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Abstract: This paper investigates the lateral performance of corrugated steel plate shear walls with
corrugation laid vertically connected with beams only (CboSPSW). A numerical model for the
CboSPSW was developed, and verified by a laboratory test. Based on the verified numerical model,
extensive parametric analyses were carried out to investigate the key parameters’ effects on the shear
performance of CboSPSWs, including the height ratio, aspect ratio, opening rate, and surrounding
frame stiffness. In these parametric analyses, strength and lateral stiffness losses of the corrugated
steel plate (CSP), buckling, and failure modes of the shear walls were investigated. In addition to
these, a simplified model for the CboSPSW was developed to predict the shear performance of the
shear wall. The results show that the CboSPSWs exhibit large strength, initial stiffness, and good
displacement ductility. Compared with the corrugated steel plate shear walls with vertical corrugated
steel plates connected with beams and columns (CbcSPSW), the strength of the CSPs decreased
15–28% in the CboSPSWs. The free edges of the CSPs in the CboSPSWs should be strengthened by
adding stiffeners on one side or two sides of the CSPs in practical projects. The aspect ratio and
opening rate of the CSPs should be controlled for strength decreases of the CSPs. The modified strip
model can be used to predict shear performance of the CboSPSW with a reasonable accuracy.

Keywords: corrugated steel plate shear wall; buckling strength; tension field; simplified model;
corrugated steel plate

1. Introduction

In recent years, the corrugated steel plate (CSP) has been used widely in many struc-
tural elements and structure systems [1–3]. In the corrugated steel plate shear walls with
vertical corrugated steel plates connected with beams only (CboSPSW), the CSPs are con-
nected with adjacent beams, and have no connections with neighboring columns, shown
in Figure 1a. The reduced constraints from columns decrease the strength, stiffness, and
energy dissipation capacity of the CSPs [4]. However, it is the characteristic of the connec-
tions that reduces the adverse effects from infilled plates on the columns, improves the
construction speed, and reduces the construction costs of shear walls. In addition to these,
CboSPSWs make designs and layouts of the shear wall structures with more flexibility
by adjusting the CSP widths and openings in infilled plates easier, compared with those
of flat steel plate shear walls (FSPSWs) and corrugated steel plate shear walls with CSPs
horizonal arrangements (ChSPSWs) [5,6], shown in Figure 1c. Due to these advantages, the
CboSPSW is one of the lateral resisting systems with great potential. However, research on
the structural performance of CboSPSWs is scarce. Thus, investigations on the mechanical
performance of CboSPSWs are necessary for the applications of the shear walls.
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Figure 1. Profiles of the (a) CboSPSW, (b) CbcSPSW, and (c) ChSPSW. 
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Figure 1. Profiles of the (a) CboSPSW, (b) CbcSPSW, and (c) ChSPSW.

Many studies on the static and seismic behavior of ChSPSWs have been conducted. The
geometry parameters of CSPs’ effects on the structural performance of shear walls [7–10] have
been discussed, and results showed that the ChSPSWs had large lateral stiffness, buckling
and ultimate strength, good ductility, and energy dissipation capacity. The corrugation
placements influenced the buckling modes of CSPs [11,12]. The results showed that the
shear walls with CSP vertical arrangements showed local buckling and global buckling,
the shear walls with CSP horizontal arrangements showed global buckling. The stiffnesses
demands on the surrounding columns in ChSPSWs were less than those in FSPSWs [4,11].
The elastic and post-buckling strength of the sinusoidal ChSPSW were studied based on the
minimum potential energy and Ritz method [13–15]. To improve the buckling strength of
CSPs, the seismic performance of the corrugated steel plate shear walls with stiffeners were
investigated [16,17]. In addition to adding the stiffeners on the CSPs, the other effective way to
improve the bulking strength of the CSPs is adjusting the parameters of the CSPs [18–20]. The
results showed that with proper design of its parameters of the CSPs, including thickness,
subpanel width, corrugation depth, wavelength, and height and width of the CSPs, the
CSPs could avoid buckling before yielding of the CSPs. The effect of the openings in filled
plates on the performance of the shear wall was discussed [21]. In addition, the simplified
models for ChSPSWs were studied. The PFI model [22,23] and equivalent cross brace
model [24] were introduced to simplify the plastic and seismic analyses for ChSPSWs.
Moreover, the shear and hysteretic behavior of composite corrugated steel plate shear walls
were investigated, including the double-corrugated plate shear wall [25,26] and corrugated
steel plate-concrete composite shear wall [27].

There were also some studies on the corrugated steel plate shear walls with CSPs
vertical arrangements (CvSPSWs). The effects of the concerned geometry parameters on
the static and seismic performance of the shear walls were investigated [28,29]. The elastic
buckling strength of the CbcSPSW (Figure 1b) with stiffeners was investigated based on the
minimum potential energy theory and Rayleigh–Ritz method [30]. Few preliminary studies
on the geometry parameters effects on the structural performance of CboSPSWs have been
carried out. The effects of the CSP thickness, aspect ratio, and wavelength on the shear
performance of CbcSPSWs were discussed [31–33]. The results showed the CboSPSWs had
large strength, lateral stiffness, and good ductility and energy dissipation capacity.

As presented above, there are a lot of studies on the static and seismic performance of
ChSPSWs under lateral and vertical loads. However, studies on the shear performance of
CboSPSWs are few, the failure modes and loading mechanisms are not described clearly.
The purpose of this paper focused on the lateral performance of the CboSPSWs under
horizontal loads. A numerical model for the CboSPSW was developed. The effects of
the concerned parameters on the shear behavior of CboSPSWs were discussed, and ways
of resisting lateral loads, formations of tension field of CSPs, and failure modes were
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investigated in the parametric analyses. Moreover, a simplified model was developed to
simulate the elastoplastic analysis for CboSPSWs.

2. Finite Element (FE) Model and Verification

In this paper, the shear performance of the CboSPSW was studied based on the
general FEM software ANSYS 19.0. A single-bay, one-story FE model for a CboSPSW
was developed. In the model, the shell 181 element was used to simulate the structural
performance of the columns, beams, and CSPs. The connections of the beams and columns
were rigid, and the CSPs were connected to neighboring beams only and separated from
the neighboring columns with 5 mm gaps. The bottoms of the columns were fixed and the
lateral loads were applied at the ends of the columns. The materials of the CSP, columns, and
beams were Q345 steel. The yield stress of the CSP was 370.0 Mpa and the elastic modulus
of the CSP was 2.0 × 105 Mpa. The yield stress of the columns and beams was 399.0 Mpa,
and the elastic modulus of the columns and beams was 2.1 × 105 Mpa. The Poisson’s ratios
of the CSP, beams, and columns were 0.3. The ideal elastoplastic models were adopted to
simulate the material properties; Von-mises yield criterion and the associated flow rule were
adopted in the FE model. In order to avoid eccentric loading, the out-of-plane displacement
of the surrounding frame was constrained. The initial imperfection of the CSP was applied
to the geometry model before the elasto-plastic analysis, and the imperfection value was
taken 1/750 of the height of the CSP. When the sizes of the shell elements were less than
30 mm × 30 mm, the results of the FE model tended to be stable. The meshed FE model for
the CboSPSW is shown in Figure 2.
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Figure 2. Meshed FE model for a CboSPSW.

Before the elasto-plastic analyses, the above developed model for a CboSPSW was
verified by a laboratory test. The two-story, one-bay CboSPSW specimen was conducted
by Zhao [31]. In the test specimen, the section sizes of the surrounding columns were
H-200 mm × 200 mm × 14 mm × 16 mm. The section sizes of the bottom and top beams
were H-300 mm × 200 mm × 14 mm × 16 mm, and section size of the middle beam H-
200 mm × 150 mm × 14 mm × 16 mm. The CSP thicknesses were 3.0 mm. The horizontal
subpanel width was 50 mm, the corrugation depth 45 mm, the wavelength 160 mm.

In accordance with the test specimen, a FE model for the specimen was established,
and the materials, boundary conditions, and loads were consistent with those of the test
specimen. The load–displacement curves and failure modes obtained by the FE model and
test are shown in Figures 3 and 4.
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Figure 4. Comparison of failure modes between FE model and test [31].

Figure 3 shows that the ultimate strength ratio of the FE model to test the specimen
is 0.93, and the displacement corresponding to ultimate strength ratio of the former to
the latter is 0.89. Moreover, the failure modes obtained by the FE model were similar to
that of the test in Figure 4. It is indicated that the developed FE model can predict the
load–displacement curve of the CoSPSW with a reasonable accuracy.

3. Parametric Analyses and Discussions

Based on the above verified FE model, a series of parametric analyses were conducted
to investigate the effects of the height–thickness ratio, aspect ratio, opening rate, and
surrounding column stiffness on the shear performance of CboSPSWs, including ultimate
strength, stiffness, failure modes, and formation of tension field. Figure 5 shows a diagram
for the CboSPSW, including the CSP, H-shaped columns, and H-shaped beams. Table 1
shows the sizes of the concerned parameters in detail.
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Table 1. Key parameters.

Member
CSP Section Frame Section

λ
H

(mm)
B

(mm)
d

(mm)
b

(mm)
hr

(mm)
Column

(mm)
Beam
(mm)

CboW1 100 2800 2800 70 100 70 H-600 × 600 × 60 × 60 H-600 × 600 × 60 × 60
CboW2 200 2800 2800 70 100 70 H-600 × 600 × 60 × 60 H-600 × 600 × 60 × 60
CboW3 300 2800 2800 70 100 70 H-600 × 600 × 60 × 60 H-600 × 600 × 60 × 60
CboW4 400 2800 2800 70 100 70 H-600 × 600 × 60 × 60 H-600 × 600 × 60 × 60
CboW5 500 2800 2800 70 100 70 H-600 × 600 × 60 × 60 H-600 × 600 × 60 × 60
CboW6 600 2800 2800 70 100 70 H-600 × 600 × 60 × 60 H-600 × 600 × 60 × 60
CboW7 800 2800 2800 70 100 70 H-600 × 600 × 60 × 60 H-600 × 600 × 60 × 60
CboW8 300 2800 1400 70 100 70 H-970 × 970 × 97 × 97 H-970 × 970 × 97 × 97
CboW9 300 2800 4200 70 100 70 H-970 × 970 × 97 × 97 H-970 × 970 × 97 × 97

CboW10 300 2800 5600 70 100 70 H-970 × 970 × 97 × 97 H-970 × 970 × 97 × 97
CboW11 300 2800 7000 70 100 70 H-970 × 970 × 97 × 97 H-970 × 970 × 97 × 97
CboW12 300 2800 2800 70 100 70 H-300 × 300 × 30 × 30 H-300 × 300 × 30 × 30
CboW13 300 2800 2800 70 100 70 H-320 × 320 × 32 × 32 H-320 × 320 × 32 × 32
CboW14 300 2800 2800 70 100 70 H-350 × 350 × 35 × 35 H-350 × 350 × 35 × 35
CboW15 300 2800 2800 70 100 70 H-380 × 380 × 38 × 38 H-380 × 380 × 38 × 38
CboW16 300 2800 2800 70 100 70 H-620 × 620 × 62 × 62 H-620 × 620 × 62 × 62

3.1. Height–Thickness Ratio Effect

In order to discuss the height–thickness ratio effect, the CboSPSW and CbcSPSW
specimens with various CSP thicknesses, 28.0, 14.0, 9.3, 7.0, 5.6, 4.7, and 3.5 mm, under
lateral loads were established, the corresponding height–thickness ratios λ were 100, 200,
300, 400, 500, 600, and 800. The other parameters stayed the same. The CbcSPSWs with
the same geometry parameters of the CboSPSWs were also established to investigate the
strength and lateral stiffness losses due to connections with beams only in CboSPSWs. The
load–displacement curves of the CboSPSWs are shown in Figure 6, in which the lateral
displacements belong to the top right-hand points of the CSPs (point A in Figure 5). The
load versus out-of-plane displacement curves with different height–thickness ratios are
shown in Figure 7, in which the out-of-plane displacement belongs to the points with
the maximum out-of-plane displacements in the CSPs. The ultimate strength and initial
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stiffness of CboSPSWs and CbcSPSWs versus the height–thickness ratio curves are shown
in Figures 8 and 9.
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Figure 9. Initial stiffness versus height-to-thickness ratio curves of CboSPSWs and CbcSPSWs.

From Figures 6 and 7, the initial stiffness and strength have a negative relationship with
the height–thickness ratio. The strength of the CSPs in the CboSPSW is smaller than that in
the CbcSPSW with the same parameter because the constraints of CSPs from columns in
the CboSPSWs are weaker than those in the CboSPSWs. In addition, the developed tension
field in the CbcSPSW develops more fully than that in the CboSPSW. With the increase
of the height–thickness ratio, the trend is more obvious. This is because the CboSPSWs
with a smaller height–thickness ratio need much more constraints from columns for fuller
development of the tension field. From Figures 8 and 9, when the height–thickness ratio
increases from 100 to 800, the ultimate loads of the CSPs decrease from 19% to 28% and the
initial stiffnesses decrease from 26% to 33%. It is indicated that the mechanical properties
of the CSPs in the CboSPSWs are not fully utilized due to two sides’ connections.

The out-of-plane displacement of the CboSPSWs with height–thickness ratio λ = 100
and 800 are shown in Figure 10. The buckling mode of the CboSPSW with height–thickness
λ = 100 is global buckling of the CSP, while the CboSPSW with height–thickness ratio
λ = 800 is local buckling.
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The tension field of the CboSPSW with height–thickness ratio λ = 100 develops more
fully than the one with height–thickness ratio λ = 800, shown in Figure 11. The former
resists the lateral loads mainly relying on pure shear, while the latter relies on the tension
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field shown in Figure 11. Furthermore, the free edges of CSPs under compression are easy
to buckle and deform, and tension field of the CSPs with the free edges cannot develop
fully. This is the reason the mechanical properties of the CSPs in the CboSPSWs are not fully
utilized. Moreover, the corners of the CSPs are the first parts to be destroyed. Therefore, it
is suggested that the free edges of CSPs should be strengthened by adding stiffeners on
one side or two sides of the CSPs in practical projects.
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Figure 11. Stress distributions of CboSPSWs with different height–thickness ratios.

3.2. Aspect Ratio Effect

Five CboSPSW models with different aspect ratios, 0.5, 1.0, 1.5, 2.0, and 2.5 were
developed to investigate the aspect ratio effect. In addition to these models, five CbcSPSWs
specimens with same sizes of the CboSPSW models were also established to study the
connections with beams only effect. The load–displacement curves and load versus out-
of-plane displacement curves of the CboSPSWs are shown in Figures 12 and 13, and the
ultimate strength and initial stiffnesses of CboSPSWs and CbcSPSWs versus the height–
thickness ratio curves are shown in Figures 14 and 15.
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Figure 15. Initial stiffness versus aspect ratio curves of CboSPSWs and CbcSPSWs.

From Figures 12 and 13, the initial stiffnesses, ultimate loads of the CboSPSWs increase
with the increase of the aspect ratio. In contrast with CbcSPSWs, the initial stiffnesses
and ultimate loads of the CboSPSWs are lower than those of the CbcSPSWs. The more
obvious the trend is, the larger the aspect ratio is. When the aspect ratio increases from
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0.5 to 2.5, due to connections with beams only, the strength of the CSPs decreases in the
range of 15–27% compared to those of the CbcSPSWs with the same parameters, shown in
Figure 14. The initial stiffnesses of the CSPs decrease from 35% to 12% compared to those
of the CbcSPSWs with the same parameters, shown in Figure 15. When the aspect ratio
is greater than 2.0, the decrease rate of strength increases significantly, and it is suggested
that the aspect ratio should be controlled less than 2.0.

The out-of-plane displacement of the CboSPSWs with aspect ratio B/H = 1.0 and 2.5
are shown in Figure 16. It shows that the tension field of the CSP in the CboSPSW with
aspect ratio B/H = 1.0 develops more fully than that of the CboSPSW with aspect ratio
B/H = 2.5. The inclination angles of the tension field of the CboSPSWs are about 60◦.
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Figure 16. Out-of-plane deformation of CSPs with different aspect ratios.

3.3. Opening Rate Effect

In order to investigate the opening rate effect, five CboSPSWs with different opening
rates 0, 10%, 30%, 50%, and 70%, were developed. In these models, the areas of the
CSPs remain unchanged. The shapes and positions of the openings of the CSPs in these
CboSPSWs are shown in Figure 17. The detailed parameters of these models are shown in
Table 2. The opening rate γ is the ratio of the opening area Ao to the whole area of the CSP
area A, which can be expressed as:

γ =
Ao

A
× 100% (1)
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b  

(mm) 
rh  

(mm) 

Opening Rate  
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Table 2. Opening rate.

Member
CSP Section Frame Section

λ
H

(mm)
B

(mm)
d

(mm)
b

(mm)
hr

(mm)
Opening

Rate γ
Column

(mm)
Beam
(mm)

CboW17 300 2800 2800 70 100 70 0 600 × 600 × 60 × 60 600 × 600 × 60 × 60
CboW18 300 2800 2800 70 100 70 10% 600 × 600 × 60 × 60 600 × 600 × 60 × 60
CboW19 300 2800 2800 70 100 70 30% 600 × 600 × 60 × 60 600 × 600 × 60 × 60
CboW20 300 2800 2800 70 100 70 50% 600 × 600 × 60 × 60 600 × 600 × 60 × 60
CboW21 300 2800 2800 70 100 70 70% 600 × 600 × 60 × 60 600 × 600 × 60 × 60

The load–displacement curves of the shear walls are shown in Figure 18, and the load
versus out-of-plane displacement curves are shown in Figure 19. As it can be seen, the
initial stiffnesses and ultimate loads of the CboSPSWs decrease with the increase of the
opening rate.
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From Figures 20 and 21, the ultimate loads and initial stiffnesses of CSPs have a linear
decreasing relationship with the opening rate. Therefore, the opening rate of CSPs should
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be controlled in the design of the CboSPSWs. The ultimate shear loads of the CSPs in the
CboSPSWs Vo with different opening rates can be obtained as:

Vo = (1 − γ)Vcbo (2)

where the Vcbo is the ultimate shear load, γ is the opening rate.
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Figure 21. Initial stiffness of CSPs versus opening rate curves.

The failure modes of the CboSPSWs with different opening rates are shown in Fig-
ure 22. Figure 22 shows that with the decrease of the opening rate, the tension field
develops more fully. When the opening rate is small, the CSP mainly shows the shear
performance. However, when the opening rates are 50% and 70%, the CSPs show bending
and compressive performance, which are similar to performance of the columns.
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3.4. Surrounding Frame Stiffness Effect

The surrounding columns provide constraints for buckling strength and development
of tension field of the infilled plates. In the FSPSWs, in order to provide enough constraints
for the infilled plates, the minimum area moments of inertia for the surrounding columns
Icmin can be expressed [34–36]:

Icmin ≥ 0.0031twdc
4/db (3)

where tw is the thickness of infilled plates, dc is the center-to-center distance between
adjacent columns, and db is the center-to-center distance between adjacent beams.

The minimum area moment of inertia for the surrounding column, Equation (3), is
obtained by the relationship between the area moment of inertia and the development of
the shear stress of the CSP near the connected beams. With an increase of the stiffness of
the surrounding column, the tension field tends to develop more fully. When the changes
of the average shear stress of the CSP sections near the beams are less than 20% [34],
the corresponding area moment of inertia is the minimum value, shown in Equation (3).
However, the CboSPSWs have connections with beams only, which are different from those
of the FSPSWs. Therefore, the surrounding column stiffness effect on the buckling strength
and the tension field and of CSPs should be discussed.

In order to discuss the surrounding columns stiffness effect on the shear performance
of the CboSPSWs, five CboSPSW specimens with different area moments of inertia, 0.5Icmin,
0.75Icmin, 1.0Icmin, 2.0Icmin, and 10Icmin were developed. The detailed parameters of the
columns are shown in Table 1. The shear loads of the CSPs near the connected beams
versus the lateral displacement curves of the CboSPSWs are shown in Figure 23, and the
load versus out-of-plane displacement curves are shown in Figure 24.
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From Figures 23 and 24, the buckling and ultimate loads increase with the increase
of the column stiffness. When the column stiffness reaches 0.5Icmin, the shear loads of the
CSPs near the connected beams versus displacement curves and buckling load tend to be
stable. The failure modes of the CboSPSWs with the column stiffness 0.5Icmin and 10.0Icmin
are shown in Figure 25. The tension field of the latter develops more fully than that of the
former one. The inclination angles of the tension field are approximately 60◦.

Buildings 2023, 13, x FOR PEER REVIEW 13 of 19 
 

beams versus the lateral displacement curves of the CboSPSWs are shown in Figure 23, 

and the load versus out-of-plane displacement curves are shown in Figure 24. 

 

Figure 23. Load versus displacement curves of CboSPSWs with various column stiffnesses. 

 

Figure 24. Load versus out-of-plane displacement curves with various column stiffnesses. 

From Figures 23 and 24, the buckling and ultimate loads increase with the increase 

of the column stiffness. When the column stiffness reaches 
min0.5 cI , the shear loads of the 

CSPs near the connected beams versus displacement curves and buckling load tend to be 

stable. The failure modes of the CboSPSWs with the column stiffness 
min0.5 cI   and 

min10.0 cI  are shown in Figure 25. The tension field of the latter develops more fully than 

that of the former one. The inclination angles of the tension field are approximately 60°. 

  
(a) 

min=0.5c cI I  (b) 
min=10c cI I  

Figure 25. Out-of-plane deformation of CSPSWs with different column stiffness. Figure 25. Out-of-plane deformation of CSPSWs with different column stiffness.



Buildings 2023, 13, 1996 15 of 20

4. Simplified Analytical Model

The plate–frame interaction (PFI) [37] and strip [38] models are the common elasto-
plastic analysis methods for seismic or nonlinear analyses for shear walls. Due to the
characteristics of connections, the equivalent strip model [39] can take two sides connections
of infilled plates (CSPs connected with beams only) into consideration, shown in Figure 26.
The gaps between the CSPs and columns could be simulated by the length lg in the
equivalent strip model.
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The stress–strain relationship of the tension member adopted the trilinear model, and
the compression member adopted the bilinear model, shown in Figure 27.
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The inclination angles of the tension and compression members are expressed as:

α = ar tan(
db
B
) (4)

where db is the center-to-center distance between adjacent beams, B is the CSP width.
The initial stiffness of the CSP Kc can be expressed as [40]:

Kc = ψKw (5)



Buildings 2023, 13, 1996 16 of 20

ψ = 0.014 ln(B/Hw)− 0.118 ln(λ) + 1.24 (6)

λ =
Hw

tw

√
fy

235
(7)

Kw =
GtwB
ξ Hw

(8)

where ψ presents the reduction coefficient of the lateral stiffness of CSP, fy is the yield stress
of the CSP, λ is the height–thickness ratio, G is the shear modulus of the CSP, d is the height
of the CSP, B is the CSP width, ξ is the shear uniformity coefficient along the width of the
CSP, ξ = 1.2.

The section areas of the tension and compressive members in the model Al can be
obtained as:

Al =
Kw

2Eccos3α
(9)

where Ec is the elastic modulus of the CSP material.
The yield stress of the tension member σyt can be expressed as:

σyt =
VytwEw cos2 α

KwB
(10)

Vytw = τyBtw (11)

where Vytw presents the yield load of the CSP, τy is the yield stress of the CSP.
The corresponding yield strain of the tension member εyt can be calculated as:

εyt =
∆ytw cos2 α

B
(12)

∆ytw =
Vytw

Kw
(13)

The yield stress of the compression member σyc can be expressed as:

σyc =
VycwEw cos2 α

KwB
(14)

Vycw = τycwBtw (15)

where Vycw is the ultimate compressive load of the CSP, τycw is the compressive strength of
the CSP.

Compared with CbcSPSWs, the compressive capacities of the CSPs decrease due to
the two sides connections. In the model, the yielding load of the compressive member
adopted the buckling load of the flat steel plate shear wall with two sides connections. The
compressive shear strength of the CSP with two sides connections τycw can be obtained
as [39]:

τycw = [0.2 ln(B/Hw)− 0.05 ln(λ) + 0.68] fv] (16)

where λ is height–thickness ratio of the CSP, fy is the shear yield strength of the CSP
material, fv is the ultimate shear strength of the CSP material.

The corresponding yield strain of the tension member εyc can be calculated as:

εyc =
∆ycw cos2 α

EcB
(17)
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∆ycw =
Vycw

Kw
(18)

The yield stress of the tension member σyc can be expressed as:

σuc =
VutwEw cos2 α

KwB
(19)

The displacement corresponding to the ultimate load of the CSP ∆utw can be obtained as:

∆utw = ∆ytw +
(τu − τy)Btw

0.1Kw
(20)

The strain corresponding to the ultimate load of the tension member εut can be calcu-
lated as:

εut =
∆utw cos2 α

B
(21)

The elastic modulus of the tension member Et can be obtained as:

Et =
σut − σyt

∆ut − ∆yt
(22)

The load–displacement curves obtained by the equivalent strip model and the CboSPSW
FE model with test [31] are shown in Figure 28. The comparison of the curves shows that
the modified equivalent strip model can simulate the shear behavior of the CboSPSW well.
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5. Conclusions

This paper presents numerical investigations on the shear performance of CboSPSWs.
A numerical model for the CboSPSW was developed, and parametric analysis was carried
out to study the height ratio, aspect ratio, opening rate, and surrounding frame stiffness
effect on the shear performance of the shear walls. In addition, a simplified model for the
CboSPSW was developed to simplify the elasto-plastic analysis. The main conclusions are
as follows:

(1) The initial stiffness and strength have a negative relationship with the height–thickness
ratio. In contrast with the strength of the CSPs in CbcSPSWs, the strength of CSPs in
CboSPSWs is lesser. When the height–thickness ratio increases from 100 to 800, the
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ultimate loads of the CSPs in the CboSPSWs decrease from 19% to 28% compared to
those of the CbcSPSWs. The initial stiffnesses of the CboSPSWs decrease from 26% to
33% compared to those of the CbcSPSWs.

(2) The free edges of CSPs under compression are easy to buckle and deform, and this
is the reason the mechanical properties of the CSPs in the CboSPSWs are not fully
utilized. Moreover, the corners of the CSPs are the first parts to be destroyed. It is
suggested that the free edges of CSPs should be strengthened by adding stiffeners on
one side or two sides of the CSPs in practical projects.

(3) The initial stiffnesses and ultimate loads of the CboSPSWs increase with the increase
of the aspect ratio. The initial stiffnesses and ultimate loads of the CboSPSWs are
lower than those of the CbcSPSWs. When the aspect ratio increases from 0.5 to 2.5, due
to the connections with beams only, the strengths of the CboSPSWs decrease 15–27%
compared to those of the CbcSPSWs, and the initial stiffnesses of the CboSPSWs
decrease from 15% to 27% compared to those of the CbcSPSWs. It is suggested that
the aspect ratio should be controlled less than 2.0 for a strength decrease of the CSPs.

(4) The ultimate capacities and initial stiffness have a linear decrease relationship with the
opening rate. When the opening rates are 50% and 70%, the CSPs show bending and
compressive performance, which is similar to performance of the columns. Therefore,
the opening rate should be less than 50% in the design of CboSPSWs.

(5) The modified equivalent strip model for the CboSPSW was developed to simplify the
elasto-plastic analysis. The results show that the modified equivalent strip model can
simulate the shear behavior of the CboSPSW well.
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Abbreviations

A0 Opening area
A Whole area of the CSP
Al Section areas of the tension and compressive members in the strip model
b Horizontal subpanel width of the corrugated steel plate
B Width of the corrugated plate
c Single wavelength of the corrugated plate
d Horizontal projection of the inclined panel width
db Center-to-center distance of adjacent beams
dc Center-to-center distance between adjacent columns
Ec Elastic modulus of the CSP material
Et Elastic modulus of the tension member
Ew Elastic modulus of the CSP material
fy Yield stress of a corrugated steel plate
fv Shear yield stress of a corrugated steel plate
G Shear modulus of a corrugated steel plate
hr Corrugation depth of the corrugated plate
Hw Height of corrugated steel plate
Icmin Minimum area moment of inertia of a surrounding column
Kc Initial stiffness of the CboSPSW
Kw Initial stiffness of the corrugated steel plate
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lg Length of the opening in equivalent strip model
tw Thickness of the corrugated steel plate
V Lateral force of the CSPSW
V0 Ultimate shear load of a CboSPSW with an opening rate
Vcbo Ultimate shear load of a CboSPSW with no opening
Vytw Yield load of a corrugated steel plate
Vycw Compressive load of a corrugated steel plate
∆ycw Compressive displacement of a corrugated steel plate
∆utw Displacement corresponding to the ultimate load of a corrugated steel plate
µ Poisson’s ratio of steel
θ Corrugation angle
σyt Yield stress of the tension member in the strip model
σyc Yield stress of the compression member
σut Ultimate tensile stress of the compression member
ξ Uniformity coefficient of shear load along CSP width
α Inclination angle of the tension field in the corrugated steel plate
ψ Reduction coefficient of the lateral stiffness of a CSP
λ Height–thickness ratio
γ Opening rate
τy Yield stress of a corrugated steel plate
τycw Compressive stress of a corrugated steel plate
εyc Compressive strain of a tension member in the strip model
εut Ultimate tensile strain corresponding to the ultimate load of the tension member
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