	Conclusions 
	References

