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Abstract: Precast prestressed concrete hollow-core slabs (HCUs) are structural elements with less
self-weight, providing improved structural effectiveness in withstanding the straining action and
allowing for a long span. This study investigated the additional strand slips and developed machine
learning (ML) models for evaluating the final strand slips (Śf) of the precast HCUs. Two groups of
HCUs, with nominal widths of 1.2 m and 0.55 m, were subjected to flexural loading conditions. One
sample from each group was selected to form composite specimens by casting a concrete topping
slab, and the restrain mechanism was attached at the ends of the additional HCU specimens. The
experimental datasets used to train the ML models, including the support vector machine (SVM),
multi-linear regression (MLR), and improved eliminate particle swamp optimization hybridized
artificial neural network (IEPANN) models for the prediction of Śf. The efficacy of the IEPANN
model compared to the nonlinear predictive models was evaluated, and the performances of the
developed ML models were checked using the evaluation matrices. The results indicated that the
prestressing strands with relatively higher initial strand slips may result in larger additional slips
during flexural loading. The restraining mechanism and cast-in-place topping slab influenced the
additional strand slip rate. The hybridized IEPANN model outperformed other classical models
in estimating the additional slips with the R2 values greater than 0.9 in the two modelling stages,
indicating the efficacy of the IEPANN compared to the nonlinear predictive modes.

Keywords: machine learning; hollow-core slabs; prestressing strand; flexural loading; precast concrete

1. Introduction

Prestressed concrete hollow core slabs (or planks) have been used in many buildings,
especially in industrial buildings. The precast slabs are easy to produce and maintain, and
cost-effective, and thus, they provide aesthetic architectural values [1]. Less construction
time and a high degree of quality can be achieved due to the fast erection time of the precast
concrete components and steel frames. Moreover, the usage of hollow-core slabs helps to
reduce the dead weight of the structure, which benefits the design of the foundations and
columns [2]. Prestressed concrete allows for a longer span than ordinary reinforced concrete.

For certain conditions, machine processes for making HCUs may sometimes prepare
concrete with inadequate compaction levels or some paste formation around the preten-
sioned strand, resulting to a weak bonding capacity, which indicates excessive initial strand
slips during the transfer of the prestressing force along the transverse saw-cut precast
products. Moreover, the manufacturers often face with the problems of investigating the
influence of that slip on the structural capacity of the precast component. Over the decades,
several studies have been carried out on the hollow-core slabs [3–7], confirming that excess
initial strand slips have significant effects on its capacity. According to Anderson and
Anderson [6], the amount of the “free end slip” is strongly correlated to the transfer and
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flexural bond strength and can be used as a precise indicator of the transfer length when
the prestress transfer is considered to be carried out linearly. As a result, the transfer length
equation of the ACI 318-83 commentary can be used to directly determine the allowed
free end slip [8]. Hence, to limit the prestress transfer length and confirm with the ACI
code value, depending on the diameter of the prestressing strands, initial and final levels of
prestressing, the equation by Anderson and Anderson [6] restricts the permissible initial
strand slips to a range of roughly 1 to 3 mm. Moreover, analytical and prediction equations
were developed to evaluate the prestressing transfer length in pretension and prestressing
concrete elements [9–12].

The geometric and material properties are the determining factors for the bond be-
tween concrete and steel strands. In many researches, the transfer length of prestressed
concrete components is based on the concrete properties and steel geometric properties
among the factors affecting the transfer length and bond include the nominal diameter and
ultimate tensile strength of prestressing strands, the relationships between the initial and
ultimate tensile strengths of prestressing strands, prestressing strand numbers within the
member cross-sections, vertical strand spacing, type, length and depth of beam sections,
concrete compressive strength at transfer, method of release, beam length, end zone type of
the member, amount of fibers in the concrete, coat of strand surface, and type of concrete
whether light or normal weight [12,13]. However, it is still unclear how these parameters
affects the transfer length, but researchers are still studying some parameters [13]. Several
parameters affect the transmission length, including the section size, bond condition, con-
crete cover, initial or effective prestress, concrete strength, release type, tendon type, the
diameter of the prestressing steel, and initial or effective prestress [14–18].

It is clear that several studies have been conducted using AI-based models for en-
gineering problems and yielded a positive results, and individual models had applied
to a specific scenario, although there is no superior model applicable to all case stud-
ies [19–26]. Therefore, using the concept of ensemble techniques resulting from having
more accurate outcomes. The ensemble method have been employed in man engineering
field [27–33]. Dogan and Arslan [34] developed different machine learning algorithms
to evaluate punching shear capacities of concrete slabs modified with fiber reinforced
polymers and compared the results with the existing building code provision. The authors
reported that the prediction values from the building code were more conservative than
the experimental results, and the support vector regression (SVR) model outperformed
the others five developed model for the prediction of punching shear. Sharghi et al. [35]
developed an ensemble model for spatiotemporal assessment of groundwater depletion
in semi-arid plains. Chou and Nguyen [28] predicted the mechanical properties of rein-
forced concrete using metaheuristics-optimized ensemble techniques and reported that
the technique was highly promising for predicting the structural behaviors of reinforced
concrete beams. Liang et al. [29] developed three ensemble models, including Random
Forest (RF), Extreme Gradient Boosting Machine (XGBoost), and Light Gradient Boosting
Machine (LGBM), for modeling the creep behaviors of concrete. Nageh et al. [36] selected
optimum variables for the classification of failure patterns of RC bridge columns. Joo
et al. [11] proposed an analytical model to predict the shear strength of prestressing HCUs
containing core-filling concrete and calculated the shear demand of prestressed HCUs
and filled cores based on the nonlinear flexural analysis. The results indicated that the
shear strength decreased with the stiffness of the interfacial shear stress–slip relationship
between the HCU and filled core reduced. Moreover, the developed model predicted the
shear contribution of HCUs and filled core. Arslan et al. [37] carried out experimental
and numerical studies on the reinforced concrete slabs to investigate the effects of plas-
tic circular balls placed in the midsection of reinforced concrete slabs. Basic parameters
including strength, thermal ductility, and acoustic performance were investigated in the
study. Dang et al. [12] estimated the transfer length (TL) of a prestressed concrete strand,
which was determined using concrete surface strain together with the maximum strain
method. It was deduced from this work that ACI and AASHTO codes can be used for
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the estimation of the TL. Kankeri et al. [38] developed a finite element model to predict
the precracked behaviors of HCUs strengthened with near-surface mounting. Alhassan
et al. [13] used ANN techniques on prestressed concrete stands, which is presently the only
literature available during this research that studied prestressed strands using ANN model.
Souza et al. [39] analyzed the shear strength of prestressed HCUs supported on shallow
beams using a computational model. The parametric investigation was also conducted
to determine the infill effects of the hollow core ends and the support stiffness of steel
beams on the shear capacity of slabs. Abdelatif et al. [40] developed models to stimulate the
prestress transfer forces from reinforcing and prestressing steel in pretensioned concrete
elements. Therefore, investigating the addition strand slip in precast prestressed HCU
under high-intensity loads, as in the case of parking places and bridges is essential. The
main aim of this study is to evaluate the final prestressed strand slips of precast concrete
hollow-core slabs subjected to flexural loading. The additional strand slips at the two ends
of HCUs due to the application of flexural loadings were experimentally measured, and
then the final strand slips were computed. Moreover, the application machine learning
algorithms, including the hybrid model, namely the improved eliminate swam particle
optimization hybridized artificial neural network (IEPANN) and classical models, such
as support vector machine (SVM) and multilinear regression (MLR), were employed to
predict the final strand slips. The prediction skills can prevent the need for conducting
high-cost experiments and save time.

2. Strand Slip Theory

Section 12.9 of ACI 318-83 Building Code Requirement for Reinforced Concrete [8]
specified that development length ld should not be less than

ld = ( fps − 2
fps

3
)db (1a)

The equation can be simplified as

ld = lt + lb =
fps

3
db + ( fps − fse)db (1b)

where lt denotes the prestress transfer length, lb is the flexural bond length, ld is the
development length based on the ACI code, db is the nominal diameter of prestressing
strands, f ps is the stress in prestressing strands after transfer, and f se is the effective stress
in prestressing strands.

Therefore, large initial end slips are the results of the transfer of prestress forces, and
thus, a large length may occur. However, strand slip theory assumes that the initial strand
slip from the concrete saw-cutting face translates the concrete bond quality. Hence, the
transfer length and flexural bond are closely correlated with the end slip. The recorded
initial end slip (σ) is associated with the strand force by assuming a linear increment of the
force, as depicted in Figure 1. The average force of the prestressing strands in the transfer
area, Pt(aveg) = Pt/2, is associated with the end slip through the strand strains

σ =
Pt(averg)li

ApsE
=

Ptli
2ApsE

(2)

where Aps is the area of strand in the tension zone, E is the elastic modulus of prestressing
strands, σ is the recorded initial slip at the end of the HCU, and Pt is the maximum force in
strands following transfer.
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By rearranging Equation (2) and including the steel stress fst = Pt/Aps, the transfer
length can be expressed as

li =
2σApsE

Pt
=

2σE
fst

(3)

When li from Equation (3) is greater than lt from Equation (1b), it can be assumed that
the strand end slip is higher than the allowable value, (σall) and it can be found by equating
lt to li

σall =

(
1
6

)
fse fstdb

E
(4)

The allowable end slip is described as the initial strand slip at the saw-cut end of
the hollow-core slab, resulting in a transfer length equivalent to that calculated by the
steel stress.

3. Materials and Methods
3.1. Materials
3.1.1. Precast Prestress Concrete HCU

The prestressed concrete HCUs used in this study were obtained from the local precast
concrete manufacturer in Ankara, Turkey. Two different sizes of HCU specimens were
adopted in this study, three HCU samples with a nominal width of 1200 mm and two
HCU samples with a nominal width of 550 mm, and all the HCUs had a depth of 150 mm,
pretensioned with 9.5 mm diameter 7-wire strands. The HCU specimens with the 1200 mm
width were reinforced with 8 No. of prestressing strands, while the narrow specimens were
reinforced with 4 No. of prestressing strands, as shown in Figure 2. Table 1 summarizes the
physical properties of the HCU specimens used in this study, and the geometric details are
depicted in Figure 2.
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Table 1. Properties of Hollow-Core Units.

Specimen ID No. of Prestressing
Strands Specimen Width (mm) Cast-in-Place Slab Depth of Cast-in-Place

Slab (mm)

HCU-WB 8 1200 - -
HCU-WT 8 1200 Yes 50
HCU-WT-R * 8 1200 Yes 50
HCU-NB 4 550 - -
HCU-NT 4 550 Yes 50

* Two ends of the cast-in-place concrete in the specimens were restricted. HCUs with W represent the specimens
with 1.2 m width, N represents the specimen with a narrow width of 0.55 m, and the specimens attached with T
and B were tested with and without topping slab, respectively.

3.1.2. Cast-in-Place Concrete Topping

Ordinary Portland cement (Grade 42.5R) was used to prepare the concrete with target
compressive strength of 30 MPa, cast on the top of the machine-finished surface of the
precast prestressed HCUs to serve as the topping slab to form the composite specimens. For
this reason, three specimens were selected from the two groups. To achieve sufficient bond
strength at the interface between the HCUs and concrete topping slabs, the top surfaces
of the HCUs were cleaned adequately using compressed air and slowly applied water to
provide moist conditions. The mix w/c ratio of 0.5 was adopted for the concrete. To prevent
crack propagation and temperature effect, cast-in-place topping slabs were reinforced and
6 mm diameter steel bars were placed at 150 mm center to center inside the concrete. Table 2
shows the mixed proportion of the cast-in-place concrete topping slab. The natural river
sand with a maximum particle size of 4.75 mm was used as fine aggregate. The coarse
aggregate and medium size aggregates were obtained from crushed natural stone. Coarse
aggregate had a maximum particle size of 16 mm, while the medium size aggregate had a
particle size ranging between 5 mm to 9.5 mm. To prepare a cast-in-place top slab, smaller
particle size aggregates were essential in achieving better bond strength at the interface of
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the composite specimens. Therefore, medium-size aggregates were introduced in the mix
with a higher amount than coarse aggregate, as shown in Table 2.

Table 2. Mix design of the topping slabs.

Material Sand Medium Aggregate Coarse Aggregate Cement Water Superplasticizer

Amount (kg/m3) 900 600 400 400 200 3

3.2. Testing Procedure

The HCU specimens were subjected three-point bending, and the load was applied at
the midpoint of the 4.6 m span. The applied load was distributed throughout the whole
width of the sample using a steel spreader beam, and roller supports were attached at
each end of the span. The experimental test setup for determining the additional strand
is depicted in Figure 3. To achieve a uniform load transmission from the spreader beam
to the HCU test samples, a strip of neoprene pad was placed between the spreader beam
and the top surface of the specimens. A 300 kN hydraulic jack with a load cell and a
swivel mechanism was fixed on the top of the spreader beam to apply the load under load-
controlled conditions. Tests were conducted using the step force loading that increased
gradually until failure. Each load step had a 10 kN, and each step had some holding time
after loading.
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The HCUs were equipped with displacement meters, and a data collecting system was
employed to simultaneously record the data from the displacement transducers and the
load cell during the load testing. To measure the deflection, two displacement transducers
were positioned at the midspan. Four displacement transducers were placed at each end
of specimens to measure the additional strand slips during the load tests, as shown in
Figure 3. Moreover, restraining devices were installed to the two ends of the HCU-WTR
specimens using steel channel sections and clamped on the top and bottom surfaces of the
specimens to control the relative slides between the topping slab and the HCUs. Steel plates
and threaded rods were employed to provide restraints against the slips of the concrete
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topping slabs. Finally, the flexural load was steadily applied to the test specimens until
they completely failed in flexure, with evident extensive cracks on the test specimens.

4. Artificial Intelligent-Based Model

This study applied two classical ML models, including SVM and MLR. Moreover, an
optimization algorithm referred to as the improved eliminate particle swamp optimization
(IEPSO) was applied to improve the weight and bias of the ANN model and transformed
to a hybrid model called IEPANN. Both classical and hybrid models employed to train and
test experimental datasets. The datasets were randomly arranged and split into training
and testing portions. The training set accounted for 70%, and the remaining was used for
testing. The experimental dataset for modelling the final strand slips included the ultimate
load, initial deflection, cross-sectional area of the strand, HCU width, and initial strand slip
as the potential input parameters, while the final strand slip was simulated as the output
parameter, as shown in Table 3.

Table 3. Descriptive statistic dataset.

Direction Parameter Symbols Unit Min Max Mean SD Kurtosis Skewness

Inputs Ultimate load Pult kN 26.300 83.700 62.263 19.305 −0.773 −0.649
Initial deflection δcr mm 4.200 8.400 6.295 1.386 −0.851 −0.339
Area of strand As mm2 219.20 438.40 383.60 95.667 −0.622 −1.182
Width of HCU b m 0.550 1.200 1.037 0.284 −0.622 −1.182
Initial strand slip Śi mm 0.00 21.00 2.932 3.536 13.180 3.462

Output Final strand slip Śf mm 0.100 24.90 4.205 5.046 7.264 2.725

4.1. Artificial Neural Network (ANN)

The ANN is a machine learning model for data analysis using a decision-layers
network. This ML comprises a processing element set connected by a synaptic weight
known as neurons. As seen in Figure 4, the ANN model structures consisted of input,
hidden, and output layers. The output for the neurons was produced by multiplying
the inputs by a modified weight and sending it through a transfer function [41]. The
network trained the dependent and independent parameters, and thus the best weight was
computed through the learning practice. Figure 4a shows the neurons that collect the input
out parameters, and the Net is the sum of the computed weight and bias in the individual
neuron, which can be expressed as [42].

Net =
n

∑
i=1

wijxi + bi (5)

The hyperbolic tangent function was used for better prediction skills. It has function
values from −1 to 1, and it is given in Equation (6).

y = f (Net) =
2

1 + e−2net − 1 (6)

The technique is applied to each layer of the multilayer perception until the output
signal in the final layer is obtained. The weights and biases in the whole multilayer
perception are updated to compute and minimize the errors of the ANN.
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4.2. Support Vector Machine (SVM)

SVM is the machine learning model capable of obtaining reliable solutions to predic-
tion, classification, regression, and pattern recognition [43]. It was invented by Cortes and
Vapnik (1995), and the model was characterized by two essential functions, including risk
minimization and statistical learning theory, which make it excellent from other artificial
intelligent models. There are four alternative approaches utilizing kernel functions in SVM,
including linear, sigmoid, polynomial, and radial basis functions. Due to the robustness
of the kernel function to simulate complex nonlinear functions [44], it was applied in our
study. In the SVM, linear regression was fitted on the data where the nonlinear data were
obtained in a nonlinear kernel. The data set is given by {(xi, di)} N

i where xi is the input
vector, di is the actual value, and N is the total number of data patterns. Equation (1)
presents the general Support Vector Machine’ function:

y = f (x) = wφ(xi) + b (7)

4.3. Multilinear Regression (MLR)

MLR estimates the linear regression between the dependent variable, expressed as y,
y ε Rn × 1, and the independent variables expressed as X, X ε Rn × m [45]. Equation (8)
present the mathematical expression of MLR model.

y = c0x0 + c1x1 + c2x2 . . . . . . .cnxn = ∑n
i=1 cixi = cTx (8)

where c0 c1. . .. cn are the partial regression coefficients of the model. The solution of the
MLR model follows the least-square method presented in Equation (9). However, the
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fitness of the model was determined by squaring the difference between the measured
value Z and the value predicted.

Z = (y− Xc)T(y− Xc) (9)

4.4. Improved Eliminate Particle Swarm Optimization (IEPSO)

The improved eliminate particle swarm optimization was invented by Lv et al. [46]
following the principle of last-eliminate to improve the personal–global information sharing
capacity and global optimization efficacy. IEPSO is an extension of the standard PSO.
Similar to the standard PSO, Equation (9) expressed the updated positions and velocities of
individual particles in the solution space.
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where k has defined the controlling factor, and has values of −1 and +1 for linearly 
increasing and linearly decreasing functions, respectively, c3i is the initial value of c3, c3j is 
the stopping value of c3, t represents the iteration number, and tmax is the peak number of 
iterations. 
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The standard PSO algorithm updated velocity is represented in the terms shown in
Equation (10). The term φ3 is the PSO extension, known as the personal–global information
sharing term. In contrast to the normal PSO, the IEPSO is not restricted to only one-way
information exchange between the individual particles and the global best particles. The
value of c3 was chosen based on two criteria. If c3 is assumed to be a constant, then c3 = 2.
Equation (11) is used to determine c3 when continuous values are assumed.

c3 = k
[(

c3i − c3j
)
× t

tmax

]
(11)

where k has defined the controlling factor, and has values of −1 and +1 for linearly in-
creasing and linearly decreasing functions, respectively, c3i is the initial value of c3, c3j is
the stopping value of c3, t represents the iteration number, and tmax is the peak number
of iterations.

4.5. Improved Eliminate Particle Swamp Optimization Hybridized Artificial Neural
Network (IEPANN)

The IEPANN is a hybrid model established through the optimization process of the
ANN and IEPSO to estimate the final prestressing strand slip subjected to three-point
bending loading. The experimental dataset was split into training and testing sets. The
normalization process was performed on the dataset to improve its integrity and remove
the inconsistency-related dimensions among the datasets. Equation (12) was used for
normalization techniques.

ynorm =
y− ymin

ymax − ymin
(12)

where ynorm donates the normalized data value, y, ymin, and ymax are the observed, maxi-
mum and minimum data, respectively.

In addition, Equations (9) and (10) present the modelling method of the IEPANN
technique, which is systematically illustrated in Figure 5, and is used to train the ANN
through the IEPSO. Initializing random particles was the first step in the learning process.
and their positions are representatives of the weight and bias of the ANN, which are
randomly allocated. The IEPANN is trained based on the initial weight and bias, and
thus computes the MSE between the measured and predicted parameters. The model
efficacy was enhanced by modifying the particle positions and reducing the MSE gently
in each iteration. Pbest and Gbest are chosen to determine and update new velocities in
each iteration. The inferior particles are removed and substituted with the new ones if the
revised velocities Vi

k+1 and Xi
k+1 surpass the boundary range. The optimization process

is conducted in accordance with the procedure until the termination requirements are
satisfied. Lower MSE or maximum iterations could be the criteria for stopping. The model
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performance depends heavily on the choices of the hidden layers and neurons. Some
studies [47,48] suggest that a hidden layer is effective for a different regression model,
although there is no precise technique for determining the number of the hidden layers in
the ANN model.
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4.6. Evaluation Matrices

Five performance indicators were used in this study to assess the AI-based model
performance. These included R2, MAE, RMSE, MAPE, and RI, as summarized in Table 4.
As a result, the best developed model is selected based on the accuracy level noted in the
aforementioned matrices.
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Table 4. Evaluation matrices.

Matrix Formula Description

R2
[

∑n
i=1 (qi−q)(pi−p)

∑n
i=1 (qi−q)2∑n

i=1 (pi−p)2

]2 R2 is frequently used as a performance metric to describe how well a model
predicts a given variable. Its value is a number between 0 and 1 [21,24].

MSE 1
n ∑n

i=1 (qi − qi)
2 The statistical inaccuracy demonstrates the effectiveness of the model. High

prediction accuracy is indicated by the MSE value being close to zero.

RMSE
√

1
n ∑n

i=1 (qi − pi)
2 This shows the difference between the predicted and observed values. When

the RMSE value approaches 0, better performance is attained.

MAPE (%) 1
n ∑n

i=1

∣∣∣ pi−yi
yi

∣∣∣ × 100
This presents the percentage errors, the MAPE shows how well the model
could forecast the observed values. The lower percentage shows a more
accurate algorithmic prediction [49].

RI MAE+RMSE+MAPE
3 RI is a function of three errors that have been standardized.

5. Results and Discussion
5.1. Failure Modes of the HCUs

Figure 6 shows the failure modes of the HCUs under three-point bending tests. The
hollow-core unit typically developed a minor first crack under loading conditions towards
the bottom of the loading point. The tension zone developed additional cracks as the
load increased. On continuous loading, concrete crushing occurred in the upper portions
of the HCUs, close to the midspan section, until the HCUs completely failed. At this
point, non-composite specimens (HCU-WB and HCU-NB) revealed web shear failure,
as shown in Figure 6a,b. The HCU specimens with concrete topping slabs (composite
HCUs) exhibited excessive slips at the interface, as shown in Figure 6b,d. Additionally, on
each side of the composite specimen at the maximum cracking force, vertical separations
between the HCU and topping slab occurred. At the same time, the other side did not
reveal vertical separations. The vertical separations in the HCU-NT specimens were more
pronounced than those in the HCU-WT specimens. This is may be attributed to the widths
of the specimens.
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5.2. Additional Strands Slip

The strand slips at the ends of HCUs were noticeable before loading. These strand
slips can be obtained on the prestressing members under a non-serviceability state, and they
occurred during the saw-cut of prestressing members, which are referred to as the initial
slips. Past studies suggested that high initial strand slips are an indication of low concrete
quality and inadequate compaction level, which lowers the flexural and shear strength
of HCUs [50,51]. Before loading the HCU specimens, the initial strand slips after the
saw-cut from the manufacturer were measured at the ends of HCUs. The final prestressing
strand slips were determined at the two ends of individual prestressing strands in the
HCU specimens. The initial slip values in most of the strands were in the range of 2 and
3 mm. However, an initial strand slip of 21.0 mm was obtained in one of the strands of the
HCU-WB specimen at the south end with a peak final slip of 24.9 mm. The knowledge
of prestressing strand slips is typically restricted to free-end slip measurements that are
utilized to calculate the transmission length using Guyon’s theory [52]. The results indicated
that the prestressing strands with relatively higher initial strand slips may result in larger
additional slips during flexural loading. The additional strand slips were computed at the
two ends (south end and north end) as specified in Figure 3, displaying the instrumentation
of the strands at the south ends. From Figure 7, it can be seen that the prestressing strands
in the HCU samples exhibited difference levels of additional slips due to the existing initial
slips. The HCU-WB specimens exhibited a maximum average additional slip of 4.49 mm at
the south ends for all HCU specimens. Some specimens showed greater additional slips at
one end compared to the other end, as shown in Figure 7a. The additional strand slips for all
strands at the south end were higher than those of the corresponding north end. In contrast,
the additional strand slip values at the south end of the HCU-WTR specimens were higher
than those of the north end. Some specimens demonstrated comparatively equal additional
strand slips at the two ends in most of the prestressing strands, as indicated in Figure 7b,e.
Moreover, prestressing strands in specimen HCU-NT revealed no additional strand slips at
the ends of the majority of its strands.

Figure 8 shows the relationships between the additional strand slips and midspan
deflections for the five testing conditions. The plots represent other strand slips, and one
prestressing strand from each specimen was considered. The developments of strand slips
varied according to the testing conditions during loading. From Figure 8a, at the initial
loading, the slip increased gradually with the increasing deflection until the initial crack
occurred, and then the strand slip increased rapidly with the increasing deflection. The
horizontal line appeared in the strain slip vs. deflection curve shown in Figure 8a was due
to the sudden released of the applied load, and this did not affect the overall results. The
effect of the topping slab on the strand slip was noticed on the HCU-WT specimen. In
this specimen, the additional strand slip was not effective until the specimen reached a
significant deflection level. After that, rapid strand slip occurred due to the loss of the bond
strength between the HCU and topping slab, as shown in Figure 8b. The HCU specimen
restrained at its two ends displayed a systematic increase in the strand slip. The strand slip
was observed when the deflection was about 40 mm, and then the slip continued to increase
with the increasing deflection until the complete failure of the specimen. The maximum slip
value of 9.1 mm was recorded in the strands considered for HCU-WB, which was 139.5%
and 184.4% higher than those of the strands in the HCU-WT and HCU-WTR specimens,
respectively. This result indicates that the topping slab and restrain mechanism significantly
affected the slip values obtained in the prestressing strands when subjected to loading
conditions. In addition, this also determines the load carrying capacity of the structures.
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Figure 8d,e show that sudden slips were obtained in the strands considered for the
HCU-NB and HCU-NT specimens. Due to the smaller width of the specimens, both HCU-
NB and HCU-NT specimens demonstrated sudden strand slips. As can be seen, maximum
slip values recorded on these strands were very small, approximately less than 0.2 mm in
the failure stage of the specimens. Generally, comparing the narrow specimens (HCU-NB
and HCU-NT) with larger specimen widths (1.2 m), it can be noted that higher strand slip
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values were obtained in the prestressing strands of the HCU-WB, HCU-WT, and HCU-
WTR specimens, exhibiting higher load-carrying capacities. The performance properties of
non-composite specimens are summarized in Tables 5 and 6, which shows the observed
physical and flexural characteristics of the HCUs obtained from the experimental program.

Table 5. Performance properties based on the experimental results of the HCU-WB specimens.

Properties Symbol Calculated Value Unit

Area A 113,300 mm2

Moment of inertia I 289.8 × 106 mm4

Modulus of elasticity E 31,000 MPa
Top centroid yt 76.6 mm
Bottom centroid yb 73.4 mm
Eccentricity e 23.4 mm
Transformed moment of inertia Itr 291 × 106 mm4

Area of steel As 438.4 mm2

Initial prestressing after losses p 550 kN
Initial prestressing force fPi 611.5 kN
Stress in prestressing steel in flexure fps 1718 MPa
Initial cracking load Pcr 34 kN
Cracking moment Mcr 39.1 kNm
Ultimate load capacity Pult 51 kN
Deflection at cracking load δcr 7.6 mm
Max deflection δmax 157.6 mm
Interface slip at max. deflection E 13.7 mm
Compressive strength CS 30 MPa
Interface shear strength τ 0.22 MPa

Table 6. Performance properties based on the experimental results of the HCU-NB specimen.

Properties Symbol Calculated Value Unit

Area A 56,700 mm2

Moment of inertia I 138.3 × 106 mm4

Modulus of elasticity E 31 × 103 MPa
Top centroid yt 73 mm
Bottom centroid yb 77 mm
Eccentricity e 27 mm
Transformed moment of inertia Itr 139.3 × 106 mm4

Area of steel As 219.2 mm2

Initial prestressing after losses p 258.13 kN
Initial prestressing force fPi 305.78 kN
Stress in prestressing steel in flexure fps 1395 MPa
Initial cracking load Pcr 13.4 kN
Cracking moment Mcr 34.4 kNm
Ultimate load capacity Pult 26.3 kN
Deflection at cracking load δcr 6.3 mm
Max deflection δmax 165 mm
Interface slip at max. deflection E 13.7 mm
Compressive strength CS 30 MPa
Interface shear strength τ 0.26 MPa

6. AI-Based Modelling Results

AI-based model is the most widely used technique for solving several engineering
problems, such as classification, prediction, pattern recognition, and regression problems.
With the aid of a predetermined architecture, an AI-based model was used to develop
predictions based on the input data and learning type. This study compared the efficacies
of the two classical models (MLR and SVM) and the hybrid IEPANN model for predicting
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the final prestressed strand slips of precast prestressed HCU specimens under flexural
loading conditions.

6.1. Optimal Input Parameters Selection

The choice of the input parameters in developing any model is critical for achieving
accurate prediction skills. Therefore, including unfitting parameters in the modelling
and resulting to the reduced performance accuracies will cause the high computational
tasks [36,53]. Nevertheless, insufficient input parameters can lead to the reduced estimation
accuracy. Thus, Pearson correlation was utilized in our work to decide on the most
important input parameters for estimating the final strand slips of the HCU slabs subjected
to flexural loading. Figure 9 shows the results of sensitivity analysis involving the potential
input and output parameters. The analysis showed that the initial strand slip is the most
sensitive parameter for predicting the final strand slip (Śf). All others input parameters
demonstrate lower correlation coefficient values with the output parameters.
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The frequency distributions of the dataset utilized to estimate the final strand slips
of the HCU slabs under flexural loading are shown in Figure 10. The figures showed that
potential datasets did not follow the normal distributions. The frequently used values of
the ultimate cracking load ranged from 70 kN to 90 kN. Most of the initial crack deflections
were between 6 and 7 mm, and the strand area and width of the HCU-WBs were used. The
most frequently used initial and final strand slip values were between 0.1 and 5 mm.

The MATLAB (2021a) toolbox (Machine learning) was used to develop the classical
and hybrid models. The validation of the classical model was carried out using a 10-fold
cross-validation technique [22,24]. The models used were the trained and tested dataset.
The performances of the models were determined using the evaluation metrices and are
summarized in Table 7. As shown in Table 7, all the developed models estimated the strand
slips with high accuracies in the two modelling stages with the R2 values > 0.8. Moreover,
the IEPANN outperformed the other classical model in forecasting Śf in the precast HCUs
with the R2 values of 0.9168 in the training phase and 0.9701 in the attesting phase. The
normalized RI values were used to assess the performances of both the classical and hybrid
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models because the other evaluation indicators might not effectively reflect the combined
errors of the developed models. As can be observed, the hybrid IEPANN model performed
best in the training and testing phases with the RI values of 1.31 and 0.4651.
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Figure 10. Distribution curves of the experimental dataset. (a) Ultimate clacking load (kN); (b) Initial
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Table 7. Developed model performance result.

Models Phase R2 MAE RMSE MAPE RI

SVM Training 0.8226 0.0438 1.1237 4.379 1.5321
Testing 0.9293 0.0236 0.0247 2.365 0.8043

MLR Training 0.8364 0.0491 1.0903 4.908 2.0159
Testing 0.8949 0.0361 0.3635 3.613 1.3375

IEPANN Training 0.9168 0.0381 0.0826 3.802 1.3100
Testing 0.9701 0.0138 0.0004 1.138 0.4651

6.2. Classical Model

Figure 11 shows the scatters between the measured and predicted values in the training
phase. The data points were converged along the fitting lines of the models, resulting in
better goodness of fit. The dotted lines on both sides represent the confidence intervals of
±10%. Comparing the R2 values of the single models as shown in Figures 11 and 12, all
the models predicted the strand slips with high accuracies, and the SVM outperformed
the other single models with the R2 values of 0.8226 in the training phase and 0.9293 in
the testing phase. However, the R2 value in the training phase of the MLR was higher
than that of the SVM. The training dataset of the SVM model revealed higher RMSE and
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MAPE values than the MLR models. They are relatively high, translating large dispersions
between the predicted and actual values. This result is attributed to the nonlinear behaviors
of the dataset, which were unable to predict the strand slips with high accuracies using
simple linear models. Generally, the prediction skills of the classical model in the testing
phase were greater than those in the training phase, as shown in Figure 12.
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6.3. IEPANN

To develop the IEPANN model, this study implemented one hidden layer of the ANN,
as recommended in some previous studies [47,48]. Therefore, a trial run with two to nine
neurons achieved the optimal neuron number. The model was trained using Levenberg–
Marquardt back-propagation techniques, with Purelin in the output layer and Tansig in
the hidden layer. The general operating theory of the ANN model for estimating the Śf is
expressed as

τ = purelin

{
bx +

5

∑
j=1

[
wj × Tansig(bhj +

5

∑
i=1

wij Ij)

]}
(13)

where bx and wj are the bias in the output and the weight joining the jth neuron in the
hidden and output, wij is the weight of the connection between the ith input parameter and
the neuron in the hidden layer, bhj is the bias in the jth neuron of the hidden neuron, and Ii
is the input parameter i.

Figure 13 shows the performances of the IEPANN model. It can be observed that the
IEPANN technique exhibiting five neurons in the hidden layer (5 × 5 × 1) outperformed
the other single models with the R2 values of 0.9168 in the training phase and 0.9701 in the
testing phase, with the lowest MSE values of 0.0836 and 0.0299, respectively. The structure
of the optimal IEPANN is shown in Figure 14.
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Subsequently, the learning approach was to optimize the ANN weight and bias
with the IEPSO. In this process, parameters such as population size, velocity coefficient,
inertia weight, the local–global information sharing parameter, and stopping criteria were
optimized in the ANN model. The coefficients of the velocities V1 and V2 are described
according to [54], as given in Equation (14) below.

V1 = λφ1, V2 = λφ2, λ =
2

ϕ− 2
√

φ2 − 4φ
, φ = φ1 + φ2 (14)
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The construction coefficient φ1 = φ2 − 2.05, the dumping ratio = 1, and w = 0.7280,
with the upper bound velocity of −5 and the lower bound velocity of 5, respectively.
Equation (10) was used to determine c3. Moreover, different swarm sizes were explored in
this study to obtain the optimal size. Swarm sizes of 100, 150, 200, . . .., 300 were adopted.
The maximum iteration of the IEPSO approach was regarded as its criterion for stopping.
The sensitivity study showed that the MSE value remained constant after 150 iterations,
which was thought to be the optimal iteration. The right swarm size was selected based on
these iterations, considering the R2 and MSE values. Therefore, the IEPANN model having
120 populations exhibited the highest R2 and lowest MSE values in the two modelling
phases, and thus considered the optimal model.

Figure 15 presents the scatters between the experimental and predicted results obtained
from the IEPANN model in the modelling phases. As shown in Figure 15, good agreements
between the measured and predicted values were achieved, and data points were close
to the fitted lines. The prediction skills of the IEPANN model in the testing phase were
higher than those in the training phase. This is similar to the results obtained in the
two single models, which is attributed to the dataset involved in the modelling in the
testing phase. Moreover, the overall performances of all developed models were provided
for comparisons, as depicted in Figure 15c, which defined the relationships between
the observed and predicted values for individual models. The predicted data points
were close to the actual data, indicating the effectiveness and accuracy of the developed
model, particularly the IEPANN model, for predicting the final prestressing strand slips
considering the nonlinearity relations between the input parameters and strand slips. In
the related study by Alhassan et al. [13], which determine the optimal prediction of the
transfer length (TL) of prestressing strand based on the ANN model, the results showed
the ANN predicted the TL with high prediction skills with all R2 values greater than 0.9.



Buildings 2023, 13, 2013 21 of 26

Buildings 2023, 13, x FOR PEER REVIEW 22 of 27 
 

 

  

 
Figure 15. Scatters between the measured and predicted strand slips for the IEPANN model in: (a) 
training phase, (b) testing phase, (c) all developed models for overall datasets. 

To provide an explicit equation for the final strand slip (Śf), Equation (15) is modified 
by computing and substituting the optimum weight and bias of the trained IEPANN 
model. 

1 2 3 4 524.9(0.320 0.540 0.698 0.598 2.622 2.127) 0.1y y y y yτ = − − − + + +  (15)

where y1, y2, …, y5 are determined using the input variables as: 

1 (-0.496 0.507 0.610 3.951 0.279 0.237)ult cr s iy Tansig P A bδ ζ= − − − − − (16)

2 (-0.914 -2.478 -1.282 1.127 -2.230 -0.519)ult cr s iy Tansig P A bδ ζ= +  (17)

3 (0.861 4.799 -1.216 - 0.807 - 0.302 - 04.245)ult cr s iy Tansig P A bδ ζ= +  (18)

Figure 15. Scatters between the measured and predicted strand slips for the IEPANN model in:
(a) training phase, (b) testing phase, (c) all developed models for overall datasets.

To provide an explicit equation for the final strand slip (Śf), Equation (15) is modified
by computing and substituting the optimum weight and bias of the trained IEPANN model.

τ = 24.9(0.320y1 − 0.540y2 − 0.698y3 − 0.598y4 + 2.622y5 + 2.127) + 0.1 (15)

where y1, y2, . . ., y5 are determined using the input variables as:

y1 = Tansig(−0.496Pult − 0.507δcr − 0.610As − 3.951b− 0.279ζi − 0.237) (16)

y2 = Tansig(−0.914Pult − 2.478δcr − 1.282As + 1.127b− 2.230ζi − 0.519) (17)

y3 = Tansig(0.861Pult + 4.799δcr − 1.216As − 0.807b− 0.302ζi − 04.245) (18)

y4 = Tansig(3.166Pult + 1.856δcr − 0.826As − 1.427b− 0.974ζi + 1.363) (19)
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y5 = Tansig(−1.557Pult + 1.852δcr − 0.310As + 0.810b + 0.119ζi − 3.379) (20)

In addition, Equation (21) was used to determine the activation function as

Tansig(x) =
2

1 + e−2x + 1 (21)

From Equations (16)–(20), it is clear that all the input variables were multiplied by the
weight, and the bias of the optimum IEPANN model was added to the sum. Following the
determination of the nonlinear activation function, Equation (15) was used to analyse the
prestressing strand slips.

The relative error distributions obtained from individual models were used to evaluate
the accuracy of the ML. Boxplot was used to compare the relative error distributions
for individual models in the training and testing phases, as shown in Figure 16. From
Figure 16a, it can be noted that the IEPANN demonstrated the highest accuracy with the
lowest maximum and minimum relative error distributions in estimating the final strand
slips in the training stage, with the first quartile (Q1) and third quartile (Q3) values of
−8.6% and −15%. Secondly, the SVM was the second model with the lowest relative error
distributions, with the minimum relative error distribution of 7.5% and the maximum
relative error distribution of −22.3%.
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Generally, the relative error distributions exhibited by all the MLs were slighly higher
in the training phase compared to those in the testing stage, as depicted in Figure 16a.
Similarly, from Figure 16b, the lowest error distributions were obtained in the IEPANN
and SVM models in the testing phase. The minimum and maximum error distributions
in Q1 and Q3 were −14.2% and 8%, respectively. Thes results were consistent with the
highest performances of the IEPANN model in the scatter curves for the two modeling
stages, compared to other models (MLR, SVM).
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Furthermore, the performances of the ML model in the two modeling phases were also
checked using the Taylor diagram, as shown in Figure 17. The Taylor diagram is a compres-
sive approach for comparing model performances using three statistical parameters: RMSE,
R2 and SD. The correlation between the measured and predicted values was specified
by the azimuthal point, i.e., the location where the measured and predicted fields were
directly correlated with the RMSE values. The RMSE values decreased with the increases
in correlations. As a result, the radial distance measured from the origin increased with an
increasing trend of the standard deviation [55]. The perfect model is achieved by reference
point with R2 = 1 [56]. However, if the predicted SD is greater than that of the observed
data, overestimation may occur, or vice versa. Therefore, it is necessary to use a standard
deviation approach to obtain the SD of the observed data.
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From Figure 17a,b, the hybridized IEPANN models demonstrated higher performances
in estimating the strand slips in the precast prestressed HCUs with RMSE, R, and SD closer
to the actual data in both training and testing phases. The scatter plots showed that the
hybridized IEPANN outperformed all other models in terms of all evaluation matrices. The
standard deviations of all the models were lower than those of the actual data, proving that
models were not affected by overestimation.

7. Conclusions

The additional strand slips in prestressed concrete hollow-core slabs subjected to
three-point bending were investigated through load tests on five full-scale specimens. Two
groups of HCUs characterized by wide and narrow widths were experimentally tested
with or without a topping slab, and a wide specimen was tested with restrain mechanism at
its ends. Moreover, single (SVM, MLR) and hybrid (IEPANN) machine learning algorithms
were employed to estimate the final strand slips after the bending tests. Sensitivity analysis
using Person correlation was applied to explore optimal input parameters, which involved
the ultimate deflection, initial deflection, strand area, width of HBCUs, and initial strand
slip. Five performance criteria, including R2, RSME, MAE, MAPE, and RI, were utilized to
assess the performances of the developed ML algorithms. Finally, a Box plot and Taylor
diagram were used to compare the model performances visually for predicting the final
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strand slips of the prestressed hollow-core slabs. The conclusions outlined in this study are
stated below:

(1) The initial strands slip values at the ends of HCUs in most of the strands ranged
between 2 and 3 mm. However, an initial strand slip of 21 mm was obtained in one
of the strands of the HCU-WB specimen at the south end with a peak final slip of
24.9 mm, indicating that the prestressing strands with relatively higher initial strand
slips may result in larger additional slips during flexural loading. Some strands
revealed no additional strand slips after testing.

(2) Non-composite (HCU-WB and HCU-NB) specimens sustained web shear failure,
while composite (HCU-WT, HCU-WTR, and HCU-NT) specimens showed vertical
separations between the HCUs and topping slab. The restraining mechanism and
cast-in-place topping slab influenced the rate of additional strand slips.

(3) The feature selection analysis revealed that the initial strand slip was the most relevant
parameter for predicting the final strand slip among the input parameters. Both single
and hybrid ML models estimated the final strand slips of HCUs with high accuracies
in the training and testing phases. Moreover, the hybridized IEPANN model showed
the highest prediction skills with the R2 values of 0.9168 and 0.970 in the training and
testing phases, respectively, demonstrating the efficacy of the IEPANN compared to
the nonlinear predictive model.

(4) The addition strand slips in precast prestressed hollow-core slabs subjected to high-
intensity loads were evaluated, as in the cases of car parks and bridges. The prediction
skills could prevent the need for conducting high-cost experiments and save time.
Additionally, recent and advanced ML algorithms, such as hybrid and ensemble mod-
els and numerical expressions, are recommended for the estimation of the additional
strand slips. The evaluation could serve as a guide for engineering practice.

(5) The research is limited to a small dataset obtained from the experimental program
to predict the final strand slips of the precast prestressed concrete hollow-core slabs.
Modeling tasks required a large database to achieve the highest accurate and reliable
prediction model. On the other hand, the small database could also give reasonable
prediction accuracy.
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