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Abstract: Experimental observations on three reinforced concrete shear walls with small shear span-
to-depth ratio (SDR) under combined high vertical axial load and horizontal cyclic loads are presented.
The influence of high axial load ratio (ALR) on the failure mode, hysteretic behaviour, displacement
ductility, shear strength and stiffness of the squat shear walls is investigated. In addition, a novel
built-in strain gauges measuring system is employed for measuring the strain conditions in the
reinforcements during the whole test process. Test results indicate that high axial load restrains the
development of cracks and improves the shear load capacity, but that it also decreases ductility and
energy dissipation and aggravates stiffness degradation. Concrete crush and out-of-plane buckling
were observed in all specimens, resulting in the final failure of the specimens. According to the
strain analysis, the section of the squat walls coincided well with the assumption of plane section
under the condition of high ALR. With the increase of ALR, the depth of the compression zone of
members increases, while the length of plastic hinge decreases. When the axial load is relatively
small, the vertical and horizontal reinforcements provided almost equal contribution to the shear
capacity of squat shear walls. However, under extremely high axial load, both vertical and horizontal
reinforcements cannot provide full contribution to the shear capacity. The hysteretic behaviours of
the tested shear walls were simulated by a cyclic softened membrane model (CSMM). Simulation
results indicate that CSMM captured well the nonlinear characteristics of the squat shear wall under
high axial load.

Keywords: reinforced concrete squat shear walls; cyclic loads; high axial loads; failure modes;
softened membrane model

1. Introduction

Shear walls with small shear span-to-depth ratio (SDR) are mainly subjected to shear
force and prone to a brittle failure. Through post-earthquake field studies, researchers
have reported that severe damage to squat shear walls is one of the most crucial causes
of structural failure [1]. Extensive theoretical and experimental studies have been con-
ducted focusing on the strength and deformation capacity of squat shear walls since the
1940s [2–10]. Terzioglu T [11] studied the strength degradation characteristics of squat
walls, as well as the contribution of shear, flexural and sliding deformations to wall lateral
displacements. Baek [12] investigated the effect of 550 MPa reinforcing bars on the shear
strength of squat walls. Ma [13] discussed the seismic response of H-shaped squat walls,
and proposed equations to assess the peak shear strength of specimens. Peng [14] tested
six rectangular squat recycled concrete wall specimens under in-plane cyclic loading and
developed a simplified analytical method to predict the peak loads of squat walls failed
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in flexure or a mixed flexural–diagonal compression mode. Maier [15] studied the shear
capacity and deformation of squat shear walls subjected to cyclic lateral loads and pointed
out that transverse reinforcement contributed little to the shear capacity, while it has a great
influence on the deformation capacity. Lefas et al. [16] tested seventeen squat shear walls
under large inelastic deformations to analyse the influence of shear span-to-depth ratio,
axial load, transverse reinforcement ratio and loading history on the seismic behaviour of
shear walls, and critically examined the American Concrete Institute’s code requirements
for shear capacity. Hidalgo et al. [17] conducted an experimental study of 26 squat shear
walls under cyclic lateral loads and pointed out that when the SDR decreased, shear ca-
pacity increased while deformation capacity decreased. But longitudinal reinforcement
ratio has only a minor influence on the shear capacity. Salonikios et al. [18] discussed
the performance of squat shear walls in terms of ductility and strength, as well as the
shear slip failure mode. Based on their study, the shear design equations in European
code were also evaluated. Oesterle et al. [19] carried out an experiment to investigate the
diagonal compression strength of the web and analysed the upper limit of shear strength
and deformation capacity, as well as their relationship. Lopes [20,21] studied the influence
of transverse reinforcement ratio on the seismic behaviour of shear-dominated walls with
a novel test method and concluded that in walls with small SDRs, the longitudinal rein-
forcement contributed more to shear capacity than horizontal reinforcement. Sozen and
Moehle [22] studied a number of force–displacement characteristics of squat shear walls
and proposed a backbone curve considering the combination of flexure deformation, shear
deformation and sliding.

Axial load ratio (ALR) is an important factor affecting the seismic performance of
shear walls. It limits the development of inclined cracks and increases the area of sectional
compression zone. However, as the axial load increases, the ductility of shear walls reduces
leading to poor seismic performance. Lv et al. [23] pointed out that under excessively high
ALR, significant strength degradation may occur within a relatively small drift, resulting
in a loss of load capacity. Therefore, it is necessary to limit the magnitude of the ALR.
Wong et al. [24] conducted an experimental study on three slender shear walls with ALR
of 0.25 and 0.5. The test results indicated that axial load has a great influence on the
ductility and energy dissipation of the specimens. A ductile flexure failure was occurred
in the specimen with ALR of 0.25, while a brittle compression failure was occurred in the
specimen with ALR of 0.5. According to the survey of the ALR of medium-high buildings
in Hong Kong, Su et al. [25] revealed that the ALR is generally around 0.2 in serviceability
limit state, while it is about 0.3~0.5 in ultimate limited state, furthermore, it will increase
by 17~41% when earthquake is considered. Through a literature review, Zhang et al. [26]
found that the ALR was no more than 0.15 in most of the past experiments, and only three
slender shear walls had an ALR of 0.4; however, under the combined action of gravity
load and seismic load, the ALR of shear walls is usually between 0.3 and 0.6. Looi [7]
studied the effects of axial load on seismic performance of reinforced concrete walls with
short shear spans and proposed two modified empirical prediction models to estimate
the shear strength capacity and ultimate drift ratio. In present codes [27–29], the limit
value of ALR for reinforced concrete shear walls is determined by the seismic grade and
fortification intensity without considering the influence of ductility requirements, aspect
ratio and boundary constraints.

Existing studies have primarily focused on the seismic behaviour of slender shear
walls, whereas less information can be found about the seismic performance of squat shear
walls, especially for the squat walls under high axial load. In addition, there is no unified
conclusion about the contributions of vertical and horizontal reinforcements in the web
to the shear behaviour of the squat shear walls as well as the calculation method of the
shear capacity and deformation capacity under high axial load. The investigation reported
herein emphasizes the seismic behaviour of reinforced concrete shear walls with small SDR
under combined high axial load and reversed cyclic loads. Through experimental research,
the seismic behaviour of squat shear walls is studied, and the strain conditions of the web
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reinforcements in two directions are discussed. The nonlinear behaviours of tested shear
walls were then simulated with a finite element model.

2. Experimental Program
2.1. Specimen Design and Material Properties

Three reinforced concrete (RC) shear walls with small shear span-to-depth ratio (SDR)
were tested under constant axial load and cyclic horizontal load. All the designed SDRs
of the shear walls were 1.25, and the dimensions were 1200 mm × 120 mm × 1500 mm
(length × thickness × height). Due to the restriction of the sectional size, the thickness
of the concrete cover was designed as 15 mm. The vertical and horizontal reinforcement
ratios were 0.65% and 0.58%, respectively, for all specimens with rebars of 10 mm in di-
ameter. The boundary elements were designed with a cross-section of 200 mm × 120 mm
(depth × width). During the testing, in order to ensure shear failure of the specimens, the
longitudinal reinforcement ratio of boundary elements was intentionally enhanced, and
was 2.82% with the rebar diameter of 12 mm. All stirrups were uniformly distributed
along the height and consisted of closed rectangular hoops with 135◦ end hooks to ensure
positive anchorage. The volumetric ratio of stirrups in the boundary element was 0.92%.
The influence of axial load on the seismic behaviour of squat shear walls was investigated
in this paper. The applied axial load ratios (ALRs) for the specimens were 0.2, 0.4 and
0.6, respectively. Figure 1 shows the geometry of the specimens and layout of reinforce-
ments. The concrete used in this experiment was prepared with water-binder ratio of 0.39
and maximum aggregate size of 20 mm. The geometric details and material mechanical
properties of the specimens are shown in Table 1: f cu is the measured cubic compressive
strength; f c is axial compressive strength; ρv and fy,v are the reinforcement ratio and yield
strength of vertical reinforcements in web, respectively; ρh and fy,h are the reinforcement
ratio and yield strength of horizontal reinforcements in web, respectively; ρcc and fy,cc are
the reinforcement ratio and yield strength of longitudinal reinforcements in boundary
element, respectively, and ρw and fy,w are the volumetric ratio and yield strength of stirrups
in boundary element, respectively.
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Table 1. Experimental Parameters of Shear Walls.

Specimen f cu/MPa f c/MPa ALR SDR ρv/% fy,v/MPa ρh/% fy,h/MPa ρcc/% fy,cc/MPa ρw/% fy,w/MPa

SWC1 42.9 34.9 0.2 1.25 0.65 494 0.58 494 2.82 488 0.92 512

SWC2 42.9 34.9 0.4 1.25 0.65 494 0.58 494 2.82 488 0.92 512

SWC3 42.9 34.9 0.6 1.25 0.65 494 0.58 494 2.82 488 0.92 512

2.2. Test Setup and Loading History

An electrohydraulic servo loading system was adopted in this experiment which
was composed of a reaction frame system and a bidirectional lateral loading system. The
vertical and horizontal loading capacities of the system were 10,000 kN and ±1500 kN,
respectively. The foundation beam of the specimen was fully fixed, whereas the top of the
specimen was free to move. During the test, the transverse load was applied at the top of
the shear wall, while the axial load was applied all the time on the centroid of the free end
section of specimen which was kept constant. The test setup used in this study is shown in
Figure 2.
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The loading history applied is shown in Figure 3. To check the performance of the
electrohydraulic servo loading system, each specimen was preloading twice before the
experiment began with a vertical load of 300 kN and a lateral load of 50 kN. The axial
load was first applied to the target value and maintained constantly during the whole
experiment. The initial applied lateral load was 0.5Vy with the increments of 0.25Vy for
each loading step up to the specimen yielding, where Vy is the yield shear force of the
specimen. The displacement control loading protocol was applied after the yielding of each
specimen. The initially applied horizontal displacement was equal to the measured yield
displacement ∆y with increments of 0.5∆y for each loading step up to failure, where ∆y is
the yield deformation of the specimen. All cycles were carried out once in the force control
loading procedure, while all cycles were carried out third time in the displacement control
loading protocol. The experiment ended when the shear-resisting capacity dropped by
more than 20% of the maximum shear force.
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2.3. Instrumentation and Strain Measurement

During the test, displacements were measured by means of linear variable differential
transducers (LVDTs), whereas strains of reinforcement were measured by means of strain
gauges. The horizontal displacement was measured by two LVDTs with a range of 100 mm
placed on the top and bottom of the specimen, respectively. A series of strain gauges were
built in the longitudinal and transverse reinforcement. The locations of LVDTs and strain
gages are shown in Figure 4. In order to study the contribution of longitudinal and trans-
verse reinforcement to the shear capacity, obtaining the strain of the web reinforcements
accurately during the whole loading process become essential important. However, strains
are usually influenced by the cracking of concrete and the bonding between the concrete
and reinforcement if strain gauges are attached to the surface of the steel bars. Wu et al. [30]
has proposed a new strain measurement to solve this problem. In this experiment, a similar
method was adopted, and the stain gauges were embedded in the steel bars. The specific
method is as follows:

(1) The steel bar was symmetrically cut along its longitudinal direction into two compo-
nents and a cavity of 5 mm in width and 2 mm in depth was made at the centre of
each half bar, as shown in the Figure 5a,b;

(2) As depicted in the Figure 5c, 3-mm-width strain gauges were attached in the cavities.
The spacing of the strain gauges for the longitudinal and transverse reinforcement
were 225 mm and 200 mm, respectively;

(3) The wires were connected to strain gauges and led out from both end of a bar;
(4) A thin layer of wax was applied on the surface of the strain gauge to minimize the

effects of external factors;
(5) The two components of the steel bar were glued together by the epoxy resin. Moreover,

the cavities were filled by the epoxy resin for the consideration of minimizing effects
from external factors;

(6) As presented in the Figure 5d, before the consolidation of the epoxy resin, four
mechanical steel rings were used to fix the component. These rings stayed with the
bar permanently to enhance the anchorage.
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3. Experimental Results and Discussion
3.1. Crack Patterns and Failure Mode

The specimens were initially in elastic phase and showed a negligible residual defor-
mation. As the lateral force increased, flexural cracks first appeared above the base. The
measured shear force leading to initial crack, Vcr, increased with the increment of axial
load. The cracking loads were 270 kN, 450 kN and 564 kN for SWC1, SWC2 and SWC3,
respectively. The diagonal cracks developed rapidly after the specimen yielded. The critical
diagonal crack angles with respect to vertical axis of shear walls were between 25◦ and
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40◦, and the angle of the critical diagonal crack became steeper as the ALR increased. With
the further increment of lateral displacement, multiple cracks intersected at the neutral
axis, which divided the web into several rhombic blocks and formed some compression
struts. The number of the cracks decreased with the increase of ALR. The spalling of the
concrete cover at the bottom of the shear wall was observed, accompanied by stiffness,
gradual degradation and the area loss of the shear compression zone. The shear capacity of
the shear wall was mainly provided by concrete before the inclined crack formed, while
after the specimen cracked diagonally, both concrete and reinforcement contributed to
the shear capacity. The shear capacity increased with the increase of axial compression
ratio. The shear bearing capacities of SWC1, SWC2 and SWC3 were 610.2 kN, 676. 1 kN
and 690.4 kN, respectively. Concrete crush finally occurred under the combined action
of shear and compression. The geometric centre and the stress centre of the section were
no longer in the same plane, and out-of-plane buckling occurred due to the high axial
load. Figure 6 shows the failure mode for all specimens. Axial load ratio has a significant
influence on the failure mode and crack pattern. The horizontal reinforcement reaches
the yield strain except the bottom most horizontal reinforcement in SWC1 (n = 0.2), the
horizontal reinforcement in the middle part of the web plate reaches the yield strain in
SWC2 (n = 0.4) while in SWC3 (n = 0.6) the horizontal reinforcement in the middle of the
web did not yield. The increase of ALR delayed the appearance of flexural cracks but made
the vertical cracks in the compression zone appear earlier. The smaller the ALR is, the
more cracks fully developed. Shear damage occurred in SWC1 and SWC2, due to the high
axial compression ratio of SWC2, its shear compression zone damage has a larger area,
while the axial compression ratio of 0.6 of the SWC3 member of the full cross-section of
the concrete damage is serious, the destruction of the shear wall has occurred in a more
serious out-of-plane misalignment sliding for the compression damage. In contrast, as the
axial load increased, the concrete crushing became more severe and the failure became
more abrupt.
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3.2. Hysteresis Loops and Backbone Curves

The hysteresis loops and backbone curves of the three specimens are shown in Figure 7,
respectively. Figures show that axial load ratio brought great influences on the hysteresis
curves and backbone curves. During the beginning of the test, all the specimens were in
elastic stage, and the enveloped area of hysteresis loops almost equalled zero. After the
specimen cracked, due to the residual deformation, the hysteresis loops became shuttle
shaped. Since high axial load restrained the development of cracks and bond slip between
concrete and reinforcements, no significant pinching was observed in the hysteresis loops.
By comparing the test results of the specimens with different ALRs, the initial stiffness
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of SWC2 and SWC3 increased by approximately 12% and 33%, respectively, compared
with SWC1, as the ALR increased from 0.2 to 0.4 and 0.6, respectively. There is no obvious
yielding point in the backbone curve of all components. The shear strength increased by
11% as the ALR increased from 0.2 to 0.4, whereas the ultimate drift ratio decreased by
almost 58%. Meanwhile, the shear strength increased by just 2% and the ultimate drift
ratio decreased by 28%, as the ALR increased from 0.4 to 0.6. This indicates that axial load
basically improves the shear strength, but extremely high axial load had little influence on
the improvement of shear strength. In addition, a higher ALR provided fewer cycles and
the failure occurred more suddenly.
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The plumpness of hysteretic curve increased as the ALR decreased, which implied
that energy dissipation capacity grew with the decrease of ALR. In conclusion, axial load
has a positive effect on the shear strength of the shear walls to some extent but a negative
effect on the deformation capacity and inelastic properties of the components.

3.3. Ductility and Energy Dissipation

Ductility is an important parameter to measure the plastic deformation capacity of
components and structures. To evaluate the ductility of specimens SWC1, SWC2 and SWC3,
two main parameters, displacement ductility factor µ and ultimate rotation angle δ, were
used in this study.

The displacement ductility factor µ is usually defined as the ratio of the ultimate
displacement to yield displacement, while the ultimate rotation angle δ is usually defined
as the ratio of the ultimate displacement to the specimen height. The expressions are
as follows:

µ∆ =
∆u

∆y
(1)
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δu =
∆u

H
(2)

However, there is no unified definition of yield displacement for shear walls as a result
of the inconspicuous yield point. In this experiment, a conventional method proposed
by Park et al. [31] was adopted, and the yield displacement ∆y was defined as follows: a
secant was drawn to intersect the lateral load–displacement curve at 60%Vmax, and this
line was extended to the intersection with a horizontal line corresponding to Vmax; then
the horizontal ordinate of the intersection was regarded as the yield displacement. For
SWC1, the ultimate displacement ∆u was taken as the displacement when the remaining
capacity dropped to 80% of the maximum applied load, while for other specimens, due to
the brittle failure, the ultimate displacement was taken as the displacement corresponding
to the maximum applied load. The experiment results are given in Table 2. As presented
in Table 2, the SWC1 with ALR = 0.2, exhibited the most ductile behaviour among the
specimens tested. The ductility factor decreased from 3.78 to 1.73 as the ALR increased from
0.2 to 0.6. The ultimate rotation angle decreased from 0.013 to 0.005 as the ALR increased
from 0.2 to 0.4, and 0.003 as the ALR increased from 0.2 to 0.6.

Table 2. Test results of the shear walls.

Specimen Vy/kN ∆y/mm Vmax/kN ∆max/mm Vu/kN ∆u/mm µ∆ δu

SWC1
497.7 5.73 610.2 10.98
−445.3 −4.96 −572.1 −11.94 −457.7 −18.77 3.78 0.013

SWC2
518.2 2.69 676.1 7.08 676.1 7.08 2.63 0.005
−526.3 −3.26 −658.0 −6.4

SWC3
553.6 2.92 690.4 5.07 690.4 5.07 1.73 0.003
−557.4 −3.48 −655.5 −4.82

The energy dissipation of the ith cycle can be assessed by the shaded area (Acun
and Sucuoglu 2012) in Figure 8. The plumper the hysteresis loop is, the better the energy
dissipation is. Energy dissipation coefficient, Ed, was defined and calculated with the
following expression:

Ed =
S(ABC+CDA)

S(OBE+ODG)
(3)Buildings 2023, 13, x FOR PEER REVIEW 10 of 20 
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Figure 8. Determination of Ed.

The Ed of each specimen under different drift ratio is shown in Figure 9. In the case of
specimen SWC1, the energy dissipation was neglectable when it stayed in the elastic stage
under loading. After cracking (δ = 0.12%), plastic deformation can be observed according
to the hysteresis curve, and the energy dissipation increased rapidly. No reduction in Ed
was observed, since a pinching effect was avoided under high axial loading. The maximum
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value of Ed of specimen SWC1 was 13% greater than that of specimen SWC2, and 24%
greater than that of specimen SWC3, which indicated that higher energy dissipation was
obtained for the specimens with lower axial load ratio, because of the descent of plastic
rotation capacity.
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3.4. Stiffness Degradation

Concrete cracking, longitudinal and transverse reinforcement yielding, bond slipping
and concrete crushing gradually caused the stiffness degradation of specimens. Stiffness
degradation is defined in this paper as the slope of the line joining the peaks of the shear-
displacement curve for a given cycle, and can be calculated with the following equation:

Ki =
(|+Vi|+ |−Vi|)
(|+∆i|+ |−∆i|)

(4)

The stiffness degradation of each specimen is shown in Figure 10. A higher ALR is
associated with higher value of initial stiffness, and the stiffness degradation was little
before the specimens cracked. After the specimen yielded, the rate of stiffness degradation
increased rapidly. Specimen SWC1 with ALR of 0.2, showed a stable rate of stiffness
degradation, while specimen SWC3 with ALR of 0.6, showed a sharp decrease of stiffness,
because a high axial load ratio caused a severe spalling of concrete cover, which induced a
more abrupt loss in stiffness.
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3.5. Strain Analysis

The stress state of specimens can be directly detected by the strain gauges attached
to the reinforcement. The strain variation and distribution of longitudinal and transverse
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reinforcement have been studied, in order to better understand the stress state of the shear
wall during the whole loading process.

3.5.1. The Strains in Vertical Reinforcements

Figure 11 shows the distribution of vertical strains along the depth of the section at
bottom end of the shear walls varying with the loading phases. Due to the axial compres-
sion, the whole section of all specimens was under compression at the beginning. The
strains in compressive zone increased as the applied shear grew, while the strains in tensile
zone decreased and turned from compression to tension. The strain along the sectional
depth distributed linearly before yielding. After the specimen yielded, for SWC1, the strain
distribution deviated from straight line very slightly, while for SWC2 and SWC3, the strain
distribution always kept in a straight line during the whole loading process. Therefore,
plane-section assumption was coincident approximately for the shear walls under high
ALR during the loading process. The depth of compression zone, when the specimen
reached its loading capacity, was larger for specimens with higher axial load. For SWC1,
SWC2 and SWC3, the depths of compression zone were about 1/3, 1/2 and 2/3 of the
depth of the section, respectively.
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Figure 11. Variation and distribution of vertical strains along the depth of the section at bottom end
of the shear walls. (a) SWC1. (b) SWC2. (c) SWC3.

Figure 12 shows the variation and distribution of vertical strain along the height of
the specimens. Under initial loading, the whole cross-sections of all specimens were in
compression. As the applied force rose, the vertical reinforcing bars closest to the edge
of specimens began to yield from the bottom. Then, the range of yielded reinforcements
expanded continuously. When the specimens reached their loading capacity, for SWC1
and SWC2, the heights of yield reinforcement were about 675 mm and 450 mm away from
the bottom of specimens, respectively. However, due to the extremely high axial load, all
longitudinal reinforcements in SWC3 did not yield in tension until the specimen failed.
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3.5.2. The Strains in Horizontal Reinforcements

Figure 13 shows the variation and distribution of horizontal strain along the length of
the shear walls under positive loading, since the results under negative loading showed
similar phenomenon. Before the formation of inclined cracks, only small strains were
accumulated in the horizontal reinforcements. However, as the inclined cracks passed
across the horizontal reinforcement, a sudden increase of strain can be detected. The
increasing rates of reinforcement strains were different at different locations. The horizontal
strains in the web increased rapidly, while the horizontal strains in the boundary elements
increased slowly, since inclined cracks mainly occurred in web rather than boundary
elements, where flexural cracks were mainly formed. When the specimens reached their
loading capacity, for SWC1, most of the horizontal strain gauges reached the yield strain
in tension except for the strain gauges at very bottom of the specimen, while, for SWC3,
little measured horizontal strains exceeded the yield strain. It indicates that higher axial
compression also inhibits the contribution of transverse reinforcements to shear resistance,
resulting in lower ductility of the elements.
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3.5.3. The Strains at Effective Measurement Points

The effective measurement point is defined as the point where the inclined cracks
just pass across or close to the strain gauges at the intersection of vertical and horizontal
reinforcements simultaneously. The strains of all effective measurement points were listed
in Table 3. From Table 3, it can be indicated that the strain in vertical reinforcement
increased with the increasing lateral load; however, the accumulated strains in horizontal
reinforcement were still small, before the inclined cracks formed around the measuring
points. After the inclined cracks formed and crossed the measuring points, for SWC1, the
strains in both directions increased rapidly with little difference in value, which means the
vertical and horizontal reinforcements provided the equal contribution to the shear capacity
of squat shear walls under relatively lower ALR. For SWC2 and SWC3, the increasing rate
of strains in horizontal reinforcements was greater than that in vertical reinforcements
after the inclined cracks formed. It was because the high axial compression restrained the
increase of vertical strains in web. In this case, both vertical and horizontal reinforcements
cannot provide full contribution to the shear capacity, since the squat walls are very likely
to fail due to concrete crush.

Table 3. The strains of vertical and horizontal reinforcement at effective points.

ALR Effective
Points

Reinforcement Yield Peak Load Almost Failure
Strain in

Vertical Steel
Strain in

Horizontal Steel
Strain in

Vertical Steel
Strain in

Horizontal Steel
Strain in

Vertical Steel
Strain in

Horizontal Steel

0.2
1 892 993 1671 1725 2123 2343
2 654 758 1477 1535 1978 2174
3 1244 1283 2113 2184 2246 2836

0.4
1 175 991 494 1813 1643 2537
2 552 1268 1343 1839 2208 2022

0.6 1 −1056 279 −2106 603 −3041 1528
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4. Finite Element Modelling
4.1. Introduction to the Softened Membrane Model

The softened membrane model (SMM) is on the basis of fixed angle softening truss
model (FA-STM), considering the Poisson’s ratio effect of the cracked concrete. The trans-
formation between uniaxial stress–strain relationship and biaxial stress–strain relationship
was achieved by setting two Hsu/Zhu ratios, so that the SMM not only can predict the
rising branch of the structural response curve under monotonic loading, but also can cap-
ture the descending branch [32]. In order to simulate the structural response of members
under cyclic loading. Hsu et al. [33] further developed a cyclic softened membrane model
(CSMM), considering the cyclic constitutive model on the basis of the SMM. CSMM can
accurately predict the pinching effect, shear ductility and energy dissipation capacity of the
in-plane concrete members in shear. A detailed introduction to CSMM can be found in the
relevant literatures [32–34] and will not be repeated in this study.

4.2. Modelling with OpenSEES

A shear wall is generally divided into boundary elements on both sides and a web
in the middle. When using CSMM, the boundary elements are generally simulated by
nonlinear fibre-section beam-column elements, and the web is simulated by 12 plane-stress
quadrilateral elements integrated with CSMM. The coincided nodes at the same position
of beam-column element and plane element are coupled to work together. A schematic
diagram of the finite element model of the simulated shear wall is shown in Figure 14. The
vertical axial load N was first applied to the top loading beam of the shear wall element
in the first load step. And then lateral load P was applied to the top of the shear walls in
the second load step using displacement control in order to capture the strain softening
of concrete.
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4.3. Simulation Results

The comparison of the hysteresis curves obtained by the finite element analysis and
by the experiments is shown in Figure 15. The solid line in the figure represents the
experimental curve, while the dotted line represents the finite element simulation curve.
It can be seen from the figures that the simulation results of specimens SWC1~SWC3 are
in agreement with the experimental results. The relative error between the simulated
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and experimental shear strengths is controlled within 10%. The initial stiffness of the
simulation results is generally slightly higher than the experimental results on account
of the influence of the gap between the experiment devices and the unevenness of the
surface of the specimen during the experiments, which cannot be considered in the finite
element modelling. By comparing the shapes of a single hysteresis loop, it is found that the
simulated energy dissipation enveloped by the hysteresis curve is lower than the tested
data. This is because the applied load leading to the yield of steel bars in tension increased
under higher axial loading, meanwhile, the crack development was also restrained. As a
result, the hysteresis curve became plumper under high axial loading. This phenomenon
can be hardly simulated accurately with CSMM. In addition, since CSMM is an in-plane 2D
model, it cannot simulate the out-of-plane buckling of shear walls under high axial loading.
Comparing the strains at the effective points in the horizontal and vertical reinforcement, it
can be seen that both the calculated and the measured strains exhibit a similar trend. The
relative errors are within 20%. In general, CSMM can capture well the nonlinear response
of squat shear walls under cyclic loading, in terms of backbone curve, initial stiffness, yield
point, peak point and even the descending branch of the load–displacement curve with
reasonable accuracy.
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5. Conclusions

The behaviour of three squat shear walls under constant high axial load and cyclic
lateral load with different ALRs were studied in this paper. Finite element modelling
was also conducted and verified with the experimental results. From the experimental
observations and the comparison between the tested and simulated results, the following
conclusions can be drawn:

(1) Shear failure was observed in all members. After concrete crush and spalling occurred
in the shear-compression zone, the squat walls failed due to the out-of-plane buckling.
No obvious pinch effect was observed in the hysteresis curve of specimens, owing to
the little bond slip under high axial load;

(2) Despite the increase of the shear capacity, high axial load provides negative effects
on the shear behaviour of the shear walls, including insufficient ductility and energy
dissipation capacity, acceleration of the strength and stiffness degradation and decline
of ultimate plastic rotation;

(3) The new strain measuring method can effectively measure the stress of steel reinforce-
ments during the whole loading process, avoiding the influence of concrete cracking,
spalling and other factors on the strain gauges;

(4) Strain analysis shows that under the condition of high ALR, the section of the squat
walls coincided well with the assumption of plane section. With the increase of ALR,
the depth of compression zone of members increases, while the length of plastic
hinge decreases;

(5) When the axial load is relatively small, the vertical and horizontal reinforcements pro-
vided almost equal contribution to the shear capacity of squat shear walls. However,
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under high axial load, both vertical and horizontal reinforcements cannot provide full
contribution to the shear capacity, since the squat walls are very likely to fail due to
concrete crush;

(6) A FA-STM based finite element model, called CSMM, was applied in this study to
simulate the shear behaviour of squat shear walls. Simulated results indicate that
CSMM can well capture the nonlinear response of the shear walls under combined
cyclic loading and axial compression. The model can accurately simulate the backbone
curve, initial stiffness, yield point, peak point and even the descending branch of the
load displacement curve, but the out-of-plane instability of the shear walls under
extremely high ALR at failure is hardly considered.
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