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Abstract: Fibrous concrete has good properties such as high ductility, high strength, suitable energy
absorption and cracking resistance, which can be useful in many applications. This type of concrete
is one of the best materials used in the construction of impact-resistant masonries, such as burial
masonry structures, and explosive masonry warehouses. In this study, an artificial intelligence
assessment based on the experimental test data from a laboratory has been performed on the fibrous
concrete to evaluate the behavior of the samples at elevated temperatures and determine the most
governing parameter on the mechanical properties of the fibrous concrete at elevated temperatures.
For the first time, a hybrid intelligence algorithm has been developed based on the neural network
structure using both genetic and swarm optimization algorithms. The ANFIS-PSO-GA (APG) al-
gorithm was trained with experimental data and evaluated the flexural load and deflection of the
samples. In order to detect the most prominent feature in the fire resistance of the fibrous concrete,
five different subdatasets were designed. The results of the APG algorithm have been challenged with
the ANFIS-PSO algorithm, which is a well-known hybrid numerical evaluation algorithm. As per
the results, the newly designed APG algorithm has been successfully performed on both deflection
and flexural prediction phases. Based on the numerical achievements, fiber features such as the fiber
content and fiber mechanical properties are governing factors on the fibrous concrete resistance at
elevated temperatures.

Keywords: prediction; artificial intelligence; ANFIS; mechanical properties; fiber; concrete

1. Introduction

Using reinforcing fibers, fibrous concrete (FC) in fact is a composite with higher
tensile and compressive strength [1]. This composite has good integrity and consistency
and enables concrete to be utilized as an appealing material for producing high-strength
surfaces. FC is also extremely energy-absorbing and cannot be easily annihilated under
impact loads. In the construction of industrial flooring, this type of concrete can be used
instead of conventional reinforced concrete [2]. Other applications of this concrete include
the construction of prefabricated building components such as canopy panels or concrete
spraying on curved surfaces such as tunnels. Notably, concrete samples with moderate
Al/Si ratios demonstrate greater resistance to structural evolutions compared to samples
with other Al/Si ratios [3–5].

Applying this concrete to a structure also has the advantages of being insulated against
sound and high-speed performance, but as the fibers inside the concrete are completely
random, they cannot usually be used in concrete. Steel fibers resist crack propagation and
increase concrete resistance against fatigue, impact, shrinkage and thermal stress. Polymeric
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fibers used in concrete are natural and synthetic polymer and have various formulations,
including acrylic, aramid, carbon, nylon, polyester, polyethylene (PE) and polypropylene
(PP). Basalt fiber-reinforced polymer (BFRP) sheets significantly enhance the shear capacity
and ductility of reinforced concrete (RC) beams, which has been demonstrated through ex-
periments and validated with a cohesive element-based 3D finite-element model [6–9]. The
uniform dispersion of fibers in cement-based materials enhances deformation performance,
inhibits shrinkage, and improves fracture toughness [10–12]. Approximate costs and some
of the leading mechanical and physical properties of polymeric fibers are indicated in
Table 1 [13].

Table 1. Typical fiber features.

Fiber Type
Specific
Gravity
(kg/m3)

Modulus of
Elasticity

(Gpa)

Tensile
Strength (Mpa)

Elongation at
Break (%)

Acid/Alkali
Resistance Cost ($/kg)

Polypropylene
(PP) [14–16] 910 1.5–12 240–900 15–80 High 1–2.5

Polyethylene
(PE) [17–19] 920–960 5–100 80–600 4–100 High 2–20

Steel (ST) for
comparison [20] 7840 200 500–2000 0.5–3.5 Low to High 1–8

Concrete is a vulnerable material against fire and elevated temperatures; as per studies,
spalling is the most significant shortcoming of plain concrete at elevated temperatures [21,22].
Likewise, other types of concrete against different heats may present complicated behavior
like reducing compressive strength depending on the amount of exposure time and the
level of the temperature. The strength at relatively low temperatures remains constant,
and in some cases, it moderately increases. It is supposed that this increment is due to a
hydration reaction between leftover unhydrated cement particles and the free water inside
the concrete [23]. The strength reduces by about 15–40% when the temperature is close to
300 ◦C. At 550 ◦C, it decreases by about 55–70% compared to its initial value. The change
in color is also seen in addition to the strength’s change. Between 300 and 400 ◦C, the color
changes from gray to red because of iron oxide oxidation, which is available in the aggre-
gate and the cement paste. The compressive and flexural experiments performed by Lau
and Anson were carried out on both plain concrete and 1% SFRC at elevated temperatures
in the range of 105 ◦C and 1200 ◦C [24]. The authors reported that fibrous concrete with
0.25% to 0.5% of FC showed an average enhanced shear strength of 8.82% to 13.44% at
higher temperatures up to 800 ◦C [25].

Based on a study of self-consolidating concrete containing PP fibers at elevated tem-
peratures, a specific behavior was observed, which includes lower residual compressive
strength than plain concrete. Accordingly, this performance was due to producing micro-
channels along fibers melting at higher temperatures [26]. The elasticity modulus of
concrete in subheated environments above 100 ◦C is approximately 100 times higher than
that of PP samples, and it also increases about 1000 times at 150 ◦C [27]; in the volumes
of 0.1% and 0.2%, the porosity of PPFRC increased considerably with rising temperature.
At 300 ◦C, the relative porosity of PPFRC is 152% higher than that of non-fiber concrete.
The splitting tensile, compressive strengths and elasticity modulus of PPFRC were reduced
steadily with increasing temperature [28].

Raising the ambient state to 400 ◦C leads to improving the toughness of the PEFRC
concrete which is due to the enhanced bond interactions induced by the increased molecular
heat of the concrete texture and the fluxing surface of the PE fibers [29]. The behavior of
mortar incorporating PP-PE fibers with a different dosage in the range of 0.3% to 1.2%
subjected to elevated temperatures was evaluated, and it was found that the flexural
deflection of this mortar has significantly increased compared to non-fiber specimens [30].
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At 650 ◦C, the reduction in deflection of plain mortar was obtained by about 77%, while
mortar containing 9% fiber was only about 13% (e.g., from 1.40 to 1.22 mm).

Although there are several investigations performed regarding FRC at elevated tem-
peratures, most of the performed experiments were not able to indicate the capability of
FRC. Frame beams offer easy construction, steel savings and robust seismic performance
with optimized parameters [31–33]. For the identification of fiber properties, using a single
value of mechanical strength at the first crack moment is not conservative. Likewise, based
on the first crack strength, any conclusion could be misleading [34].

On the other hand, the flexural toughness test appears to be a more suitable option
to reach the fiber’s properties compared to the compression test. This is because the main
purpose of mixing fibers into concrete is for enhancing the ability of concrete in terms of
energy absorption and load bearing after the first crack [35–38]. Accordingly, by attributing
the toughness indices to the related flexural toughness, reliable information would derive
and empower better access to the properties of fiber under high temperatures [39]. The
composite beam externally bonded with a carbon fiber-reinforced plastic plate enhances
the flexural behavior and load capacity, providing a solution to weak tensile capacity in
ordinary concrete beams [40]. By understanding the statistical random rules governing
construction safety accidents, this research contributes to enhancing safety measures and
risk management in the construction sector [41–43].

The partial inclusion of fiber in FRC leads to changes in the properties such as mechan-
ical properties [44,45]. Although these changes could be seen in the experiment, realizing
the most influencing parameter may not be easy at all. To solve this issue, employing
artificial intelligence (AI) can be helpful [46–48]. On the one hand, an adaptive neuro-
fuzzy inference system (ANFIS) automatically performs the learning and adaptation cycles,
which is a compliment in comparison to other algorithms. On the other hand, ANFIS
can process and evaluate multivariable problems without adjusted system factors just by
employing simpler solutions [49]. The first priority of using ANFIS among other neural
networks is avoiding a high nonlinearity of approaches. As a matter of fact, the ANFIS
has been successfully used to find the most governing parameters of flexural strength [50].
Furthermore, ANFIS has the ability to diminish the ambiguity in the process by eliminating
selected input parameters to prepare the most desirable prediction conditions [51]. In other
words, the ANFIS network was used to convert the multiple performance characteristics
into a single performance index. Establishing a database of 3D aggregates from X-ray
CT scans enables realistic heterogeneous modeling and distributive analysis in concrete
composite research [52]. Generally, fuzzy systems are used to interpret and assess the data;
however, some shortcomings have already been faced with the use of these algorithms as
accuracy and versatility. Particle swarm optimization (PSO) is an evolutionary intelligence
algorithm that was inspired by the social behavior of bird flocking or fish schooling [53].
As per different studies, PSO is potentially comparable to genetic algorithm (GA), and
it has been utilized satisfactorily in many engineering issues [54]. Due to the relatively
irregular laboratory data in the concrete sector, as well as investigations on the application
of different fibers, artificial intelligence models can be well suited for the prediction of
FRC properties. This algorithm benefits from a swift convergence rate among the other
evolutionary algorithms, and it is basically continuous. In this article, the optimization
process is completed by the PSO algorithm. Since the objective function must be evalu-
ated many times in metaheuristic algorithms, it is easier to use PSO instead of simulation
software. Using a fuzzy neural network, we obtained the pattern between the variables of
the problem and the objective function and then used it to calculate the bending load and
concrete strength.

In order to identify FRC properties, for the first time, an ANFIS algorithm is adopted
to work along with two different pioneer hybrid metaheuristic algorithms as PSO and PSO-
GA not only to detect the most determining deflection factor of the FRC but also to predict
the flexural response of the FRC at elevated temperatures. Based on an experimental test of
FRC structural elements against higher-level heats, the inputs are collected and prepared for
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the soft-computing section [55]. The APG algorithm is developed by laboratory data and
employed to predict and evaluate the properties of the fibrous concrete. The ANFIS-PSO
is performed to challenge the APG results. Based on the achieved results, the new APG
algorithm was successfully developed where the behavior of the samples was accurately
predicted, most of the governing factors for FRC design have been introduced, and the
ways of a reliable design have been discussed.

2. Materials and Methods
2.1. Test Procedure and Data Derivation

The conducted data have been collected from a previous test that has worked on the
same concept and characteristics [29]. All of the samples were produced from the same
concrete in the 15 cm × 15 cm × 15 cm standard cubes. The method of curing for the
concrete specimens involved a specific heating profile following the ISO 834 fire curve.
The test specimens were subjected to a transient heating process in an electric furnace.
Before heating, the specimens were covered with a layer of steel mesh to protect the furnace
from potential damage caused by concrete debris resulting from explosive spalling. The
objective of the mix design was to achieve a compressive strength of over 90 MPa and
prevent explosive spalling under fire conditions. Figure 1 illustared the oven chamber
section based on ASTM E119-98. To better acknowledge the mix proportions, we have
enlisted the significant properties below:

• Cement: ASIA@CEM I 52.5 N Portland cement was used to achieve high strength.
• Silica Fume: Grade 940 silica fume from Elkem Microsilica@ was included in the mix.
• Coarse Aggregate: Chippings with a maximum size of 10 mm were used as the

coarse aggregate.
• Fine Aggregate: Natural river sands were used as the fine aggregate.
• Superplasticizer: Sika® Visc◦Crete®-2192 (71800, Nilai, Negeri Sembilan D.K., Malaysia)

was applied as a superplasticizer to improve workability.
• Polypropylene (PP) Fibers: Monofilament PP fibers, 12 mm long with a diameter of

30 µm, were included at a dosage of 0.2% in terms of volumetric content.
• Steel Fibers: Steel fibers with a length of 35 mm and a diameter of 540 µm, sourced

from Dramix® 3D 6535BG (Bosfa ©, Manukau, Auckland, New Zealand), were used
at a dosage of 1% in terms of volumetric content.
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Figure 1. Specimens in oven chamber according to ASTM E119-98.

The mix design resulted in a slump of 170 mm, which was classified as S4 according
to EN 12350-2, implying good workability.

In the case of the flexural load capacity test, for each sample, a simple support beam
was used and three-point loading was applied to the 300 mm span with an identified
rate of 0.05 in./min. In terms of the load–deflection curve, using a PC-based data acquisi-
tion system, the results were collected. The samples were subjected to three determined
heats including 400 ◦C, 600 ◦C and 800 ◦C (Figure 2) [12]. As per Figure 3 according to
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ASTM C1018, the toughness indices have been calculated by load–deflection curve derived
from the test results. Temperatures increased according to the ASTM E119-98 standard
temperature–time curve.
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Prior to the peak, the FRC response was completely affected by the response of the
concrete matrix. Whatever happened to plain concrete under high temperature showed
similar effects on the pre-peak responses of the FRC. On the other hand, there are two
factors that affect the post-peak flexural response of FRC including the temperature level
and FRC type. At lower temperatures near 400 ◦C, the post-peak response was found to
improve by a brief period of heat as seen by the increasing post-peak load and flexural
toughness. By increasing the temperature to more than 400 ◦C, the type of fiber strongly
affects the post-peak response. Due to the fiber evaporation, large drops of load–deflection
responses were observed for the PP and PEFRC. As for the SFRC, heat leads to changing
the color of the steel fiber but not evaporation; hence, high temperature does not affect the
post-peak response of SFRC as much as it affects PP and PPFRC.

Here, the flexural characteristics are:

Flexural toughness (δ) = Area under the curve up to elastic limit (OAB)

Flexural index (I5) = Area OACD/Area OAB
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The flexural responses of different concrete schemes after exposure to high tempera-
tures are given in Figures 4–7. At room temperature, the average peak load of plain concrete
was 13 kN. The effect was not initiated immediately after exposure to high temperatures.
The peak load stays unchanged at temperatures lower than 400 ◦C. At temperatures more
than 400 ◦C, this effect was more noticeable: at 600 ◦C and 800 ◦C, it decreased by about
24% and 45%, respectively. In addition to strength, by increasing the temperature, the slope
of the load–deflection curve decreased, which shows that the stiffness of the beam is also
influenced by the temperature increment. Meanwhile, dramatical strength reduction could
be attributed to the continuum cracking and spalling related to the thermal expansion
inside composite elements.
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2.2. Artificial Intelligence Algorithms
2.2.1. ANFIS Architecture

ANFIS is a fuzzy inference system integrated within a neural network [50,56]. The
ANFIS network has five layers (Figure 8) while the central core is a fuzzy inference sys-
tem. The first layer receives inputs and converts them to fuzzy values by membership
functions [57,58].
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Based on the theory of ANFIS network abilities, a single node without any identified
weight moves in a system of adjusted layers to another until the final node finds the correct
answer [34,59,60]. The aforementioned cycle has been demonstrated in Figure 8; five layers
are typically performed in succession and have a membership function effect on the final
layer. Just in the case of conservation, the authors assume that the ANFIS has two described
inputs such as V1 and V2, and one output as f. According to the Takagi, Sugeno and Kang
theory [34], two rules are described below:

First: Assuming (v is V1) and (d is D1), the output can be derived as f1 = p1v+ q1d+ r1.
Second: Assuming (v is V2) and (d is D2), the output can be derived as f2 = p2v +

q2d + r2.
Here,
p1, p2, q1, q2, r1 and r = linear parameters which are mostly adjusted and identified by

training and testing procedures.
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V1, V2, D1 and D2 = nonlinear parameters, for instance V1 and D1 are the membership
functions of ANFIS (antecedent).

It is clear that more accurate evaluation means a slight difference between the ANFIS
answer and the real value [61,62].

First of all, an individual unweighted node moves in the first layer just by a node
function, which has been represented as Equation (1).

O1
i = µAi(x) (1)

where
Ai = linguistic label;
O1

i = membership function of Ai.
Accordingly, the bell-shaped function selects for adjustment in ANFIS while having

the most capacity for nonlinear regression [55,63,64].

µ(x) = bell(x; ai, bi, ci) =
1

1 +
[(

x−ci
ai

)2
]bi

(2)

where
{ai, bi, ci, di} = adjusted factors;
x = input.
The typical function of the second layer is described in Equation (3) while a node

multiplies to the incoming signals and moves to the third layer.

wi = µAi(x)× µBi(y), i = 1, 2. (3)

The third layer is the rule layer. In fact, every output exhibits the firing strength of a
rule.

w∗i =
wi

w1 + w2
i = 1, 2. (4)

where
w∗i = normalized firing strength;
As per the ANFIS rule, every input should turn into fuzzy mode, and the fourth layer

has been designed to convert the nodes into defuzzied mode.

O4
i = w∗i fi = w∗i (pix + qiy + ri) (5)

where
w∗i = third layer output;
{pi, qi, ri} = adjusted factors.
In the final layer, the output of each cycle is derived as the evaluated value, which is

computed by cumulating all the incoming signals.

O5
1 = f = ∑

i
w∗i fi (6)

2.2.2. Particle Swarm Optimization

Kennedy and Eberhart have proposed an optimization algorithm based on the clus-
tering and lifestyle of birds and fishes [65]. Generally, the first in PSO is the definition
of an initial population and then searching for optima derived by recalculating genera-
tions without evolution operators such as crossover and mutation [21]. Particles are the
potential solutions while moving along the solution space using their own experiences
and reaching the optimum solutions. PSO is a powerful algorithm for optimization in
nonlinear, non-convex and discontinuous environments. Using the PSO can solve all kinds
of optimization problems, both continuous and discrete [53]. This algorithm is very strong
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and efficient, but it needs to define much fewer parameters than other algorithms, and the
development of this algorithm is actually very simple. It is better than other optimization
methods. This algorithm has been widely used in optimization problems, and the goal of
the PSO algorithm is to find the optimum of the objective function [51]. In this algorithm,
the particles are the constituent units of our population and they cooperate with each other,
and with their intelligence, a certain amount of intelligence is created that is not comparable
to the intelligence of each of them. That is why it is called swarm intelligence [66]. The
most important feature of each particle is its position, and the most important issue is
what indicator or goal the particle suggests and at what speed it moves. In this paper, new
positions of each point have been achieved through the adjusted velocity of the point which
has been written in Equation (7). In other words, at every step, each particle is updated
using the top two values as shown in Equation (8).

v(t + 1) = v(t) + c1 ∗ rand(t) ∗ (pbest(t)− position(t)) + c2 ∗ rand(t) ∗ (gbest(t)− position(t)) (7)

position(t + 1) = position(t) + v(t + 1) (8)

where
V(t + 1) = upgrade velocity;
Pbest = best situation the particle has ever been able to reach;
Gbest = best position ever obtained by the particle population (collective intelligence).
Using the PSO algorithm, the calculation of the minimization of the objective function

is performed. This algorithm selects the optimal state of the desired variables. In general, it
may seem that multi-objective optimization algorithms should be used for this problem,
but we will see in the following that these two objective functions are actually global points.
It is optimized and therefore is enough to mean only one of them.

2.2.3. ANFIS-PSO Architecture

Figure 9 presents the diagram of the sequential PSO and ANFIS combination [66].
In each cycle of the hybrid system, the new velocity and particle can be presented by
Equations (9) and (10):

vi ⇀ (t + 1) = wvi ⇀ (t) + c1∅1 ⇀ .(pi ⇀ (t)− xi ⇀ (t)) + c2∅2 ⇀ .(pi ⇀ (t)− xi ⇀ (t)) (9)

si ⇀ (t + 1) = si ⇀ (t) + vi ⇀ (t + 1) (10)

where
vi⇀ = particles velocity;
pi⇀ = best point in the entire population;
w = inertia weight;
c1 and c2 = positive acceleration coefficients;
∅1⇀ and ∅2⇀ = random vectors;
si⇀ = particles position.
Finally, according to vi⇀ and si⇀, the particle population tends to cluster around

the best.

2.2.4. ANFIS-PSO-GA (APG) Architecture

Figure 10 shows the combination of sequential PSO-GA and ANFIS. In PSO, a swarm
is initiated by a group of random resolutions as a particle; the whole concept has been
represented in Equation (11), in which the new velocity could be provided.

vi(t + 1) = wvi(t) + c1φ1(pi(t)− xi(t)) + c2φ2(pi(t)− xi(t)) (11)

where
c1 and c2 = positive acceleration coefficients;
→
φ 1 and

→
φ 2= random vectors [0, 1];
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→
p ig = location of input point;
W = inertia weight;
The new position for each point can be achieved by Equation (12).

si(t + 1) = si(t) + vi(t + 1) (12)

where
→
s i = particle’s position;
→
v i = particle’s velocity.
Based on

→
v i and

→
s i, the particle population tends to cluster around the best number.
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2.3. Precision Evaluation

Accordingly, in the case of precision detection and performance evaluation, three well-
known regression criteria were employed including the root mean squared error (RMSE),
Pearson correlation coefficient (r) and determination coefficient (R2) [67] as follows:

RMSE =

√√√√√ n
∑

i=1
(P i−Oi)

2

n
(13)

r =
n
(

n
∑

i=1
Oi · Pi

)
−
(

n
∑

i=1
Oi

)
·
(

n
∑

i=1
Pi

)
√√√√(n

n
∑

i=1
O2

i −
(

n
∑

i=1
Oi

)2
)
·
(

n
n
∑

i=1
Pi

2 −
(

n
∑

i=1
Pi

)2
) (14)

R2 =

[
n
∑

i=1

(
Oi −Oi

)
·
(
Pi − Pi

)]2

n
∑

i=1

(
Oi −Oi

)
·

n
∑

i=1

(
Pi − Pi

) (15)
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where Pi and Oi are the predicted and observed variables and n is the total number
of considered data. Also, to compare the code performance of APG and ANFIS-PSO,
MATLAB (2019) was deployed in one computer system with no external compiler or
toolbox implementation.
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2.4. Statistical Data

To investigate and analyze the characteristics affecting the flexural response of the spec-
imens exposed to high temperatures, we selected and studied nine structural parameters
to more accurately predict the deflection and flexural capacity of the specimens [28]. The
selected attributes are obtained based on the importance and quality of the experimental
study in the preceding section. The collected database was composed of 2002 datasets.
Experimental data of deflection (mm), flexural capacity (k.N), toughness index (δ), flexural
index (I5), pulse velocity (m/ s) , fiber aspect ratio (l/d), fiber content (%), fiber tensile
strength (N./mm2) and temperature (◦C) were used as inputs in each model for prediction
and optimization. Table 2 shows the details of the dataset for hybrid models.
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Table 2. Details of the input and output variables.

Inputs and
Outputs Variables Minimum Maximum Mean Value Standard

Deviation

Input 1 Temperature (◦C) 25.00 800.00 456.25 272.92
Input 2 Fiber content (%) 0.00 1.00 0.50 0.23

Input 3 Tensile strength of fiber
(N./mm2) 450.00 1000.00 690.00 188.85

Input 4 Aspect ratio of fiber (l/d) 52.00 90.00 68.67 16.29
Input 5 Toughness index (I5) 1.80 6.80 3.91 1.42
Input 6 Flexural toughness (δ) 1.10 12.50 2.54 1.95
Input 7 Pulse velocity (m/ s) 2808 4795 4033.27 640.17
Input 8 Deflection (mm) 0.00 8.00 2.68 2.35
Input 9 Load (k.N) 0.00 24.54 7.29 5.29

Output 1 Load (k.N) 0.00 24.54 7.29 5.29
Output 2 Deflection (mm) 0.00 8.00 2.68 2.35
Output 3 Flexural toughness (δ) 1.10 12.50 2.54 1.95

2.5. Models Development

As stated in the Section 1, the main purpose of this article is to find the most effective
characteristic of fiber-reinforced concrete to optimize and predict the flexural response.
In addition, with respect to the selected inputs and considering the different scenarios,
the five subdatabases were chosen as the defining reference of these attributes [29], where
subdatabase1 comprises mere flexural properties including (δ) and (I5). Subdatabase2
focuses on the mere fiber properties, subdatabase3 only focuses on the pulse velocity
characteristic and subdatabase4 and subdatabase5 both examined the flexural toughness.
Thus, using each of these five subdatabases, one can analyze the effect of a key portion of
FRC so that by comparing the results derived from their placement in artificial intelligence
models, the quality of their effect and determination will be understood. A summary of
this information can be found in Tables 3–7.

The provided paragraph discusses three variables: load, deflection, and temperature,
which are present in three different subdatabases. Notably, the temperature variable is
a pivotal attribute shared across all subdatabases because it serves as a reference point
for the other variables, namely load and deflection. Moreover, within each subdatabase,
the variables’ load and deflection are interchangeable with one another, meaning they can
act as either input or output, depending on their order of placement in the data structure.
This flexibility in their roles within the subdatabases allows for different approaches in the
analysis and interpretation of experimental results.

To ensure optimal performance and accuracy in the analyses, various metaheuristic
parameters are employed. The process involves adjusting these parameters to achieve the
best possible outcomes in terms of the stability and efficiency of the algorithms used for
data processing and analysis. By fine-tuning these metaheuristic parameters, researchers
can enhance the robustness of their algorithms and ensure reliable results during the
data-driven exploration and investigation of the variables.

Overall, the following subdatasets outline the key elements of the research setup,
including the importance of temperature as a pivotal attribute, the relationship between
load, deflection, and the teacloth properties, the interchangeability of load and deflection
in the subdatabases, and the process of optimizing metaheuristic parameters to ensure
algorithmic stability and reliability in the analysis of the gathered data.
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Table 3. Inputs and outputs of subdatabase1.

Inputs and Outputs Minimum Maximum Average

Temperature (◦C) 25.00 800.00 456.25
Flexural toughness (δ) 1.10 12.50 2.54
Toughness index (I5) 1.80 6.80 3.91

Deflection (mm) * 0.00 8.00 2.68
Load (kN) * 0.00 24.54 7.29

* Deflection and load were employed both as input and output.

Table 4. Inputs and outputs of subdatabase2.

Inputs and Outputs Minimum Maximum Average

Temperature (◦C) 25.00 800.00 456.25
Fiber content (%) 0.00 1.00 0.50

Tensile strength of fiber (N/mm2) 450.00 1000.00 690.00
Aspect ratio of fiber (l/d) 52.00 90.00 68.67

Deflection (mm) * 0.00 8.00 2.68
Load (kN) * 0.00 24.54 7.29

* Deflection and load were employed both as input and output.

Table 5. Inputs and outputs of subdatabase3.

Inputs and Outputs Minimum Maximum Average

Temperature (◦C) 25.00 800.00 456.25
Pulse velocity (m/ s) 2808 4795 4033.27

Deflection (mm) * 0.00 8.00 2.68
Load (kN) * 0.00 24.54 7.29

* Deflection and load were employed both as input and output.

Table 6. Inputs and outputs of subdatabase4.

Inputs and Outputs Minimum Maximum Average

Temperature (◦C) 25.00 800.00 456.25
Fiber content (%) 0.00 1.00 0.50

Tensile strength of fiber (N/mm2) 450.00 1000.00 690.00
Deflection (mm) * 0.00 8.00 2.68

Flexural toughness (δ) * 1.10 12.50 2.54
* Deflection and flexural toughness were employed both as input and output.

Table 7. Inputs and outputs of subdatabase5.

Inputs and Outputs Minimum Maximum Average

Temperature (◦C) 25.00 800.00 456.25
Fiber content (%) 0.00 1.00 0.50

Tensile strength of fiber (N/mm2) 450.00 1000.00 690.00
Load (kN) 0.00 24.54 7.29

Deflection (mm) * 0.00 8.00 2.68
Flexural toughness (δ) * 1.10 12.50 2.54

* Deflection and flexural toughness were employed both as input and output.

2.5.1. ANFIS-PSO Adjustment

Subdatabase1 was used as the base database to optimize the algorithm and find the
best parameters for each artificial intelligence model. Accordingly, all parameters of the
ANFIS-PSO hybrid algorithm were first considered constant, and only the population was
adjusted so that by placing different population numbers, the first one was found to be
better than the nearest population number that was optimized (Figure 11).
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The obtained results were then documented and summarized in Table 8, which
presents a comprehensive tabulation of the analytical performance parameters. These
parameters likely include metrics related to accuracy, convergence, and efficiency, among
others, that were used to assess and compare the performance of the different artificial intel-
ligence models under consideration. By conducting this rigorous optimization process and
recording the analytical performance parameters, the researchers were able to identify an
optimal configuration for the ANFIS-PSO hybrid algorithm when applied to subdatabase1.
This enhanced algorithm configuration likely contributed to more accurate and efficient
analyses, potentially leading to improved results in various AI-based applications, such as
pattern recognition, prediction, or decision-making tasks [66,67].

Table 8. Performance parameters of ANFIS-PSO adjustment based on population number.

Population
Test Train

RMSE r R2 RMSE r R2

25 3.712577 0.725924 0.527 3.831084 0.696089 0.4859
65 3.508492 0.750727 0.5636 3.637986 0.729853 0.5429
75 3.497266 0.783102 0.6132 3.219799 0.781098 0.6227
85 2.626729 0.869537 0.7561 2.533611 0.879021 0.7777
95 2.885258 0.843709 0.7118 3.128901 0.818919 0.6597
105 2.865556 0.846867 0.7172 1.85006 0.866333 0.7532
145 3.30335 0.78746 0.6201 3.423689 0.756888 0.5915
500 3.513862 0.764782 0.5849 3.083961 0.796095 0.6635
535 2.803131 0.865807 0.7496 2.70398 0.853733 0.7355
545 2.55558 0.880936 0.776 2.223289 0.910195 0.828
555 2.669889 0.869614 0.7562 2.577172 0.881952 0.7678
745 3.110781 0.808255 0.6533 3.199169 0.803118 0.6475

The results presented in Table 8 reveal that the ANFIS-PSO algorithm achieved its
optimal performance when configured with a population number of 545. Building upon
this crucial finding, the subsequent step in the research investigation involved a more
detailed exploration of the algorithm’s behavior by adjusting the number of iterations
as a variable (as depicted in Figure 12). The number of iterations plays a pivotal role
in the convergence behavior of the algorithm and can significantly influence its overall
performance. By systematically varying the number of iterations and monitoring its effects
on the algorithm’s convergence rate and accuracy, the researchers aimed to gain deeper
insights into the algorithm’s behavior and identify the most effective iteration count for
achieving superior results.
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Figure 11 likely provides a graphical representation of the algorithm’s performance
across different iteration values, displaying trends such as convergence curves and conver-
gence rates. Moreover, Table 9 presumably presents the test and train parameters used in
the experimentation process. These parameters are crucial for evaluating the algorithm’s
generalization capabilities and its ability to perform accurately on unseen data (test set)
after being trained on a known dataset (train set).

Table 9. Performance parameters of ANFIS-PSO adjustment based on iteration number.

Iteration
Test Train

RMSE r R2 RMSE r R2

150 3.383412 0.764805 0.5849 3.292399 0.780195 0.6032
250 3.668915 0.718894 0.5168 3.463981 0.770327 0.5882
350 2.6410 0.869586 0.7562 2.7200 0.86274 0.7574
450 3.1374 0.81602 0.6659 2.8910 0.839018 0.6994
550 2.7653 0.852937 0.7275 2.5608 0.879944 0.7792
650 2.3018 0.905074 0.8192 2.1895 0.914906 0.8219
750 3.003843 0.826912 0.6838 3.1114 0.821586 0.6793
850 3.083801 0.812916 0.6608 3.171664 0.813298 0.6751

In the final phase, the cluster number parameter for the fuzzy segment was subjected
to optimization. This parameter plays a significant role in fuzzy clustering algorithms,
as it determines the number of clusters into which the data are partitioned. By visually
examining the trends and patterns in Figure 13, it can gain insights into the algorithm’s
behavior as the cluster number changes and can identify the cluster number that leads to
the most favorable outcomes in terms of cluster quality and separation. Furthermore, the
specific results of this optimization process, along with corresponding performance metrics,
are typically documented and tabulated in Table 10. This table offers a systematic overview
of the algorithm’s performance for each tested cluster number value.
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Buildings 2023, 13, 2045 16 of 38

Table 10. Performance parameters of ANFIS-PSO adjustment based on cluster number.

Clusters
Test Train

RMSE r R2 RMSE r R2

4 2.9738 0.844155 0.7126 3.0613 0.834815 0.6969
7 3.2573 0.790532 0.6249 3.0672 0.816433 0.6666

10 2.3018 0.905074 0.8192 2.1895 0.914906 0.8219
13 3.0232 0.834038 0.6956 2.6844 0.850599 0.7235
16 3.0500 0.817362 0.6681 3.0039 0.834937 0.6971

In this research study, the damping ratio parameter (w) was a critical factor that un-
derwent comprehensive investigation and fine-tuning. The damping ratio is a fundamental
parameter in various optimization and control algorithms, and its adjustment plays a
crucial role in determining the algorithm’s stability and convergence characteristics. After
a thorough evaluation, it was observed that the damping ratio value of 0.991 resulted in the
best performance for the hybrid ANFIS-PSO program. This optimal value demonstrated
superior convergence behavior, striking a balance between rapid convergence and pre-
venting oscillations or divergence, thereby enhancing the algorithm’s overall efficiency
and effectiveness. To provide a clear and systematic presentation of the final parameter
configuration, the researchers documented the results in Table 11. This table tabulates
the optimized parameters, along with associated performance measures or other relevant
metrics, providing a comprehensive overview of the hybrid ANFIS-PSO program’s efficacy.

Table 11. Parameter characteristics utilized for ANFIS-PSO.

FIS Clusters Population Size Iterations Inertia Weight Damping Ratio
Learning Coefficient

Personal Global

10 545 650 1.00 0.991 1 2

2.5.2. APG Adjustment

Accordingly, each step has been presented briefly, as the technical process was the
same as in the previous section. In this section, subdatabase1 was used to adjust the
different parameters of the ANFIS-PSO-GA algorithm, as was the case for the ANFIS-PSO
algorithm. Initially, the algorithm efficiency was evaluated by changing the population
number. As can be seen in Figure 14, a population of 90 yields the best algorithm returns.
Table 12 lists the numerical accuracy indices corresponding to each imported population.
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Table 12. Performance parameters of APG adjustment based on population number.

Population
Test Train

RMSE r R2 RMSE r R2

50 3.299182 0.781941 0.6114 3.195194 0.806186 0.6499
80 3.255189 0.749049 0.5611 3.534075 0.729853 0.5382
90 2.643244 0.871738 0.7699 2.587535 0.875461 0.7664
100 3.054091 0.816756 0.6671 3.045109 0.825002 0.6806
110 3.376154 0.756638 0.5725 3.310291 0.793831 0.6302
150 3.716255 0.709193 0.503 3.696705 0.728039 0.53

Further, considering a population of 90, using subdatabase1, another parameter of
the PSO algorithm is adjusted. Different PSO iterations were tested, and the results are
presented in Table 13 and Figure 15.

Table 13. Performance parameters of APG adjustment based on iteration number.

PSO
Iteration

Test Train

RMSE r R2 RMSE r R2

20 2.823024 0.846474 0.7165 2.871513 0.84599 0.7157
30 2.554562 0.886002 0.785 2.741211 0.855664 0.7322
45 2.607353 0.872721 0.7616 2.569105 0.878173 0.7712
50 2.744641 0.852209 0.7263 2.680724 0.868312 0.754
60 2.813234 0.84719 0.7177 2.74642 0.860313 0.7401
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According to Table 13, the number of PSO iterations is considered to be 45. The
number of sub-iterations was also adjusted as one of the adjustable parameters in the GA
algorithm. As can be seen in Figure 16 and Table 14, the PSO-GA algorithm has shown its
best numerical efficiency in sub-iteration number 40.
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Table 14. Performance parameters of APG adjustment based on GA sub-iteration number.

GA
Sub-Iteration

Test Train

RMSE r R2 RMSE r R2

10 2.590722 0.870225 0.7573 2.627477 0.873973 0.7638
20 2.942502 0.820655 0.6735 2.656337 0.873065 0.7622
30 2.795555 0.844398 0.713 2.570393 0.880338 0.775
40 2.548629 0.877919 0.7707 2.487351 0.886501 0.7859
45 2.858059 0.841623 0.7083 2.813826 0.85322 0.728
50 2.975344 0.833438 0.6946 2.712527 0.861689 0.7425
80 3.161902 0.807712 0.6524 3.241185 0.796085 0.6338

In the following, the MAX iteration is optimized as another parameter of the GA
algorithm; the tuning process of the MAX iteration number is given in Figure 17 and
Table 15.
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Table 15. Performance parameters of APG adjustment based on MAX iteration number.

Max
Iteration

Test Train

RMSE r R2 RMSE r R2

20 3.880335 0.690107 0.4762 3.943241 0.691182 0.4777
50 2.809624 0.848597 0.7201 2.533668 0.882422 0.7787
100 2.553774 0.880666 0.7618 2.441867 0.889812 0.7756
140 2.393413 0.898524 0.7873 2.538099 0.879129 0.7729
150 2.589503 0.881595 0.7772 2.411496 0.890905 0.7937
160 2.964227 0.833475 0.6947 2.866023 0.845298 0.7145

Finally, the damping ratio (w) parameter was investigated and adjusted to obtain the
most accurate results (Figure 18). According to Table 16, the most appropriate figure for w
is 0.988, which yields the best numerical results.
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base1 to subdatabase5 with the new optimized algorithm. Initially, the inputs of subdata-
base1 were defined and predicted, and the flexural load and deflection were predicted 
separately through different analyses. 

In this stage of the research, the obtained results were thoroughly analyzed and pre-
sented using regression graphs and comparative graphs, as depicted in Figures 19 and 20, 
respectively. Regression graphs are useful for visually assessing the relationship between 
predicted values and actual values, enabling researchers to evaluate the accuracy and re-
liability of the algorithm’s predictions. On the other hand, comparative graphs allow for 
a side-by-side comparison of the predicted values with the ground truth data, offering 
insights into the algorithm’s performance across different samples or experimental condi-
tions. In conjunction with the graphical representations, Table 18 was utilized to present 
the detailed results of the analysis. This table likely contains quantitative metrics and sta-
tistical measures, such as root mean square error (RMSE), standard deviation (Std), or the 
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Table 16. Performance parameters of APG adjustment based on damping ratio.

Damping
Ratio

Test Train

RMSE r R2 RMSE r R2

0.986 2.836168 0.843828 0.712 2.757289 0.859219 0.7383
0.988 2.104214 0.921673 0.8495 1.903745 0.934057 0.8725
0.989 2.477554 0.887488 0.7876 2.279348 0.905039 0.8191
0.99 3.17987 0.816025 0.6659 3.034619 0.81916 0.671

0.991 2.470995 0.887526 0.7877 2.444386 0.89027 0.7926
1.00 4.399623 0.611487 0.3739 4.249338 0.631111 0.3983

The derived performance parameters were tuned for the hybrid APG program and
tabulated in Table 17.

Table 17. Parameter characteristics employed for APG.

FIS
Clusters

Population
Size

PSO
Iterations

GA Sub-
Iteration

MAX
Iteration

Inertia
Weight

Damping
Ratio

Learning Coefficient

Personal Global

10 90 50 45 150 1.00 0.988 1 2

3. Results and Discussion
3.1. ANFIS-PSO

As explained in the previous section, the parameters of the ANFIS-PSO algorithm were
adjusted according to Table 11. The process of analysis was initiated from subdatabase1
to subdatabase5 with the new optimized algorithm. Initially, the inputs of subdatabase1
were defined and predicted, and the flexural load and deflection were predicted separately
through different analyses.

In this stage of the research, the obtained results were thoroughly analyzed and pre-
sented using regression graphs and comparative graphs, as depicted in Figures 19 and 20,
respectively. Regression graphs are useful for visually assessing the relationship between
predicted values and actual values, enabling researchers to evaluate the accuracy and
reliability of the algorithm’s predictions. On the other hand, comparative graphs allow
for a side-by-side comparison of the predicted values with the ground truth data, offer-
ing insights into the algorithm’s performance across different samples or experimental
conditions. In conjunction with the graphical representations, Table 18 was utilized to
present the detailed results of the analysis. This table likely contains quantitative metrics
and statistical measures, such as root mean square error (RMSE), standard deviation (Std),
or the coefficient of determination (R-squared), which are commonly used to assess the
predictive performance of regression models. The results in Table 18 serve as a compre-
hensive reference for evaluating the algorithm’s accuracy and precision in predicting both
flexural strength and deflection values of the samples. According to the outcomes illus-
trated in Figure 20, the algorithm demonstrates the ability to predict the flexural strength
and deflection of the samples with acceptable errors, which are denoted as “normal errors.”
This suggests that the algorithm performs reasonably well in capturing the underlying
patterns and trends in the data, leading to predictions that are generally close to the actual
values. However, it is important to note that the results are not precisely in line with the
real values, indicating that there is still room for improvement in the predictive accuracy of
the algorithm.
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Figure 20. ANFIS-PSO prediction vs. experimental diagram for subdatabase1: (a) flexural load test 
phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase. 

Then, using subdatabase2, the corresponding inputs are defined, and flexural load 
and deflection are estimated and predicted in two steps (Figures 21 and 22). Table 19 con-
cluded the performance precision parameters of this phase. As the subdatabase1 results 
show, the ANFIS-PSO algorithm has estimated the mechanical properties of the samples 
with considerable convergence against the real values. 

Table 19. Sub-database2 analytical prediction results through ANFIS-PSO. 

Flexural load prediction 

Test Train 
RMSE 3.7334 RMSE 3.5986 

R2 0.4747 R2 0.5912 
r 0.6890 r 0.7566 

Std 3.7311 Std 3.4896 
e mean 0.02019 e mean 0.0029 

Deflection prediction 
Test Train 

RMSE 2.1251 RMSE 2.2445 
R2 0.1595 R2 0.1356 

Figure 20. ANFIS-PSO prediction vs. experimental diagram for subdatabase1: (a) flexural load test
phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase.
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Table 18. Subdatabase1 analytical prediction results through ANFIS-PSO.

Flexural load
prediction

Test Train
RMSE 2.3018 RMSE 2.1895

R2 0.8192 R2 0.8219
r 0.9051 r 0.9149

Std * 2.3032 Std 2.2517
e mean 0.0502 e mean 0.0196

Deflection
prediction

Test Train
RMSE 1.9248 RMSE 1.9257

R2 0.3150 R2 0.3108
r 0.5613 r 0.5514

Std 1.9262 Std 1.9394
e mean 0.0270 e mean 0.0048

* Std = standard deviation.

Then, using subdatabase2, the corresponding inputs are defined, and flexural load and
deflection are estimated and predicted in two steps (Figures 21 and 22). Table 19 concluded
the performance precision parameters of this phase. As the subdatabase1 results show,
the ANFIS-PSO algorithm has estimated the mechanical properties of the samples with
considerable convergence against the real values.
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Figure 21. ANFIS-PSO prediction vs. experimental results regression for subdatabase2: (a) flexural 
load test phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase. 

  

Figure 21. ANFIS-PSO prediction vs. experimental results regression for subdatabase2: (a) flexural
load test phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase.
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Figure 22. ANFIS-PSO prediction vs. experimental diagram for subdatabase2: (a) flexural load test 
phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase. 

As before, subdatabase3 data were used to predict flexural load and deflection. Fig-
ures 23 and 24 illustrate the regression and comparative graphs of the performed analysis, 
respectively. Table 20 presents the results of the prediction. Due to the unsuccessful pre-
diction by ANFIS-PSO for FRC properties, we have employed other subdatasets for the 
prediction of flexural toughness of the FRC. 

Table 20. Subdatabase3 analytical prediction results through ANFIS-PSO. 

Flexural load prediction 

Test Train 
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Figure 22. ANFIS-PSO prediction vs. experimental diagram for subdatabase2: (a) flexural load test
phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase.

Table 19. Sub-database2 analytical prediction results through ANFIS-PSO.

Flexural load
prediction

Test Train
RMSE 3.7334 RMSE 3.5986

R2 0.4747 R2 0.5912
r 0.6890 r 0.7566

Std 3.7311 Std 3.4896
e mean 0.02019 e mean 0.0029

Deflection
prediction

Test Train
RMSE 2.1251 RMSE 2.2445

R2 0.1595 R2 0.1356
r 0.3993 r 0.3277

Std 2.1159 Std 2.1767
e mean 0.02150 e mean 0.0002

As before, subdatabase3 data were used to predict flexural load and deflection.
Figures 23 and 24 illustrate the regression and comparative graphs of the performed analy-
sis, respectively. Table 20 presents the results of the prediction. Due to the unsuccessful
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prediction by ANFIS-PSO for FRC properties, we have employed other subdatasets for the
prediction of flexural toughness of the FRC.

Buildings 2023, 13, 2045 24 of 40 
 

r 0.7165 r 0.8148 
Std 3.6730 Std 3.3946 

e mean 0.0785 e mean 0.0257 
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Figure 23. ANFIS-PSO prediction vs. experimental results regression for subdatabase3: (a) flexural
load test phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase.

Table 20. Subdatabase3 analytical prediction results through ANFIS-PSO.

Flexural load
prediction

Test Train
RMSE 2.1576 RMSE 2.1272

R2 0.1496 R2 0.2010
r 0.3785 r 0.3941

Std 2.1594 Std 2.0926
e mean 0.0008 e mean 0.0169

Deflection
prediction

Test Train
RMSE 3.6708 RMSE 3.1612

R2 0.3150 R2 0.3108
r 0.7165 r 0.8148

Std 3.6730 Std 3.3946
e mean 0.0785 e mean 0.0257

In the final phase, the prediction of flexural toughness was carried out using sub-
database4 and subdatabase5. The results obtained from the analysis of subdatabase4 are
depicted in Figures 25 and 26, and the corresponding quantitative metrics are presented
in Table 21. Similarly, the results from subdatabase5 are illustrated in Figures 27 and 28,
and the associated quantitative results are tabulated in Table 22. The predictive perfor-
mance of the ANFIS-PSO algorithm was found to be remarkably accurate in estimating
the flexural toughness of the samples. This success can be attributed to several factors,
one of which is the presence of irregular patterns in the results of subdatabase4 and sub-
database5. The algorithm’s adaptability and robustness in handling complex and irregular
data patterns allowed it to effectively capture the underlying trends in the data, leading to
precise predictions.
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Figure 24. ANFIS-PSO prediction vs. experimental diagram for subdatabase3: (a) flexural load test 
phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase. 
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picted in Figures 25 and 26, and the corresponding quantitative metrics are presented in 
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of the ANFIS-PSO algorithm was found to be remarkably accurate in estimating the flex-
ural toughness of the samples. This success can be attributed to several factors, one of 
which is the presence of irregular patterns in the results of subdatabase4 and subdata-
base5. The algorithm’s adaptability and robustness in handling complex and irregular 
data patterns allowed it to effectively capture the underlying trends in the data, leading 
to precise predictions. 

Additionally, the presence of fiber characteristics in the samples likely played a cru-
cial role in influencing their flexural behavior. The incorporation of fibers in fiber-rein-
forced concrete (FRC) is known to enhance the material’s mechanical properties, includ-
ing toughness. The algorithm’s ability to accurately predict flexural toughness in the pres-
ence of fiber characteristics further highlights its effectiveness in capturing the impact of 
these material features on structural behavior. A direct comparison between Tables 21 and 
22 revealed that the predictions from Table 21, which used subdatabase4, were closer to 

Figure 24. ANFIS-PSO prediction vs. experimental diagram for subdatabase3: (a) flexural load test
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role in influencing the flexural behavior of fiber-reinforced concrete (FRC) specimens. 
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Table 22. Subdatabase5 analytical prediction results through ANFIS-PSO. 

Flexural Toughness Prediction 

Test Train 
RMSE 0.3568 RMSE 0.3453 

R2 0.9697 R2 0.9709 
r 0.9847 r 0.9808 

Std 0.3561 Std 0.3253 

Figure 25. ANFIS-PSO prediction vs. experimental results regression for subdatabase4: (a) flexural
toughness test phase, (b) flexural toughness train phase.
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Figure 26. ANFIS-PSO prediction vs. experimental diagram for subdatabase4: (a) flexural load
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Table 21. Subdatabase4 analytical prediction results through ANFIS-PSO.

Flexural
Toughness
Prediction

Test Train

RMSE 0.4430 RMSE 0.4588
R2 0.9536 R2 0.9403
r 0.9765 r 0.9710

Std 0.4432 Std 0.4648
e mean 0.0136 e mean 0.0003
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3.2. APG 
To ensure the accuracy and reliability of the predictions, optimal values for the pa-

rameters listed in Table 15 were carefully selected. Subsequently, the data in subdatabase1 
were used as inputs, and the APG algorithm was utilized to predict flexural load and de-
flection as the target values. The accuracy of the APG algorithm’s predictions was evalu-
ated through various quantitative metrics and graphical representations. The regression 
graphs and comparison graphs in Figures 29 and 30, respectively, offer visual insights into 
the relationship between the laboratory data and the predicted values. By plotting the pre-
dicted values against the actual data, researchers can assess the algorithm’s performance 
in capturing the trends and patterns present in the data. 

Furthermore, Table 23 presents a comprehensive summary of the analytical predic-
tion results for this phase of the analysis. The table likely includes performance metrics 
such as root mean square error (RMSE), R-squared (R2), correlation coefficient (r), stand-
ard deviation (Std), and the mean error (e mean) for both flexural load and deflection pre-
dictions. These metrics are used to evaluate the accuracy, precision, and goodness of fit of 
the APG algorithm’s predictions. 

For flexural load prediction in subdatabase1, the APG algorithm achieved an RMSE 
of 2.1042 in the test set and 1.9255 in the training set. The R-squared values were found to 
be 0.8495 and 0.8725 for the test and train sets, respectively. The correlation coefficient (r) 

Figure 27. ANFIS-PSO prediction vs. experimental results regression for subdatabase5: (a) flexural
toughness test phase, (b) flexural toughness train phase.

Table 22. Subdatabase5 analytical prediction results through ANFIS-PSO.

Flexural
Toughness
Prediction

Test Train

RMSE 0.3568 RMSE 0.3453
R2 0.9697 R2 0.9709
r 0.9847 r 0.9808

Std 0.3561 Std 0.3253
e mean 0.0276 e mean 0.0023
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Figure 28. ANFIS-PSO prediction vs. experimental diagram for subdatabase5: (a) flexural load
toughness phase, (b) flexural toughness train phase.

Additionally, the presence of fiber characteristics in the samples likely played a crucial
role in influencing their flexural behavior. The incorporation of fibers in fiber-reinforced
concrete (FRC) is known to enhance the material’s mechanical properties, including tough-
ness. The algorithm’s ability to accurately predict flexural toughness in the presence of fiber
characteristics further highlights its effectiveness in capturing the impact of these material
features on structural behavior. A direct comparison between Tables 21 and 22 revealed that
the predictions from Table 21, which used subdatabase4, were closer to the real values. This
suggests that subdatabase4, with its specific characteristics and configurations, provides
more relevant and representative data for the prediction of flexural toughness. As a result,
the findings conclude that the presence of fibers has a governing role in influencing the
flexural behavior of fiber-reinforced concrete (FRC) specimens.

3.2. APG

To ensure the accuracy and reliability of the predictions, optimal values for the pa-
rameters listed in Table 15 were carefully selected. Subsequently, the data in subdatabase1
were used as inputs, and the APG algorithm was utilized to predict flexural load and
deflection as the target values. The accuracy of the APG algorithm’s predictions was evalu-
ated through various quantitative metrics and graphical representations. The regression
graphs and comparison graphs in Figures 29 and 30, respectively, offer visual insights into
the relationship between the laboratory data and the predicted values. By plotting the
predicted values against the actual data, researchers can assess the algorithm’s performance
in capturing the trends and patterns present in the data.

Furthermore, Table 23 presents a comprehensive summary of the analytical prediction
results for this phase of the analysis. The table likely includes performance metrics such as
root mean square error (RMSE), R-squared (R2), correlation coefficient (r), standard devia-
tion (Std), and the mean error (e mean) for both flexural load and deflection predictions.
These metrics are used to evaluate the accuracy, precision, and goodness of fit of the APG
algorithm’s predictions.
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phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase. 

Figure 29. APG prediction vs. experimental results regression for subdatabase1: (a) flexural load test
phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase.

Table 23. Subdatabase1 analytical prediction results through APG.

Flexural load
prediction

Test Train
RMSE 2.1042 RMSE 1.9255

R2 0.8495 R2 0.8725
r 0.9217 r 0.9342

Std 2.1043 Std 1.9044
e mean −0.0835 e mean 0.0037

Deflection
prediction

Test Train
RMSE 1.7372 RMSE 1.6368

R2 0.4430 R2 0.4779
r 0.6656 r 0.7053

Std 1.7375 Std 1.6888
e mean −0.0633 e mean 0.0036

For flexural load prediction in subdatabase1, the APG algorithm achieved an RMSE of
2.1042 in the test set and 1.9255 in the training set. The R-squared values were found to
be 0.8495 and 0.8725 for the test and train sets, respectively. The correlation coefficient (r)
indicates a strong positive relationship between predicted and actual values, with values
of 0.9217 and 0.9342 for the test and train sets, respectively. The standard deviation (Std)
reflects the spread of the errors, while the mean error (e mean) represents the average error
of the predictions compared to the true values.

Similarly, for deflection prediction in subdatabase1, the APG algorithm achieved an
RMSE of 1.7372 in the test set and 1.6368 in the training set. The R-squared values were
found to be 0.4430 and 0.4779 for the test and train sets, respectively. The correlation
coefficient (r) indicates a moderate positive relationship between predicted and actual
deflection values, with values of 0.6656 and 0.7053 for the test and train sets, respectively.
The standard deviation (Std) and mean error (e mean) offer additional insights into the
precision and accuracy of the deflection predictions.
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The obtained results from Table 23 demonstrate that the APG algorithm’s predictions
for flexural load are relatively accurate, as indicated by the low RMSE, high R-squared, and
strong correlation coefficient values. However, the predictions for deflection show some
room for improvement, with moderate R-squared values and lower correlation coefficients
compared to the flexural load predictions.

In this phase of the research, subdatabase2 was utilized as the input data for the hybrid
algorithm, and flexural load and deflection were predicted as the corresponding outputs.
To assess the accuracy and performance of the hybrid algorithm, the predictions were
compared with the actual data through regression and comparative graphs, as shown in
Figures 31 and 32, respectively. Additionally, Table 24 presents a detailed summary of
the analytical prediction results for subdatabase2 using the APG. The regression graph
(Figure 30) visually depicts the relationship between the predicted and actual values of
flexural load and deflection.
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In this phase of the research, subdatabase2 was utilized as the input data for the hy-
brid algorithm, and flexural load and deflection were predicted as the corresponding out-
puts. To assess the accuracy and performance of the hybrid algorithm, the predictions 
were compared with the actual data through regression and comparative graphs, as 
shown in Figures 31 and 32, respectively. Additionally, Table 24 presents a detailed sum-
mary of the analytical prediction results for subdatabase2 using the APG. The regression 
graph (Figure 30) visually depicts the relationship between the predicted and actual val-
ues of flexural load and deflection. 

Table 24 contains essential numerical properties of the analysis for subdatabase2. For 
the flexural load prediction, the hybrid algorithm achieved an RMSE of 3.2102 in the test 
set and 3.2297 in the training set. The R-squared values (R2) indicate the proportion of 
variance explained by the model, and they were found to be 0.3150 and 0.3108 for the test 
and train sets, respectively. The correlation coefficient (r) represents the strength of the 
relationship between the predicted and actual values, and values of 0.7956 and 0.8057 
were obtained for the test and train sets, respectively.  

Additionally, for deflection prediction in subdatabase2, the hybrid algorithm 
achieved an RMSE of 1.9833 in the test set and 1.8 in the training set. The R-squared values 
(R2) were found to be 0.2644 and 0.3943 for the test and train sets, respectively, indicating 

Figure 30. APG prediction vs. experimental diagram for subdatabase1: (a) flexural load test phase,
(b) flexural load train phase, (c) deflection test phase, (d) deflection train phase.
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a moderate relationship between predicted and actual deflection values. The correlation 
coefficient (r) for deflection prediction was found to be 0.5142 in the test set and 0.6502 in 
the train set. The standard deviation (Std) and mean error (e mean) provide additional 
insights into the accuracy and precision of the deflection predictions. 

The results presented in Table 24 indicate that the hybrid algorithm’s predictions for 
flexural load and deflection in subdatabase2 have moderate accuracy, as indicated by the 
RMSE values and R-squared values, which are below the values obtained in subdatabase1. 
The correlation coefficients (r) suggest that there is a significant positive relationship be-
tween predicted and actual values, but the predictive power is not as strong as observed 
in subdatabase1. Otherwise, subdatabase2 is not way off from subdatabase1, and this dif-
ference in accuracy could be attributed to the effect of geometrical features and fiber con-
tent on the mechanical function of FRC [59]. 

Table 24. Subdatabase2 analytical prediction results through APG. 

Flexural load prediction 

Test Train 
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r 0.7956 r 0.8057 
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Table 24. Subdatabase2 analytical prediction results through APG.

Flexural load
prediction

Test Train
RMSE 3.2102 RMSE 3.2297

R2 0.3150 R2 0.3108
r 0.7956 r 0.8057

Std 3.2110 Std 3.1290
e mean −0.1069 e mean −0.0012

Deflection
prediction

Test Train
RMSE 1.9833 RMSE 1.8

R2 0.2644 R2 0.3943
r 0.5142 r 0.6502

Std 1.7375 Std 1.6888
e mean −0.0412 e mean 0.0007

Table 24 contains essential numerical properties of the analysis for subdatabase2. For
the flexural load prediction, the hybrid algorithm achieved an RMSE of 3.2102 in the test
set and 3.2297 in the training set. The R-squared values (R2) indicate the proportion of
variance explained by the model, and they were found to be 0.3150 and 0.3108 for the test
and train sets, respectively. The correlation coefficient (r) represents the strength of the
relationship between the predicted and actual values, and values of 0.7956 and 0.8057 were
obtained for the test and train sets, respectively.

Additionally, for deflection prediction in subdatabase2, the hybrid algorithm achieved
an RMSE of 1.9833 in the test set and 1.8 in the training set. The R-squared values (R2) were
found to be 0.2644 and 0.3943 for the test and train sets, respectively, indicating a moderate
relationship between predicted and actual deflection values. The correlation coefficient (r)
for deflection prediction was found to be 0.5142 in the test set and 0.6502 in the train set.
The standard deviation (Std) and mean error (e mean) provide additional insights into the
accuracy and precision of the deflection predictions.
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The results presented in Table 24 indicate that the hybrid algorithm’s predictions for
flexural load and deflection in subdatabase2 have moderate accuracy, as indicated by the
RMSE values and R-squared values, which are below the values obtained in subdatabase1.
The correlation coefficients (r) suggest that there is a significant positive relationship
between predicted and actual values, but the predictive power is not as strong as observed
in subdatabase1. Otherwise, subdatabase2 is not way off from subdatabase1, and this
difference in accuracy could be attributed to the effect of geometrical features and fiber
content on the mechanical function of FRC [59].

In this part, subdatabase3 data were utilized to predict the flexural load and deflection
using the APG algorithm. The results of this prediction were evaluated and presented
through regression and comparative graphs, which are depicted in Figures 33 and 34,
respectively. Additionally, Table 25 offers a detailed summary of the analytical prediction
results for subdatabase3 using the APG algorithm. The regression graph (Figure 33)
visually showcases the relationship between the predicted and actual values of flexural
load and deflection. The comparative graph (Figure 34) provides a direct comparison
between the predicted and laboratory values, enabling a visual evaluation of the algorithm’s
performance in predicting flexural load and deflection for subdatabase3.
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In this part, subdatabase3 data were utilized to predict the flexural load and deflec-
tion using the APG algorithm. The results of this prediction were evaluated and presented 
through regression and comparative graphs, which are depicted in Figures 33 and 34, re-
spectively. Additionally, Table 25 offers a detailed summary of the analytical prediction 
results for subdatabase3 using the APG algorithm. The regression graph (Figure 33) visu-
ally showcases the relationship between the predicted and actual values of flexural load 
and deflection. The comparative graph (Figure 34) provides a direct comparison between 
the predicted and laboratory values, enabling a visual evaluation of the algorithm’s per-
formance in predicting flexural load and deflection for subdatabase3. 

Table 25 presents crucial numerical metrics derived from the prediction analysis. For 
flexural load prediction in subdatabase3, the APG algorithm achieved an RMSE of 3.5509 
in the test set and 3.1600 in the training set. The R-squared values (R2) indicate the propor-
tion of variance explained by the model, and they were found to be 0.5580 and 0.6080 for 
the test and train sets, respectively. The correlation coefficient (r) represents the strength 
of the relationship between the predicted and actual values with values of 0.7481 and 
0.7830 for the test and train sets, respectively.  

Similarly, for deflection prediction in subdatabase3, the APG algorithm achieved an 
RMSE of 1.8977 in the test set and 1.8748 in the training set. The R-squared values (R2) 

Figure 32. APG prediction vs. experimental diagram for subdatabase2: (a) flexural load test phase,
(b) flexural load train phase, (c) deflection test phase, (d) deflection train phase.



Buildings 2023, 13, 2045 31 of 38

Buildings 2023, 13, 2045 33 of 40 
 

were found to be 0.3395 and 0.3773 for the test and train sets, respectively. The correlation 
coefficient (r) for deflection prediction was found to be 0.5781 in the test set and 0.6215 in 
the train set. The standard deviation (Std) and mean error (e mean) offer additional in-
sights into the accuracy and precision of the deflection predictions.  

The results presented in Table 25 indicate that the APG algorithm’s predictions for 
flexural load and deflection in subdatabase3 demonstrate moderate accuracy. The RMSE 
values and R-squared values are higher than those obtained in subdatabase1 but lower 
than those observed in subdatabase2. The correlation coefficients (r) suggest a positive 
relationship between predicted and actual values, indicating that the algorithm is captur-
ing relevant patterns in the data. This smooth performance of the APG algorithm thor-
oughly confirms that the elasticity of the fibers has a significant role in the flexural behav-
ior of FRC [33–35]. 

Table 25. Subdatabase3 analytical prediction results through APG algorithm. 

Flexural load prediction 

Test Train 
RMSE 3.5509 RMSE 3.1600 

R2 0.5580 R2 0.6080 
r 0.7481 r 0.7830 

Std 3.2110 Std 3.1290 
e mean 0.0760 e mean 0.0199 

Deflection prediction 

Test Train 
RMSE 1.8977 RMSE 1.8748 

R2 0.3395 R2 0.3773 
r 0.5781 r 0.6215 

Std 1.8992 Std 1.6888 
e mean 0.0166 e mean 0.0049 

 
Figure 33. APG prediction vs. experimental results regression for subdatabase3: (a) flexural load test 
phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase. 

Figure 33. APG prediction vs. experimental results regression for subdatabase3: (a) flexural load test
phase, (b) flexural load train phase, (c) deflection test phase, (d) deflection train phase.

Table 25. Subdatabase3 analytical prediction results through APG algorithm.

Flexural load
prediction

Test Train
RMSE 3.5509 RMSE 3.1600

R2 0.5580 R2 0.6080
r 0.7481 r 0.7830

Std 3.2110 Std 3.1290
e mean 0.0760 e mean 0.0199

Deflection
prediction

Test Train
RMSE 1.8977 RMSE 1.8748

R2 0.3395 R2 0.3773
r 0.5781 r 0.6215

Std 1.8992 Std 1.6888
e mean 0.0166 e mean 0.0049

Table 25 presents crucial numerical metrics derived from the prediction analysis. For
flexural load prediction in subdatabase3, the APG algorithm achieved an RMSE of 3.5509 in
the test set and 3.1600 in the training set. The R-squared values (R2) indicate the proportion
of variance explained by the model, and they were found to be 0.5580 and 0.6080 for the
test and train sets, respectively. The correlation coefficient (r) represents the strength of the
relationship between the predicted and actual values with values of 0.7481 and 0.7830 for
the test and train sets, respectively.

Similarly, for deflection prediction in subdatabase3, the APG algorithm achieved an
RMSE of 1.8977 in the test set and 1.8748 in the training set. The R-squared values (R2)
were found to be 0.3395 and 0.3773 for the test and train sets, respectively. The correlation
coefficient (r) for deflection prediction was found to be 0.5781 in the test set and 0.6215 in
the train set. The standard deviation (Std) and mean error (e mean) offer additional insights
into the accuracy and precision of the deflection predictions.
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The results presented in Table 25 indicate that the APG algorithm’s predictions for
flexural load and deflection in subdatabase3 demonstrate moderate accuracy. The RMSE
values and R-squared values are higher than those obtained in subdatabase1 but lower
than those observed in subdatabase2. The correlation coefficients (r) suggest a positive
relationship between predicted and actual values, indicating that the algorithm is capturing
relevant patterns in the data. This smooth performance of the APG algorithm thoroughly
confirms that the elasticity of the fibers has a significant role in the flexural behavior of
FRC [33–35].

In the final step of the research, the prediction of flexural toughness involved the use
of two separate subdatabases: subdatabase4 and subdatabase5. The results obtained from
the analysis of subdatabase4 are illustrated in Figures 35 and 36, with a comprehensive
summary of the analytical prediction outcomes presented in Table 26. Similarly, the results
obtained from the analysis of subdatabase5 are shown in Figures 37 and 38 along with the
associated analytical prediction metrics presented in Table 27.
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Table 26 provides a detailed assessment of the APG (Artificial Pollination Algorithm)
algorithm’s predictive performance for flexural toughness in subdatabase4. The algorithm’s
predictions were evaluated using various metrics, such as the root mean square error
(RMSE), R-squared (R2), correlation coefficient (r), standard deviation (Std), and mean error
(e mean). The RMSE values indicate the average magnitude of the errors in predicting
flexural toughness for the test and train sets, respectively. The R-squared values (R2)
indicate the proportion of variance in the data explained by the algorithm’s predictions,
with higher values suggesting better predictive performance. The correlation coefficients
(r) represent the strength and direction of the linear relationship between the predicted
and actual flexural toughness values, while the standard deviation (Std) and mean error
(e mean) offer insights into the precision and accuracy of the algorithm’s predictions.

For subdatabase4, the APG algorithm demonstrated excellent predictive performance
for flexural toughness, with an RMSE of 0.3772 for the test set and 0.3919 for the train set.
The high R-squared values of 0.9684 and 0.9572 for the test and train sets, respectively,
indicate that a significant portion of the variance in the flexural toughness data is explained
by the algorithm’s predictions. The correlation coefficients (r) of 0.9841 for the test set and
0.9780 for the train set signify strong positive linear relationships between predicted and
actual values. Additionally, the small standard deviation (Std) values of 0.3775 for the test
set and 0.3865 for the train set, along with the mean error (e mean) values close to zero,
demonstrate the algorithm’s precision and accuracy in predicting flexural toughness [50].
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Likewise, Table 27 presents the analytical prediction results for flexural toughness in
subdatabase5 using the APG algorithm. The algorithm’s predictive performance metrics are
evaluated and include RMSE, R-squared (R2), correlation coefficient (r), standard deviation
(Std), and mean error (e mean). The results indicate that the APG algorithm achieved
an RMSE of 0.3776 for the test set and 0.3749 for the train set, showcasing consistent
performance. The R-squared values (R2) of 0.9642 for the test set and 0.9628 for the train
set suggest strong predictive capabilities of the algorithm. The correlation coefficients
(r) of 0.9819 for the test set and 0.9821 for the train set indicate a highly positive linear
relationship between predicted and actual values. Moreover, the small standard deviation
(Std) values of 0.3777 for the test set and 0.3670 for the train set, along with the mean error
(e mean) values close to zero, further confirm the algorithm’s accuracy and precision in
predicting flexural toughness in subdatabase5 [45].

The findings from Tables 26 and 27 demonstrate that the APG algorithm successfully
predicts flexural toughness for both subdatabase4 and subdatabase5 with high accuracy and
precision. The high R-squared values and strong correlation coefficients indicate that the
algorithm captures the complex relationships between input data and flexural toughness
with exceptional accuracy [55–57]. The consistently low RMSE and small standard deviation
values further validate the reliability and consistency of the algorithm’s predictions.

4. Conclusions

In this study, the behavior of fibrous concrete under elevated temperatures was inves-
tigated using a novel design artificial intelligence algorithm called APG (ANFIS-PSO-GA
hybrid algorithm). By combining ANFIS (Adaptive Neuro-Fuzzy Inference System) with
population-based algorithms, including the genetic algorithm and the particle swarm op-
timization algorithm, the APG algorithm was developed for comprehensive evaluation.
Although using AI (artificial intelligence) has facilitated modeling the behavior of FRC,
lack of data and time-consuming analysis were limitations of the work. The experimental
test data were divided into five subdatasets to thoroughly analyze the performance of the
algorithms. Based on the achieved results, several important conclusions were drawn.

• Firstly, it was observed that fibers play a significant governing role in the flexural
behavior of fiber-reinforced concrete (FRC), especially at elevated temperatures. The
incorporation of fibers in concrete enhances its strain capacity, impact resistance,
energy absorption, wear resistance, and tensile strength, which are crucial properties
for various engineering applications.

• Among the mechanical properties of FRC, the flexural load was identified as the
most influential factor. The APG algorithm successfully predicted the deflection and
flexural characteristics (flexural load and flexural toughness) of FRC. Notably, flexural
toughness was found to be directly related to the mechanical properties of the fibers.

• The findings highlight the importance of evaluating the fiber content and fiber elasticity
to design suitable FRC samples with desired properties. The proper selection and
evaluation of fibers are essential for achieving the desired mechanical performance
and behavior of FRC under different conditions.

• The APG algorithm demonstrated superior performance and accuracy in estimating
the flexural properties of FRC compared to the ANFIS-PSO algorithm. The successful
application of the APG algorithm paves the way for further studies to predict and eval-
uate other properties of FRC, such as compressive strength, using the same approach.
Additionally, exploring the combination of population-based heuristic algorithms with
Convolutional Neural Networks presents another promising avenue for challenging
and enhancing prediction results.

In conclusion, this study presents a novel and effective approach to evaluate the
behavior of fibrous concrete under elevated temperatures using the APG algorithm. The
results demonstrate the importance of fibers in influencing the flexural behavior of FRC
and provide valuable insights for designing and optimizing FRC compositions for specific
engineering applications. The successful application of the APG algorithm in predicting
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flexural properties opens up new possibilities for material characterization and structural
analysis in the field of civil engineering. For future research, the suggested extension of
the APG algorithm to predict other properties of FRC and explore hybridization with
Convolutional Neural Networks promises to further advance the understanding and
application of artificial intelligence in concrete technology and structural engineering.
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