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Abstract: To predict and control the train-induced vibration in depot buildings, a case study of the
depot of Tianjin Metro, Line 5, was conducted. The platform of the depot has been constructed and
is in use, and the construction of over-track buildings has not been completed. Firstly, an in situ
measurement was performed to obtain the train loads and validate the numerical model. Secondly,
a finite element model of the track–soil–depot structure was established. The train was simplified
as a series of two spring-mass models and the train load was simulated using the measured rail
acceleration. The calculated results were validated by the measurement data. To predict the vibration
responses of the over-track building to be built, a sub-system of the over-track building was added to
the numerical model. Finally, the vibration control effect of vibration isolation bearings was discussed.
The results indicate that vibrations exceeded guideline limits without mitigation measures in some
rooms of the over-track building. The dominant frequency of the building floors is 31.5 Hz. Vibration
isolation bearings effectively mitigated the vibrations, and the IL reached approximately 7–15 dB at
about 31.5 Hz.

Keywords: railway vibration; depot; over-track buildings; train load; vibration prediction; vibra-
tion control

1. Introduction

Recently, metro lines and their depots have gradually increased with the continu-
ous development of urban rail transit. A metro depot is a place for vehicle operation
management, parking, and maintenance, located in city suburbs and occupying a large
area. As cities continue to grow rapidly, these depot areas have become integral parts of
urban centers, presenting significant property development potential if the ground and
area above the space can be fully utilized. The intensive development of urban space is an
efficient use of land resources [1]. However, metro depots are characterized by complex
track lines, turnouts, and track joints, which have drawn increasing attention to the issue
of train-induced vibrations [2–6]. In the traditional ground vibration problem induced by
underground metro trains, the soil layers play a crucial role in attenuating vibrations [7].
However, the vibration is directly transferred from the trackbed to the superstructures with
higher vibration intensity and complex vibration spectra. The train-induced building vibra-
tions and structural-borne noise can annoy the people who live or work in the over-track
buildings [8]. Therefore, accurately predicting the vibration responses of superstructures
and implementing effective vibration reduction measures are necessary to enhance the
vibration comfort of these structures.

To learn the vibration characteristics of metro depots, many experimental studies have
been performed recently. Zou et al. [9,10] conducted vibration measurements on over-track
buildings in an operation depot and test line area, revealing amplified vibration responses
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within the natural frequency band of the structures. Cao et al. [11] conducted vibration
measurements on an elevated mode depot and seven-story over-track residential buildings
and investigated the effects of train speed and line location on vibration propagation. Liang
et al. [12] performed a detailed on-site measurement to analyze the source and transmission
characteristics of train-induced vibrations. Liao et al. [13] performed a field test of over-
track buildings in China and used the exposure–response curve to analyze the impact of
vibrations on occupants’ comfort. Recently, the measurement results were also employed
to develop a data-driven cascaded state–space model, enabling the prediction of building
vibrations in planned over-track buildings [14].

For to-be-built over-track buildings, the prediction is especially significant. Gen-
erally, the simplified impedance model and numerical method, e.g., finite element (FE)
method [15], finite difference method [16], finite element–boundary element coupling
method [17], and finite element–infinite element coupling method [18] have proven effec-
tive and appropriate for analyzing proposed buildings’ vibration problems. To improve
calculation efficiency and gain a better understanding of vibration transmission characteris-
tics, a simplified impedance-based model was established by Sanayei et al. [19,20], and was
developed by Zou et al. [21,22]. Tao et al. [23] also proposed a method to predict vibration
transmission from columns into girders and subsequently into floors. This model was also
employed for predicting train-induced floor vibrations and structure-borne noise.

To mitigate the adverse effects of environmental vibration from rail transit, numer-
ous studies have investigated vibration reduction measures in three aspects: vibration
source [24,25], propagation path [26,27], and receiver [28,29]. However, these studies
mainly focus on the traditional environmental vibration problems induced by underground
metro trains in a tunnel. Regarding over-track buildings, Takei et al. [30] proposed a new
building structural system adopting laminated rubber bearings that are softer in the vertical
direction than general ones for the middle story of over-track buildings. Their research
indicated that the train-induced vibration was reduced by using model experiments and
numerical analysis. Zou et al. [31] confirmed the vibration isolation effect of the open
trench, filled trench, and combined open and filled trench vibration isolation barriers on
the over-track building on the test vehicle line by establishing a three-dimensional finite
element model. Yang et al. [32] employed a base isolation measure that installed steel
springs between the superstructure and the base, showing an effective reduction in exces-
sive building vibrations. Zhou et al. [33,34] investigated the compression behavior and
mechanical properties of thick rubber bearings used in over-track buildings.

This study focuses on a metro depot situated in Tianjin, China, whose platform has
been built and is in use. According to the plan, a 12-story shear wall over-track building
will be built. As the vibration induced by metro trains transmits directly through the
structure to the building, without passing through the soil layer, the existing research
results on the vibration impact of the adjacent buildings cannot be directly applied to
this project. Therefore, it is necessary to analyze the vibration effect on the over-track
building to ensure the indoor vibration meets the requirements of Chinese specifications.
In addition, some vibration-reducing measures should be implemented if the vibration
response exceeds the standard limits. In this paper, a field vibration measurement was
performed at the depot to gather the vibration response characteristics of the depot. Then,
a coupling model of track–soil–depot–building was established. The measured data were
used to generate the train loads and verify the model, and detailed architectural parameters
and physical properties were incorporated into the simulation of the building structure,
which can accurately predict the vibration response. In addition, the vibration control effect
of vibration isolation bearings was discussed. As the over-track structure in this study is
relatively typical, the research results can be used in similar projects.



Buildings 2023, 13, 1995 3 of 22

2. Vibration Measurement in Depot
2.1. Project Condition

The project is bounded by the top head platform, and the upper section of the platform
is the over-track buildings area, as shown in Figure 1. The planned total land area is
1,330,000 m2 and will be constructed in phases. The primary construction covers an area
of 240,000 m2, including the metro train maintenance depot, comprehensive maintenance
depot, throat area, train entrance/exit section line, and accessory room, as shown in Figure 2.
The primary implementation platform is on a total construction area of approximately
188,000 m2, including residential buildings covering around 120,000 m2. The second
phase of implementation includes commercial buildings along the street, high-rise office
buildings, hotels, apartments, and residential buildings covering the depot, car storage,
bicycle storage, equipment rooms, warehouses, etc. To facilitate the development of the
residential buildings on the top head platform, the operation depot will be divided into
nine monoliths using deformation joints, allowing for the construction of 13 high-rise
residential buildings with 12 or 18 floors.
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To analyze the vibration impact of the superstructure caused by trains in the depot
before the building construction, a dynamic finite element (FE) model was established for a
typical 12-story shear wall structure located on the top head platform. The section of the
residential building is illustrated in Figure 3.



Buildings 2023, 13, 1995 4 of 22Buildings 2023, 13, x FOR PEER REVIEW 4 of 22 
 

 
Figure 3. Section of residential building. 

2.2. Measurement Point Arrangement 
The vibration measurement was carried out on the operation depot and its top head 

platform. There were two main purposes of the measurement: obtaining train loads 
through measured acceleration on the rail, and validating the propagation law and veri-
fying the numerical model through responses on the column and platform. Accordingly, 
the vibration sensors were arranged on the rail, the column of the operation depot, and 
the top head platform surface, as shown in Figure 4. 

   
(a) (b) (c) 

Figure 4. Layout of field measurement points: (a) operation depot rail measurement points; (b) 
operation depot column measurement points; (c) top head platform measurement points. 

The INV306 (F) dynamic data acquisition analyzer and piezoelectric acceleration sen-
sor types MN9824, MN9828, and 941B were adopted for the vibration measurements on 
the rail, column, and top head platform, respectively. An unattended intelligent collection 
system was employed, capable of automatically judging, collecting, and storing data ac-
cording to predefined procedures. 

The depot had CHN50 rails and type DTVI2 fasteners with the equivalent stiffness 
and damping of 7.8 × 107 N/m and 5.51 × 104 Ns/m, respectively. The operating trains were 
six Metro B-type vehicles with a total length of approximately 120 m. The train speed 
when entering and exiting the depot was relatively low, approximately 5 km/h. The meas-
urement sampling frequency was 5120 Hz, and the measurement recorded the vertical 
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2.2. Measurement Point Arrangement

The vibration measurement was carried out on the operation depot and its top head
platform. There were two main purposes of the measurement: obtaining train loads through
measured acceleration on the rail, and validating the propagation law and verifying the
numerical model through responses on the column and platform. Accordingly, the vibration
sensors were arranged on the rail, the column of the operation depot, and the top head
platform surface, as shown in Figure 4.
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The INV306 (F) dynamic data acquisition analyzer and piezoelectric acceleration
sensor types MN9824, MN9828, and 941B were adopted for the vibration measurements on
the rail, column, and top head platform, respectively. An unattended intelligent collection
system was employed, capable of automatically judging, collecting, and storing data
according to predefined procedures.

The depot had CHN50 rails and type DTVI2 fasteners with the equivalent stiffness
and damping of 7.8 × 107 N/m and 5.51 × 104 Ns/m, respectively. The operating trains
were six Metro B-type vehicles with a total length of approximately 120 m. The train
speed when entering and exiting the depot was relatively low, approximately 5 km/h.
The measurement sampling frequency was 5120 Hz, and the measurement recorded the
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vertical acceleration of the rail during the passage of a single train, as well as the vertical
and horizontal acceleration of the column and top head platform.

2.3. Measurement Result

The acceleration time history and Fourier spectrum of vertical rail vibrations are shown
in Figure 5. It can be observed that the peak value of the rail acceleration is around 15 m/s2.
A series of peaks can be observed in the time histories, which are considered a result of
the impact between the wheel and rail joints. The vertical acceleration vibration peak
values on the rail repeat as the frequency increases, with the maximum value occurring at
approximately 1600 Hz.
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Figure 5. Vibration of the rail: (a) acceleration time history; (b) acceleration frequency spectra.

The acceleration time history of the vertical column and top head platform vibrations
are shown in Figure 6, where the black and red lines represent the response of the column
and the platform, respectively. It can be observed that the peak value of vibration accelera-
tion in the column is significantly higher than that of the top head platform. Then, the peak
values of vibration acceleration in the column and top head platform are noticeably lower
than that on the rail. The vibration generated by the vibration source gradually weakens
during the transmission process.
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To deeply study the frequency content of the vibration caused by train operations
in the depot and reveal the magnitude of components of vibration signals at different
frequencies, the frequency spectrum and one-third octave spectrum analysis of measured
time history data are presented, as shown in Figure 7. It can be observed that the vibration
that propagated from the column to the top head platform at a significant frequency of
between 30 and 50 Hz has the phenomenon of a main frequency shift from 35.35 Hz to
39.5 Hz, which is further validated by the one-third octave spectrum in Figure 7b.
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3. Numerical Model
3.1. Track–Soil–Structure 3D FE Model

To predict the train-induced building vibrations, a track–soil–structure model was
built for the operation depot structure and over-track building, as illustrated in Figure 8. In
the model, the soil layers were modeled by the solid element. The platform, building floors,
and walls were modeled by the plate elements, with a thickness of 200 mm. The platform
of beams and columns was modeled by the beam elements; the cross-sectional size of the
rectangular column was 100 mm × 100 mm, and the beam cross-section size was 1500 mm
× 800 mm. The model size of the soil part was 150 m (length) × 140 m (width) × 30 m
(depth). The main material parameters are listed in Table 1.
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Table 1. Finite element model material dynamic parameters.

Title Depth
(m)

Dynamic
Elastic

Modulus
(MPa)

Mass
Density
(kg/m3)

Poisson’s
Ratio

Damping
Ratio

Soil layer I 6 150 1920 0.4 0.05
Soil layer II 10 200 2030 0.3 0.04
Soil layer III 14 600 1970 0.3 0.03
Trackbed/ / 42,000 2000 0.3 0.02

Beam/Column/Plate / 32,500 2500 0.35 0.02

The Rayleigh damping assumption was employed:

[C] = α[M] + β[K] (1)

where the damping matrix [C] was a linear superposition of the mass matrix [M] and the
stiffness matrix [K] with the coefficients α and β. The two coefficients can be only defined
by the damping ratio of soils and the analysis frequencies.

To avoid the influence of fluctuating reflections at the boundaries of the finite element
(FE) model, an artificial viscoelastic absorption boundary was applied.

The building room plan is shown in Figure 9, with 12 floors and 13 rooms per floor,
numbered a~m.
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3.2. Dynamic Train Load
3.2.1. Simulated Acceleration on the Rail

The measured rail vibrations can be divided into a series of different frequency har-
monics and written as a Fourier series:

x(t) =
∞

∑
n=0

(An cos nωt + Bn sin nωt) (2)

where

An =
2
T

∫ T

0
x(t) cos nωtdt(n = 0, 1, 2, . . . , N − 1) (3)

Bn =
2
T

∫ T

0
x(t) sin nωt dt (n = 0, 1, 2, . . . , N − 1) (4)
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where T is the record time and N is the number of sampling points. Therefore, the equation
for the simulated vibration acceleration on the rail can be obtained using discrete sampling
and Fourier transformation:

x(t) =

N
2 −1

∑
n=0

(An cos nωt + Bn sin nωt) (5)

Figure 10 compares the measured and calculated time histories of rail vertical vibration
accelerations in the operation depot, where the train speed is approximately 5 km/h and
the sampling frequency is 5120 Hz. It can be observed that the time histories matched well.
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Figure 10. Measured and calculated time history of rail vertical acceleration: (a) rail measured data;
(b) rail calculated data.

3.2.2. Simplified Model of Metro Trains

Since vertical vibration is the primary contributor to environmental vibration, the
metro train was simplified as a series of two spring-mass models evenly distributed along
the rail. One of the simplified models is shown in Figure 11. As the gravity center of the
carriage is usually symmetrical in longitudinal and lateral directions, a quarter bogie was
considered to calculate the train load on a one-sided rail. Table 2 lists the parameters of
metro trains operating on the metro depot of Tianjin Metro, Line 5.
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Table 2. Parameters of metro trains at Tianjin Metro [35].

Parameter Value Parameter Value

Carriage mass with full
passenger capacity m3 (t) 43.0 Spring factor of bogie

kT (kN/m) 2080

Carriage mass moment of
inertia J (tm2) 1700 Damping factor of bogie CT

(kN·S/m) 240

Bogie mass m2 (t) 3.60 Spring factor of bogie of
wheels (kN/m) 2450

Bogie mass moment of
inertia J (tm2) 9.62 Damping factor of bogie of

wheels (kN·s/m) 240

Train length L (m) 19.52 Train space L (m) 12.66

Axle base a (m) 2.30 Mass of every two wheels
m1 (t) 1.70

3.2.3. Simulated Train Load

The vertical kinematic equilibrium differential equation of the carriage can be estab-
lished according to the coordinates in Figure 11.{

m3
..
z3 + c2

( .
z3 −

.
z2
)
+ k2(z3 − z2) = 0

m2
..
z2 + c1

( .
z2 −

.
z1
)
+ k1(z2 − z1)− k2(z3 − z2)− c2

( .
z3 −

.
z2
)
= 0

(6)

where m1, m2, and m3 represent the masses of the wheels, bogie, and vehicle body, respec-
tively; z0, z1, z2, and z3 denote the absolute displacements of the steel rail, wheels, bogie,
and vehicle body, respectively; k1 and k2 represent the primary and secondary suspension
stiffness, respectively; c1 and c2 represent the primary and secondary suspension damping,
respectively.

Ignoring the wheel–rail bounce while the train is operating, the vertical vibration
accelerations at the wheel and the rail are equal. The wheel–rail interaction force can be
obtained accordingly.

P(t) = (m1 + m2 + m3)g + m1
..
z1 + m2

..
z2 + m3

..
z3

= (m1 + m2 + m3)g +
[
m1 m2 m3

]


1
1
1

..
z0 +

1 0 0
1 1 0
1 1 1




..
ξ1..
ξ2..
ξ3


 (7)

where ξ1 = z1 − z0 = 0, ξ2 = z2 − z1, ξ3 = z3 − z2
The uniformly distributed train load can be expressed as:

F(t) = K · n · M · P(t)/L (8)

where K is the correction factor, n is the number of bogies per carriage, M is the total number
of carriages, and L is the train length. For the metro trains operating in the Tianjin depot,
n = 2, M = 6, and L = 117.12 m (19.52 m × 6). The simulated train load can be obtained
using the simulated rail acceleration (see Figure 10b), as shown in Figure 12.
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Figure 12. Vibration response of train load (V = 5 km/h): (a) time history of train load; (b) one-third
octave spectrum of train load.

3.3. Model Validation

To validate the numerical model, a field measurement was performed at the depot.
Since the over-track building had not been built, the measurement points were arranged
on the column and top head platform, as described in Section 2. The over-track building
sub-system was also excluded from the numerical model (Figure 13). The measured and
calculated responses on the column and top head platform were compared in the one-third
octave frequency domains, as illustrated in Figure 14. It can be observed that the model
calculation results match the trend of the measured response, and the reliability of the
model was acceptable.
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Figure 13. Depot foundation and superstructure platform model.
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Figure 14. Vibration response of column and top head platform: (a) one-third octave spectrum of
column; (b) one-third octave spectrum of top head platform.
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3.4. Prediction Result of Building Vibrations

Based on the validated numerical model, the floor vibration responses of the to-be-
built over-track building were calculated. The floor vibration responses were evaluated by
two standards, JGJ/T170-2009 [36] and GB/T50355-2018 [37]. According to the standard
Building Vibration and Secondary Radiation Noise Limit Caused by Urban Rail Transit and Its
Measurement Method Standard (JGJ/T170-2009), the index of the vertical maximum vibration
level VLmax in one-third octave bands was defined as follows:

VLmax = max fi
[VLz,w( fi)] (9)

where maxfi represents the maximum value of the weighted vibration acceleration level in
all one-third octave central frequencies fi, and VLz,w (fi) is the frequency-weighed vertical
acceleration level.

The guideline-limited values of VLmax are listed in Table 3.

Table 3. Guideline-limited values suggested by JGJ/T170-2009 (dB) [36].

Area Day Night

Special buildings 65 62
Residential and educational buildings 65 62

Residential, commercial, and mixed-use buildings 70 67
Industrial buildings 75 72

According to the Standard for Limits and Measurement Methods of Vibration in the Room of
Residential Building (GB/T50355-2018), another index of the vertical maximum Z-vibration
level (VLz,max) was also employed, defined as follows:

VLz,max = maxt[VLz(t)] (10)

where maxt represents the maximum value of the VLz(t) during the whole train pass-by
time t, and VLz(t) is the vertical acceleration level, expressed as

VLz(t) = 20 log10
aw,τ(t)

a0
(11)

where a0 = 10−6 m/s2 is the reference acceleration, and aw,τ(t) is the running r.m.s. (root
mean square) weighted acceleration, expressed as

aw,τ(t) =
[

1
τ

∫ t

t−τ
a2

w(ξ)dξ

] 1
2

(12)

where aw(ξ) is the frequency-weighed instantaneous vibration acceleration at time ξ, τ is
the integration time of measurement, and t is the instantaneous time.

The guideline-limited value of VLz,max is listed in Table 4.

Table 4. Guideline-limited value of VLz,max inside residential buildings suggested by GB50355-2018
(dB) [37].

Room Type Limit Value Level Time Period Limit Value

Bedroom
Recommended

Day 73
Night 70

mandatory Day 78
Night 75

Living room Recommended Day and night 73
mandatory Day and night 78
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The vertical weighted acceleration level VLz,w (fi) in the a–m rooms, as a function of
central frequency in the one-third octave band, is illustrated in Figure 15. It can be observed
that only the rooms h, j, and m of some floors exceeded the JGJ/T170-2009 standard limit
value. The dominant floor vibrations induced by trains are between 30 and 50 Hz. They
decrease first and then increase with the increase in frequency below 10 Hz, while the
opposite trend is observed above 10 Hz; the center frequency corresponding to VLz(t)
decreases with the increase in floors, and VLz(t) decreases first and then increases with the
increase in floors. The prediction results are similar to the measurements and theoretical
prediction in an over-track building reported by Zou et al. [21,22].
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The VLmax varying with floor number is illustrated in Figure 16. It can be observed
that the train-induced maximum building vibration is distributed on the first floor and top
floor. The overall average value is below the JGJ/T170-2009 standard limit for residential,
commercial, and mixed-use building areas. However, the maximum value of VLmax appears
at the top of room j, which is approximately 73 dB and exceeds the JGJ/T170-2009 standard
limits (67 dB during the day and 70 dB at night). Rooms h and m also exceed the guideline
limit value. In the simplified wall–floor model prediction results by Auersch et al. [4], it
was also found that the vibration of the top floor slab can reach its maximum value. This is
mainly because some of the vibration energy will gradually diffuse along the floor from
the intersection between the column and the floor. Due to the lack of vertical load-bearing
structures above the top floor to absorb energy, energy will be transferred to the floor.

The VLz,max varying with floor number is illustrated in Figure 17. It can be observed
that the VLz,max variation with floor is greatly influenced by the household type. The
values of VLz,max in some rooms increase with the floor number, while the trends differ in
some other rooms. However, the average value of VLz,max, as shown in the box diagram,
indicates that the overall trend of the building is to decrease first and then increase. The
maximum value of VLz,max occurs at the top of room j, which is approximately 74 dB and
exceeds the GB50355-2018 standard day and night limit value for the primary bedroom.
Rooms h, m, and f also exceed the standard limit value. However, the maximum value of
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VLz,max in room f is approximately 70.3 dB, exceeding the GB50355-2018 standard day limit
by 0.3 dB.
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Figure 16. VLmax varying with floor number: (a) box diagram; (b) point and line diagram.
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Figure 17. VLz,max varying with floor number: (a) box diagram; (b) point and line diagram.

4. Vibration Control Measures

The calculation results indicate that the floor vibrations in some rooms exceed the
guideline value in relative standards, especially in rooms h, j, and m. Therefore, it is
necessary to take measures to control the vibration and ensure vibration comfort. In
this section, the reduction vibration measure of isolation rubber bearings was taken into
account.

The indices VLmax, VLz,max, and insertion loss (IL) are used to evaluate the vibration
reduction and isolation effect of the two types of measures. The IL was defined as

IL( fi) = VLw/o( fi)− VLw( fi) (13)

where VLw/o and VLw are acceleration levels of the building floors without and with
vibration mitigation measures, respectively; fi is the i-th center frequency; if IL > 0, it means
that the vibration mitigation measures are effective.

The rubber bearing offers several advantages, including simple production, convenient
transportation and installation, wide applicability, and ease of replacement [38]. Research
indicates that the thick meat-type rubber bearing with lower vertical stiffness performs
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better in vibration isolation [33,39]. Therefore, the thick meat-type rubber bearing was
selected to study the vibration isolation effect on the over-track building.

According to the project situation, the 22 vertical rubber bearings of three types are
arranged on the building’s first floor of the numerical model in Section 3 to calculate
the building’s vibration isolation response. The results are compared with the reference
condition without isolation measurement. The vibration isolation scheme is determined
by matching the axial force at the bottom of the wall with the bearings’ long-term load.
The specific layout of the vibration isolation bearing is shown in Figure 18. The designed
bearing parameters are listed in Table 5.
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Table 5. Parameters of rubber vibration isolation bearings.

Model
Bearing

Diameter
(mm)

Bearing
Height
(mm)

Long Term
Load
(kN)

Vertical
Stiffness
(kN/mm)

Natural
Frequency

(Hz)

I 800 400 4538 750 6.47
II 700 385 3327 550 6.47
III 500 320 1936 320 6.46

Figure 19 compares the first overall mode, vertical first mode, and floor first mode
between the original and isolation models. Table 6 lists the modal comparison results. It can
be observed that there is no obvious difference in the first overall mode when the vibration
isolation bearings are employed. The 22 rubber vibration isolation bearings changed
the vertical frequency of the overall structure, resulting in enhanced overall structural
vertical vibration, with the building primarily exhibiting overall vibration. Because the
vibration isolation bearings’ vertical stiffness is smaller than the over-track structure, the
first vertical frequency decreases significantly. Therefore, the rubber vibration isolation
bearing effectively extends the period of the structure and reduces the transmission of
vertical vibrations to the over-track building. For vertical excitation, the room floor vibration
response increases as the floor number increases without vibration isolation measures.
However, the vertical excitation makes the room floor vibration response first decrease and
then increase after adopting isolation measures.
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Figure 19. Comparison of model modal results: (a) 1st overall mode original model; (b) 1st overall
mode vibration isolation model; (c) vertical 1st mode original model; (d) vertical 1st mode vibration
isolation model; (e) floor 1st mode original model; (f) floor 1st mode vibration isolation model.
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Table 6. Comparison of model modal results.

Model 1st Mode Overall
Frequency (Hz)

Vertical 1st Mode
(Hz)

Floor 1st Mode
(Hz)

Original model 4.83 20 20
Vibration isolation model 1.72 6.47 22.99

The structural acceleration vibration isolation rate can be expressed as follows:

Rd =
as

ag
=

√√√√√ 1 +
(
2ζ v1

v

)[
1 −

(v1
v

)2
]2

+
(
2ζ v1

v

)2
(14)

where as is the acceleration of the vibration isolation structure, ag is the acceleration of
the metro input structure, ξ is the damping ratio, and v1/v is the ratio of the structure’s
forced vibration frequency to natural frequency.

Because the metro-train-induced dominant frequency bands are between 30 and 70 Hz,
and the vertical natural vibration frequency of the vibration isolation structure is 6.47 Hz,
the ratio of v1/v is between 4.64 and 10.82, which can achieve a vertical vibration isolation
effect.

The vibration isolation bearings can not only extend the period of the superstructure,
but also make its natural vibration frequency far away from the dominant frequencies of
train-induced vibrations, improving the structure vibration isolation rate.

The vibration level without and with the isolation bearings in rooms h, j, and m of
a typical story are shown in Figure 20. It can be observed that the vibration isolation of
structure vibration level occurs with a significant vibration reduction effect in the frequency
band above 30 Hz, which is approximately 5–15 dB. The peak value of the building
floor vibration also appears in the 30–50 Hz range, so the vibration isolation bearings
can effectively reduce the floor’s maximum vibration level and improve comfort. In the
low frequency of 4–10 Hz, the vibration amplification phenomenon commonly occurs in
vibration isolation structures on building floors. This is due to the rubber vibration isolation
bearings reducing the vertical natural frequency of the over-track building compared to
the building without vibration isolation; the vibration amplification phenomenon occurs
earlier at lower frequencies.
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Figure 20. Vibration levels of three rooms: (a) room h, 11th story; (b) room j, 11th story; (c) room m,
11th story.

The IL without and with vibration isolation bearings in rooms h, j, and m are shown
in Figure 21. Generally, positive IL values are observed above 30 Hz, with an observed IL
range of approximately 7–15 dB at the dominant frequency of 31.5 Hz. However, IL values
between 4 and 8 Hz are negative.
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Figure 21. Insertion loss of three rooms: (a) room h; (b) room j; (c) room m.



Buildings 2023, 13, 1995 19 of 22

The VLz,max in rooms h, j, and m without and with vibration isolation bearings are
shown in Figure 22. After adopting vibration isolation bearings, the values of VLz,max
decrease by 3–12 dB. The reduction effect is more pronounced on floors 7–12 compared to
floors 1–6.
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Figure 22. VLz,max of three rooms: (a) room h; (b) room j; (c) room m.

The vibration responses vary with floor number, as shown in Figure 23. When iso-
lation vibration bearings are employed, the values of VLmax and VLz,max decrease first
and then increase with the floor number. The building floor VLmax overall is below the
JGJ/T 170-2009 standard limit for residential, commercial, and mixed-use building areas.
The value of VLz,max in rooms k and j on the 12th floor is approximately 70.75 dB, which
exceeds the GB/T 50355-2018 standard’s recommended night limit for bedrooms, but the
difference is only 0.75 dB, which basically meets the guideline requirements.
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Figure 23. (a) VLmax and (b) VLz,max varying with floor number after adopting vibration isolation
bearings.

5. Conclusions

To predict and control the train-induced vibration in over-track buildings, an in situ
vibration measurement was conducted on the operation depot and its top head platform
and a three-dimensional FE model of the track–soil–structure system was established. Then,
the vibration control effect of vibration isolation bearings was discussed. The following
conclusions can be drawn:

1. The peak acceleration measured on the rail was approximately 15 m/s2, which was sig-
nificantly higher than the measurements taken on the column and top head platform,
with vibration gradually weakening during transmission.

2. According to the numerical analysis, without vibration isolation bearings, the overall
vibration response of the over-track building decreased and then increased with the
increase in the floor number. Rooms h, j, and m significantly exceeded the standard
limits. The maximum values of VLmax and VLz,max both appeared in room j on the
top floor. The dominant frequency of the building floors was about 31.5 Hz, having a
small decrease with the increase in the floor number.

3. After adopting vibration isolation bearings, the vertical natural vibration frequency of
the superstructure was reduced, resulting in a low frequency of 4–10 Hz; the vibration
amplification phenomenon commonly occurred in vibration isolation structures on
the building floors.

4. Vibration isolation bearings had a significant reduction effect above 30 Hz, with the
IL achieving a reduction of 7–15 dB, and the VLz,max values were reduced by 3–12 dB;
the reduction effect was more pronounced on floors 7–12 compared to floors 1–6.
The vibration response of the building floors has been reduced to meet the standard
requirements.
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