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Abstract: This work proposes a data-driven decision-making approach to develop a smart avatar
that allows for evaluating the thermal comfort experienced by a user in Chile. The ANSI/ASHRAE
55-2020 standard is the basis for the predicted mean vote (PMV) comfort index, which is calculated by
a random forest (RF) regressor using temperature, humidity, airspeed, metabolic rate, and clothing as
inputs. To generate data from four cities with different climates, a 3.0 m× 3.0 m× 2.4 m shoe box with
two adiabatic walls was modeled in Rhino and evaluated using Grasshopper’s ClimateStudio plugin
based on Energy Plus+. Long short-term memory (LSTM) was used to forecast the PMV for the next
hour and inform decisions. A rule-based decision-making algorithm was implemented to emulate
user behavior, which included turning the air conditioner (AC) or heater ON/OFF, recommendations
such as dressing/undressing, opening/closing the window, and doing nothing in the case of neutral
thermal comfort. The RF regressor achieved a root mean square error (RMSE) of 0.54 and a mean
absolute error (MAE) of 0.28, while the LSTM had an RMSE of 0.051 and an MAE of 0.025. The
proposed system was successful in saving energy in Calama (31.2%), Valparaiso (69.2%), and the
southern cities of Puerto Montt and Punta Arena (23.6%), despite the increased energy consumption
needed to maintain thermal comfort.

Keywords: decision making; machine learning; predicted mean vote; smart avatar; thermal comfort

1. Introduction

In recent years, fossil fuel carbon emissions and global warming have encouraged
the optimization of living spaces by maximizing the efficiency, sustainability, and overall
quality of living spaces, especially in urban areas where most people are concentrated.
As individuals spend most of their days indoors, it is essential that these indoor environ-
ments are maintained in optimal conditions to ensure the well-being and comfort of the
occupants [1]. The way buildings are designed, constructed, and operated to maintain
thermal comfort can have a significant impact on their energy consumption. When a build-
ing is designed to provide thermal comfort to its occupants, it typically requires heating,
cooling, and ventilation (HVAC) systems to maintain a consistent and comfortable indoor
temperature. These systems require energy to operate, which contributes to the overall
consumption of the building. By giving an energy-efficient solution to occupants, they
can adjust their environment to their preferences without wasting energy, thus creating
spaces which are not only comfortable and healthy for occupants, but also sustainable and
cost-effective to operate [2]. Therefore, ensuring thermal comfort can increase technology
adoption and the quality of life of the users, thereby making them more likely to enjoy their
living spaces, be more satisfied with their health and living arrangements, and encourage
the wider adoption of home automation technologies [3].

The ANSI/ASHRAE Standard 55-2020 [4] defines thermal comfort as a subjective
parameter that is influenced not only by quantitative variables, but also by a person’s
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mentality, culture, and social conditions. Several indices have been used to measure the
level of thermal comfort of users. The standard effective temperature (SET) provides an
equivalent temperature that represents overall thermal sensation. Another metric, the
thermal sensation vote (TSV)m is a rate gave by individuals to indicate their perceptions of
thermal comfort. The predicted percentage of those dissatisfied (PPD) estimates the per-
centage of occupants who feel uncomfortable with thermal conditions in a given space [5,6].
However, in terms of building design, HVAC system control, and thermal optimization,
one of the most relevant metrics is the predicted mean vote (PMV). This PMV is an index
that aims to predict the average value of the votes of a group of users on a seven-point
wind chill scale. Thermal equilibrium is obtained when the internal heat production of a
user is equal to his heat loss [7]. The PMV calculation relates four quantitative variables,
namely, air speed, air temperature, mean radiant temperature, and relative humidity, as
well as two expected parameters: clothes (CLO) and metabolic rate (MET) [8], which are
defined in the ANSI/ASHRAE standard 55-2020 [4]. All these variables directly affect
an occupant’s perception of thermal comfort. Air speed, air temperature, mean radiant
temperature, and relative humidity are factors that affect the heat exchange between a
person and the surroundings. Clothing and metabolism rates are personal factors that
determine how much heat people generate and how much insulation they have against the
environment. Taking into account all of these variables and parameters, the PMV calcula-
tion can estimate whether an occupant is likely to feel too hot, too cold, or comfortable in a
given environment.

Traditional methods for evaluating thermal comfort based on the PMV usually rely on
computationally inaccurate and expensive procedures to implement, since they are based
on dynamic calculations that do not take into account the changes in the the occupant’s
behavior and preferences as a human. Instead, most of the simulation processes base the
calculations on the people density (person/m2) and the schedule room (values between
0–1) in order to ‘inhabit the space’. These methods can result in an inaccurate prediction
of the thermal comfort and have limited applicability in spaces with nonuniform thermal
conditions, special occupancy requirements, or nonstandard building designs. This also
implies that limited feedback could be offered to occupants or building operators, which
can make it difficult to adjust the indoor environment to improve thermal comfort and
energy efficiency [9]. Consequently, advances made with machine learning (ML)-based
solutions can help mitigate the shortcomings and challenges faced by traditional comfort
models and upgrade them to a real-time environment, thereby adapting to changing
environmental conditions and occupant behavior to maintain optimal thermal comfort and
energy efficiency [10].

In Chile, building codes and standards have been established to guarantee thermal
comfort according to the Chilean Ministry of Housing and Urbanism, such as thermal
insulation requirements based on the buildings location and altitude (http://bit.ly/3kB0
S1p, accessed on 27 February 2023). In addition, efforts to achieve energy efficiency
have been made through several programs aiming at reducing consumption in buildings
while maintaining thermal comfort. For example, the National Energy Efficiency Program
provides funding and technical assistance to building owners and managers to implement
energy efficiency measures with the objective of promoting the rational use of energy
resources (http://bit.ly/3Y6vjKs, accessed on 27 February 2023). However, there is still
a lack of adequate coordination among the different service providers to integrate the
technology needed to achieve these goals in efficiency and sustainability. In addition,
there is a lack of awareness among building owners, managers, and occupants about
the importance of thermal comfort and energy efficiency in buildings, thereby making it
challenging to promote the adoption of sustainable building practices.

Furthermore, the climate varies significantly across different regions of the country,
thus making it challenging to develop standardized thermal comfort measures that are
applicable to all buildings. For example, buildings in the northern desert region may
require different cooling strategies than those in the central and southern regions. This
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has hindered the development of the research and data available in buildings, which can
make it difficult to develop evidence-based policies and programs. In particular, there
is a need for research in this field to develop methodologies to automate smart homes
while guaranteeing user comfort standards, which can be applied in different climates and
geographical conditions. Specifically, the following aspects need to be solved:

1. A user-centric approach is necessary to effectively learn and model user preferences
and thermal comfort requirements to make personalized decisions in different house-
holds, regardless of their location.

2. There is a need for investigating the most suitable ML models and data sources to
enable this user-centric solution.

3. It is necessary to study how a user-centric approach has impacts on energy efficiency
while maintaining thermal comfort that considers the interaction with home appli-
ances such as an AC or heater.

By addressing these research gaps, a comprehensive understanding of the feasibility,
effectiveness, and potential benefits of employing a smart avatar for enhancing thermal
comfort in houses can be achieved. Considering the diverse climate in Chile, addressing
these challenges in this context can pave the way for further research on user-centric
approaches for evaluating thermal comfort in regions with similar conditions.

The objective of this research is to develop a smart avatar that emulates user behavior
in a shoe-box structure. By delivering this user-centric approach, a more accurate simulation
tool can be built, which can significantly impact the thermal comfort assessment. This work
proposes a data-driven decision-making approach that allows for evaluating the thermal
comfort experienced by a user residing in a simulated experimental room. The approach
involves isolating specific parameters within the room, as well as utilizing data analysis
and machine learning techniques. The location of the room is not specified within any
specific region of Chile, thus making the proposed avatar a valuable tool to assess the
thermal comfort of people across the country, regardless of the region. A random forest
(RF) regressor was proposed to predict the PMV for a user who inhabits the structure
simulated in Rhino v6 software (McNeel Associates, Seattle, WA, USA). As long short-term
memory (LSTM) networks are useful for managing time series, such a model was proposed
to forecast the future level of comfort based on the past sequences of the PMV obtained. A
ruled-based decision-making algorithm was implemented to emulate the behavior of the
avatar, thus offering a series of recommendations intended to guarantee the comfort and
well-being of the users. The data was generated through the Rhino Grasshopper plug-in
using the environmental parameters of several representative climates of Chile, particularly
those corresponding to the cities of Calama, Puerto Montt, Punta Arenas, and Valparaiso.
Subsequently, new data from Santiago and Calama were used to vary the airspeed value
and evaluate the generalization of the system. For each climate, the data had an hourly
resolution. The clothing parameters and metabolic rate were held constant based on the
ANSI/ASHRAE 55-2020 standard and software limitations.

The proposed avatar’s decision-making algorithm promotes the use of energy in a
more efficient manner to use the HVAC system only when necessary. While previous
research has examined building design considerations for providing comfortable condi-
tions to occupants, such as analyzing both naturally ventilated buildings and enclosed
environments, there appears to be no existing user-oriented approach that is specifically
designed to evaluate thermal comfort. Additionally, to the best of our knowledge, no prior
research has employed ML-based forecasting techniques to develop a system with similar
capabilities. The contributions of this study are summarized as follows:

• An in-depth analysis for achieving the comfort level of users has been offered by
proposing a solution able to adapt to the different climate conditions.

• Machine learning models were used for PMV calculation and forecasting, which
increase the adaptability and reliability of the proposed system.
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• A smart avatar living in a simulated room was proposed, which benefits from the ML
models to save energy, accordingly, and use it efficiently while maintaining comfort.
This will allow for building more accurate simulation tools that account for user
interests, which can significantly impact on thermal comfort assessment, not only for
the scope of this study, but also for researches globally.

The remainder of this paper is organized as follows. In Section 2, the related work is
described, including setpoint control and the computation of comfort indices. In Section 3,
the proposed smart avatar is presented, wherein we provide a description of the modeling
assumptions, PMV calculations and forecasting, and decision-making algorithm. The
results are presented in Section 4 and discussed in Section 5. Finally, conclusions and
guidelines for future work are provided in Section 6.

2. Related Work

Comfort level analysis has always been an interesting topic in the scientific community
due to the many benefits it brings, not only for the quality of life of people, but also for
its impact on energy efficiency and sustainability. The main research on thermal comfort
has debated two main topics: setpoint control and the computation of comfort indices.
In [11], the authors focused on the reliability of the most common indices to evaluate
comfort—PMV and the PPD—with an emphasis on the accuracy of the PMV in predicting
both the observed thermal sensation (OTS) or observed mean vote (OMV) and comparing
the PMV–PPD relationship with binned OTSs. To achieve such goals, authors used the
ASHRAE Global Thermal Comfort Database II to evaluate the performance of the model
proposed in the ASHRAE standard [4]. The authors of [8] based the use of the Fanger’s heat
balance equation given in the ASHRAE standard 55-2020 to calculate the PMV and analyze
comfort in naturally ventilated buildings. They stated that an improved PMV model needs
to be developed in order to achieve a fair comparison between the proposed model and
the actual vote of the occupants. In [12], the authors also analyzed thermal comfort in
naturally ventilated buildings; however, the predictions were based on machine learning
models that showed effective and competitive results. The same strategy was also used by
the authors in [7,10] for the estimation of the PMV. The authors of [13] presented a survey
on machine learning applications for thermal comfort in which they highlighted the most
relevant techniques, metrics, and programming languages used in the thermal comfort
field. A different approach was conducted in [14] to predict the aspects of adaptative
thermal comfort and investigate their vality in purpose-built residential tower blocks in
Famagusta, Cyprus. This study highlighted the importance of considering local climate
conditions when defining acceptable comfort ranges. The results found can be used to
inform building design and HVAC system settings to enhance occupants’ thermal comfort
in similar climates. In [15], the authors addressed the impacts of climate change on indoor
thermal conditions and the associated risks with respect to evaluating existing long-term
thermal comfort indices. The PMV indicated the upper limit in the ASHRAE Standard-55
summer comfort zone.

However, ML techniques for setpoint control have also raised the interest of the
research community. This is the case for [10,16–18]. Limitations or challenges arose in
their respective approaches, such as potential increases in energy consumption due to
continuous AC control or limited generalization capabilities due to various building types
and geographic regions. These limitations suggest areas for improvement and further
research in the field of indoor thermal control using ML techniques.

Although ML techniques have proven to be effective and reliable in solving thermal
comfort challenges, several limitations still need to be overcome:

• The current research suffers from a lack of diverse datam since without a compre-
hensive and varied dataset representing different building occupants and indoor
environments, the models may exhibit limited performance.
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• ML techniques often struggle with transparency in how they arrive at their predictions,
thus making it difficult for researches to understand and interpret the results. This gap
requires human interpretability to gain insights into the underlying factors influencing
thermal comfort predictions.

• If the training data used to develop ML models are not representative of the actual
building occupants or indoor conditions, the models’ performance results may be com-
promised. Ensuring an inclusive and accurate representation of the target population
is crucial for achieving reliable thermal comfort predictions.

These above limitations are not exhaustive and may vary depending on the specific
context and application. Table 1 summarizes all the revised literature during this study,
where it compares the year of publication, the main contribution, and the techniques used
for thermal comfort with the solution given in this paper.

Table 1. Revised bibliography for the development of the thermal comfort management.

Reference Type Year of Publication Goal Method

[8] Technical 2015 PMV prediction in buildings with
and without AC Fanger’s

[19] Technical 2018
Assessment of the thermal

conditions to solve the limitation
of the physics-based model

Fanger’s

[11] Technical 2019 Comfort analysis based on PMV
and PPD Machine Learning

[20] Technical 2019 Comfort model and setpint control
using reinforcement learning Machine Learning

[12] Technical 2020 Analysis of comfort in naturally
ventilated buildings Machine Learning

[7] Technical 2021 Sensitivity analysis to predict PMV Machine Learning

[16] Technical 2021 Control strategy based on PMV
in Kuwait Machine Learning

[21] Technical 2021
Human thermal physiological

model to modify the skin
temperature in PMV

Fanger’s

[14] Technical 2021
Adaptative thermal comfort in

residential tower blocks in
Famagusta, Cyprus

Fanger’s

[15] Technical 2022
Dynamic evaluation method for

thermal sensation
Famagusta, Cyprus

Fanger’s

[10] Technical 2022 PMV and PPD predictive model Maching Learning

[17] Technical 2022 Control strategy to guarantee
comfort and energy savings Machine Learning

[13] Survey 2022 Machine learning applications for
thermal comfort -

[22] Survey 2022 Machine learning for occupancy
prediction and thermal comfort -

[18] Technical 2022 Machine learning to optimize
thermal comfort Machine Learning

[23] Technical 2022 Setpoint control and thermal
comfort in humid climates Fanger’s

[24] Survey 2022 Analysis of the historic evolution
of thermal comfort -

[25] Survey 2022 Analysis of the effectiveness of
individual thermal comfort models -

[26] Technical 2022 Comparative comfort study
between rural and urban areas Fanger’s

[27] Technical 2023 Analysis of the subjective
parameters for thermal comfort Machine Learning

[28] Technical 2023 Physiological-based model for
thermal comfort Fanger’s

This work Technical 2023 Decision-making system for
thermal comfort management Machine Learning
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3. Smart Avatar for Evaluating Thermal Comfort

To assess thermal comfort for users in Chile, it is important to consider the diversity
of the Chilean climate. The climate in Chile varies greatly due to its unique geography,
with the Andes mountains to the east and the Pacific Ocean to the west. Generally, Chile
can be divided into three distinct climate zones:

• The Northern desert region, which is hot and dry year-round, with very little rainfall
and cold nights.

• The Central Region, which has a Mediterranean climate with mild, rainy winters, and
hot, dry summers.

• The Southern region, which has a colder and wetter climate with more rain and snow.

The proposed smart avatar aims to contribute to the assessment of thermal comfort by
leveraging data-driven decision-making and ML techniques. The main motivation of this
design is to develop an intelligent tool that evaluates and enhances the thermal comfort
experience for users in various environments. This system is shown in Figure 1. First, by
using Rhino’s Grasshopper and ClimateStudio plug-ins for energy-based thermal analysis
(educational license), environmental data for different regions of the Chilean geography
were generated and stored. According to ANSI/ASHRAE Standard 55-2020, nine variables
are of relevant interest: external and internal temperature, external and internal humidity,
air speed, metabolic rate, clothes, and the PMV (the index to evaluate the thermal comfort
of users). Data from the cities of Calama (North Desert), Valparaiso (Central Region),
Puerto Montt (South Region), and Punta Arenas (South Region) were used to train ML
models that fed an algorithm that makes decisions with the aim of maintaining thermal
comfort while saving energy. This algorithm emulates the intelligent user (avatar) living in
the developed Rhino structure. Data from the city of Santiago, located in the central region
and capital of Chile, were reserved for inferences to assess the system’s generalization. A
random forest (RF) regressor computed the PMV for every hour, and, based on the value
obtained, the system takes one decision among nine possible options. In addition, an LSTM
regressor was developed to forecast the value of the PMV for the next hour, which will
complement the current PMV calculation to determine the best decision to take at an instant
of time. The following subsections provide a detailed description of each component of the
proposed avatar.

TRAINING an	algorithm	to	predict	the	PMV of	an	
“Intelligent	Avatar”	using	MACHINE	LEARNING

Enables	an	
INTELLIGENT	
AVATAR	to	
enhance	thermal	
comfort	by	making	
human-like	
decisions	in	
houses.

PMV	PREDICTED	 PMV	FUTURE

Desicion	
Making

PMV
Study's	thermal	comfort	reference	

index	for	shoebox	occupant.	Dataset:	
43,800	data	points	from	5	Chilean	

climates.

SOURCE
CLIMATE	STUDIO.	Energy	

simulation	pluggin	for	Rhino	
software,	based	on	Energy	Plus+

Data-Driven	Smart	Avatar	for	Thermal	Comfort	Evaluation	in	Chile.

DATA	SET RESEARCH	
OBJECTIVE

HOW?
This	means	that	the	
avatar	would	open	
blinds,	windows,	

change its clothes or
its activity.

INTELLIGENT	AVATAR	adjusts	MET,	
CLO,	blinds,	windows,	airspeed,	and	
more	based	on	weather,	impacting	

energy	use.

INTELLIGENT	
AVATAR

Figure 1. Schematic of the proposed smart avatar.
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3.1. Modelling Assumptions

For this work, certain parameters were assumed in order to simulate the user be-
havior in a given structure, regardless of its location in Chile’s geography. The avatar’s
environment was modeled in Grasshopper, which offers a flexible and intuitive platform
for thermal comfort analysis in building design, thereby providing a wide range of analysis
tools and real-time feedback. Its seamless integration with Rhino and its visualization
capabilities enable data-driven decision-making and interdisciplinary collaboration for
sustainable building design. The structure under consideration was a shoe box measuring
3.0 m× 3.0 m× 2.4 m, including a window oriented to the north and two adiabatic walls.
This design closely resembles a standard bedroom in a typical residential building in Chile.

To determine the ground truth PMV of the user in this bedroom, a series of simulations
were conducted for each hour of the year that totaled 8760 h. The U-values for the building
envelope complied with the Chilean Regulation NCh-1079-2008 standards [29]. Then, the
plug-in ClimateStudio based Energy Plus+ (Educational licensed) was launched to evaluate
the PMV of the user in this room.

The software use these factors to calculate the PMV:

• The external T° and helative humidity (RH): these comprise theweather file.
• Thei nternal T° and RH: these entail software calculation.
• MET: this ranges from 0 to 1.
• CLO: ASHRAE 55-2020.
• Airspeed: this ranges from 0.5 to 1 m/s.

The MET value was set at a constant value of one, and the wind speed inside the room
was adjusted to vary between 0.5 to 1 m/s. However, it should be noted that the software
has a limitation. It only allows for a constant value for the MET parameter, meaning that the
user’s metabolic rate cannot be changed throughout the simulation and is assumed to be
the same. This limitation is significant, because the proposed smart avatar should account
for changes in the MET, which is something that a real person would naturally experience.

To address the variability in the CLO factor, which represents the insulation value of
clothing, the dynamic clothing method specified in ASHRAE 55-2020 (dynamic CLO)
was used. The CLO factor was determined based on the external temperature and
weather climate, thereby allowing for variations in clothing insulation according to the
prevailing conditions.

In this way, the ground truth PMV values and input parameters for training and
testing the ML models were developed.The dataset was generated using data from four
different Chilean climates, which were selected from the https://climate.onebuilding.org/
website (accessed on 5 September 2022). External temperature and relative humidity
directly influence the interior temperature and humidity, which are two key factors that
affect the PMV. The particular weathers were selected since they are markedly distinct from
each other and represent a range of latitudes (as classified by the Köppen system): cold
desert (Calama), Mediterranean coast (Valparaiso), oceanic (Puerto Montt) and sub-polar
oceanic (Punta Arenas). Furthermore, the model envelope was designed to conform to the
Chilean normative (Nch-1079-2008).

3.2. PMV Calculation

The proposed smart avatar bases on the PMV to take decisions. For computing the
PMV, a RF regressor was developed. The training pipeline of this model is shown in
Figure 2. Then input variable are as follows:

• External/internal temperature;
• External/internal relative humidity;
• MET;
• CLO;
• Airspeed.

https://climate.onebuilding.org/
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The RF model is a ML meta-estimator which fits a number of decision trees on different
sub-samples of a dataset and uses averaging to improve the accuracy of predictions and
reduce the overfitting. First, it randomly select a subset of the training data. Then, it builds
a decision tree on the subset of the training data and repeats these two steps multiple
times to create a forest of decision trees. To make a prediction, it passes the input data
through each decision tree in the forest and the average of the output values (since this
is a regression problem). Finally, the model returns the final prediction as the average or
mode of the individual predictions from all the trees [30]. The metrics used to evaluate the
system are the mean square error (MSE), root mean square minimum distance (RMSE), and
mean absolute error (MAE), which are shown in Equations (1)–(3), respectively.

Figure 2. Training pipeline for the proposed random forest regressor.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2), (1)

RMSE =
√

MSE, (2)

MAE =
1
n

n

∑
i=1
|yi − ŷi|, (3)

where n is the number of samples in the dataset, yi is the actual value of the i-th sample,
and ŷi is the predicted value of the i-th sample.

The process of randomly selecting a subset of the training data is called bagging
(bootstrap aggregating), and it helps to reduce overfitting by introducing variation into
the decision trees. Additionally, each decision tree is built by randomly selecting a subset
of features at each node, which further increases the diversity of the trees. The random
forest regressor can handle a large number of input features, can detect feature interactions,
and is relatively insensitive to outliers and irrelevant features. It is often used for regres-
sion problems where there are complex relationships between the input features and the
target variable.

A grid search was implemented to select the best combination and increase the per-
formance of the model. Furthermore, a feature importance analysis was made to evaluate
the impact of the input features in the model’s predictions [31]. In the proposed training
pipeline, a feature’s importance was calculated by permutation importance. This method
consisted of calculating the difference between a baseline score and the average score
obtained by permuting the corresponding column of the test set. A number of ten repeats
and the estimator’s default scorer were set to fit the permutation model.
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As ML excels at learning from data and adjusting predictions accordingly, the system
only need to sense and incorporate input parameters to achieve successful outcomes,
regardless of the building model or climate to which the building is exposed.

3.3. PMV Forecasting

To complement the decision-making process, the smart avatar also incorporates the
use of the future PMV. This model receives as input a sequence of the past PMV values with
a resolution of 1 h. In order to forecast these future PMV index values, a regression LSTM
network was employed. The long short-term memory network is a type of recurrent neural
network (RNN) that includes a memory cell with gated inputs, outputs, and feedback loops.
The main advantage is that it overcomes the issue of the vanishing gradient problem, which
is commonly observed in RNNs. The vanishing gradient problem occurs when gradient
information is lost or amplified and then propagated back through time. Therefore, LSTM
networks are better suited for time-series data [32,33]. Figure 3 represents an LSTM cell.

Figure 3. Structure of an LSTM cell.

To successfully predict, it performs computations in each of its four gates that are
given as follows:

• Forget gate: This decides which information to keep and which to discard from the
cell state. This is done by taking as the input the previous hidden state h(t− 1) and
the current input x(t), thereby producing a number between 0 and 1 for each element
of the cell state C(t− 1), as described in Equation (4):

f (t) = σ(W f [h(t− 1), x(t)] + b f ), (4)

where W f is the weight matrix for the forget gate, b f is the bias term, and σ is the
sigmoid activation function.

• Input gate: This adds new information that is selected and added to the cell state.
This is done by taking as input the previous hidden state h(t− 1) and the current
input x(t), thus producing a number between 0 and 1 for each element of the cell state
C(t− 1), as described in Equations (5) and (6):

i(t) = σ(Wi[h(t− 1), x(t)] + bi), (5)

Č(t) = tanh(Wc[h(t− 1), x(t)] + bc), (6)

where Wi is the weight matrix for the input gate, bi is the bias term, and tanh is the
hyperbolic tangent activation function. Č(t) is the new candidate cell state, which is
computed using a tanh activation function.
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• Update Cell State: With this gate, the next step is to update the cell state by combining
the information from the forget gate and the input gate. This is achieved using
Equation (7):

C(t) = f (t) ∗ C(t− 1) + i(t) ∗ Č(t), (7)

where ∗ denotes element-wise multiplication.
• Output Gate: This decides which information to output from the cell state. This is

achieved as described in Equations (8) and (9)

o(t) = σ(Wo[h(t− 1), x(t)] + bo), (8)

h(t) = o(t) ∗ tanh(C(t)), (9)

where Wo is the weight matrix for the output gate, bo is the bias term, and h(t) is the
output of the LSTM cell.

The proposed training pipeline is shown in Figure 4. A sequence of the past PMV
values is formed, normalized using Equation (10), and inputted into the LSTM.

Xscaled =
X− Xmin

Xmax − Xmin
. (10)

The regression network contains an input LSTM layer with as many cells as the length
of the sequences formed. In addition, it includes a hidden LSTM layer of 100 cells and an
output dense layer of one neuron, which correspond to the predicted value.

Normalization Train

Evaluate model 
(MSE, RMSE)

SAVE modelLOAD model

PREDICT

Figure 4. Training pipeline of the proposed LSTM forecasting model.

3.4. Decision-Making Algorithm

Once the PMV computation models are trained, they are feed a decision-making
algorithm that aims to guarantee the comfort of the users and behave as the smart avatar of
a user living in the shoe-box simulated in Rhino Grasshopper. It is a rule-based algorithm,
which allows for determining the following decisions:

• The turn ON/OFF of the AC;
• The turn ON/OFF of the heater;
• The Dress/Undress;
• The Open/Close of the window;
• Do nothing.
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The last decisions (dress/undress, open/close the window, and do nothing) are in-
troduced in the system to help reducing the total power consumption of the house. The
proposed system emulates a user who lives in the simulated structure. Therefore, the
objective of the decision-making algorithm is not to recommend or give instructions to
users living in this environment, but to emulate actions that a person would do in the same
situation. It is assumed that the person will always take the best decision aiming to achieve
energy efficiency while maintaining comfort.

Figure 5 shows the flow diagram of the proposed algorithm. Every time an input
feature is available, i.e., for every hour related to the given data resolution, the PMV is
calculated using the RF model. Then, based on the range of the value obtained, decisions
are taken. If −0.5 < PMV < 0.5, no action is needed, since this range means that the
person feels comfort (not feeling cold or hot). For values above 1 or below −1, the AC or
the heater, respectively, will be used. In the cases where the weather is slightly cold or
hot, i.e., −1 ≤ PMV < −0.5 or 0.5 ≤ PMV < 1, another analysis is made. In order to
save energy while maintaining comfort, the system decides between opening or closing a
window; when it is slightly cold the window closes, and when it is slightly hot, a window
is opened. These decisions are recommendations that are intended to reduce consumption.
To do that, two input parameters (CLO and airspeed, which are directly related with these
actions), are modified, and the RF model predicts the value of the PMV in case where one
of these decisions are taken. To complement the best decision, the LSTM network predicts
the future behavior of the PMV for each possible decision. The input parameter that leads
to the best results, based on the range of the PMV obtained, will define the decision taken.
Another factor that influence the decisions or actions taken is the time of the day under
which the system is working. If it is night, recommendations like open/close a window
or dress/undress will not have a meaning, since, mostly during night, users are resting;
therefore, performing such tasks will be an inconvenience for them.

Figure 5. Flow diagram of the proposed decision-making algorithm.

4. Results

THe results obtained are divided in three groups to be detailed in the next subsections.
First, we cover the analysis of the RF model predictions and the feature importance. Then,
the forecasting results with the LSTM network and the decision taken are shown. All data
used were generated in the Grasshopper Rhino simulation considering the cities of Calama,
Puerto Montt, Valparaiso, Punta Arenas, and Santiago. The time resolution among samples
was one hour, and all data were stored in .csv files for further experiments in JupyterLab
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using the Python language. Table 2 shows a short subset of the dataset formed, which
includes the time, the ground truth PMV values, and all input variables for the ML models,
such as external/internal temperature and humidity, metabolic rate, clothes, and airspeed.
The total amount of data correspond to a year. The column named City corresponds with
the name of the city that was simulated. From these data, three sets of data were formed:
a training set (80% of the data), a validation set (10% of the data), and a test set (10% of
the data).

Table 2. Training set obtained after mixing data from Calama, Puerto Montt, Valparaiso, and Punta
Arenas.

Time T_Ext HR_Ext T_Int HR_Int MET CLO Airspeed PMV City

08-29 00:00:00 + 00:00 10.0 9.0 25.98 100.0 1.0 0.59 0.5 −0.391177 Calama

08-19 14:00:00 + 00:00 13.0 77.0 23.87 99.64 1.0 0.56 0.5 −1.313404 Puerto Montt

12-31 19:00:00 + 00:00 11.6 75.0 0.20 99.7 1.0 0.58 0.5 −1.300000 Punta Arenas

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

05-23 04:00:00 + 00:00 −1.0 92.0 17.32 97.9 1.0 0.85 0.5 −2.831195 Puerto Montt

10-08 03:00:00 + 00:00 4.0 69.0 18.5 100.0 1.0 0.67 0.5 −2.900000 Punta Arenas

Note: T_Ext: external temperature; T_Int: internal temperature; HR_Ext: external relative humidity; HR_Int:
internal relative humidity.

4.1. PMV Prediction and Feature Importance

To improve the performance of the RF model, a grid search was implemented to find
the best combination of hyperparameters. The set of hyperparameters used to train the RF
model are shown in Table 3, where we highlight in bold the best combination obtained.
Once finished, a feature importance analysis, based on permutation importance, was de-
ployed to have a better understanding of the impact of the input features on the predictions
made. The results of this analysis are shown in Figure 6. The internal temperature was the
input parameter with a higher influence on the PMV prediction, thus meaning that this
feature was indispensable for this problem, i.e., it cannot be omitted. On the other hand,
the rest of the feature impacts were relatively similar, having considerably less impact than
the internal temperature. This is due to the fact that this feature has limited variability in
the training set.

Figure 6. Impact of the input features on the PMV.

Table 3. Hyperparameter grid to search over to improve performance of the RF model.

n_estimators max_depth min_samples_split min_samples_leaf

50, 100, 200 2, 5, 10, None 2, 5, 10 1, 2, 4
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Figure 7 shows the predicted PMV values compared to the ground truth obtained
with the RF model. With an RMSE of 0.54 and an MAE of 0.28, the model offers good
performance and reliable results over the test set.

(a)

(b)

(c)

(d)

Figure 7. Performance of the random forest regressor in the test set with the combination of hy-
perparameters obtained for Calama, Valparaiso, Puerto Montt, and Punta Arenas. (a) Calama city.
(b) Valparaiso city. (c) Puerto Montt city. (d) Punta Arenas city.

To test the model’s generalization, data that were not in the training set corresponding
to the city of Santiago were inputted into the model. The results obtained show an RMSE
of 1.64 and an MAE 0.98, which indicates a poor performance when faced with new data.
Therefore, in order to be applied in a new city or climate, the model needed to be retrained.
These results are shown in Figure 8.
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Figure 8. Performance of the random forest regressor with data from the city of Santiago, which were
not included in the training set.

4.2. Forecasting with LSTM

To complement decisions, an LSTM network was deployed to forecast the PMV for the
next hour using only a sequence of past values. Once the model architecture was designed,
a sensitivity analysis of the hyperparameters that influenced the performance of the neural
network was carried out. The metrics used to evaluate the system were the MSE, RMSE,
and MAE, which were similar to the RF for the PMV calculation, since forecasting is also a
regression problem.

Table 4 shows the performed sensitivity analysis. The input length (sequence length),
number of layers, number of neurons, iterations, and batch size were varied following
a manual tuning approach, thus retraining the model with different combinations of
hyperparameters. To evaluate theresults, the MSE, RMSE, and MAE were used. The
best combination was obtained with an input size of six, an LSTM and dense layers of
100 cells, and one neuron, respectively, as well as 200 iterations and a batch of 64 samples,
as there was no overfitting (i.e., the difference between the training MSE and validation).
With the rest of the combinations, the results were acceptable with a very slight tendency
toward overfitting. It should be noted that with a size 3 sequence, the results are reliable;
thus, the system could predict with only three previous PMV samples if necessary. A
computationally light model was also sought; therefore, variants that slightly improved the
results but used more resources (i.e., layers and neurons) were discarded. The best training
hyperparameters are highlighted in bold.

Table 4. Sensitivity analysis of the LSTM network main hyperparameters.

Input Size Layers Neurons Epochs Batch MSE (Train.) MSE (Val.) RMSE MAE

5 LSTM/Dense 100 200 64 0.002 0.003 0.055 0.032

10 LSTM/Dense 100 200 64 0.002 0.003 0.054 0.033

6 LSTM/Dense 100 200 64 0.002 0.002 0.050 0.025

3 LSTM/Dense 100 200 64 0.003 0.004 0.055 0.034

6 LSTM/Dense 50 200 64 0.002 0.002 0.051 0.026

6 LSTM/Dense 200 200 64 0.002 0.002 0.050 0.026

6
LSTM/LSTM/

Dense 100/50 200 64 0.002 0.002 0.050 0.026

6
LSTM/LSTM/
Dense/Dense 100/50/50 200 64 0.002 0.002 0.049 0.024

6 LSTM/Dense 100 300 64 0.002 0.003 0.051 0.025

6 LSTM/Dense 100 600 64 0.002 0.003 0.051 0.026

6 LSTM/Dense 100 200 32 0.002 0.003 0.050 0.025

6 LSTM/Dense 100 200 128 0.002 0.002 0.051 0.025

Figure 9 shows a comparative between the predictions made and the ground truth
values. The results showed a very good performance over the test set with an RMSE of
0.051 and an MAE 0.025. As input sequence is scaled between 0 and 1, predictions are, on
average, off by 0.051 units on the same scale. Complementing with the MAE, this suggests
that the LSTM predictions are, on average, off by 0.025 units in absolute terms and off by
0.051 units in terms of squared errors. Similarly to the analysis made for the RF model, to
assess the generalization of the LSTM forecasting model, data from the city of Santiago were
inputted into the model. In this case, the model showed competitive performance with
an RMSE of 0.088 and an MAE of 0.057. This translates into an acceptable generalization
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capacity, thereby being able to apply the model in new climates, regardless of the variation
in certain parameters such as airspeed. These results are shown in Figure 10.

(a)

(b)

(c)

(d)

Figure 9. Performance of the LSTM regression network in the test set with the combination of
hyperparameters obtained for Calama, Valparaiso, Puerto Montt, and Punta Arenas. (a) Calama city.
(b) Valparaiso city. (c) Puerto Montt city. (d) Punta Arenas city.

Figure 10. Performance of the LSTM network with data from the city of Santiago, which were not
included in the training set.

4.3. Decision-Making

Once the MLs were trained, they were both integrated to the decision-making algo-
rithm to build the smart avatar of a user living the shoe-box structure. Figures 11–14 show
a comparison of four randomly selected days, one per season of the year, for each of the
cities considered in the training set. In this case, Santiago was not included, since the data
from this city were only used to test the machine learning model generalization capacity.
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Generally speaking, the results reflected the actions taken by the proposed avatar, which
showed a high dependence of thermal comfort on appliances, such as the heater and AC.
This means that, in order to achieve the satisfaction of a user in a certain environment, a
higher demand of power consumption is required, which is usually not convenient for
users and service providers. Actions such as opening a window or putting on more clothes
can help diminish consumption, especially in summer and spring seasons with higher
temperatures; however, this actions are not considered for several days during winter,
when the lower temperatures force the system to always have the heater on.

For each city, the usage frequency of the heater and AC was obtained. In addition, the
performance frequency of alternative actions such as dress/undress and/open/close the
window was also obtained. With this information, it was possible to obtain the rate that
alternative actions represented from the total actions taken. In this way, the effects of user
behavior intending to achieve thermal comfort could be quantified.

(a) (b)

(c) (d)

Figure 11. Decisions taken by the smart avatar during a day of each season of the year in Calama.
Summer on 16 February, Autumn on 2 May, Winter on 29 July, and Spring on 30 October. These dates
were selected based on the seasonal calendar in the Southern Hemisphere. Each activity performed is
represented in a different color. (a) Calama—Summer. (b) Calama—Winter. (c) Calama—Autumn.
(d) Calama—Spring.

Particularly, in Calama (northern desert), Figure 11, hot temperatures during the day
and colder temperatures during the nights made the use of the AC and heater a routine
(used a total of 3395 and 2812, respectively, during the whole year). Even in winter days in
which temperatures are a little bit colder, the AC had to be used in order to achieve comfort.
In this city, the use of alternatives represented a 9.7% of the total decisions taken, which
translates into an almost 10% of time in which energy was being saved. On the other hand,
the time in which no action was needed representws a 21.5% for the entire year, meaning
that the structure of the building made the environment comfortable enough to withstand
those temperatures. These statistics are given in Table 5.
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(a) (b)

(c) (d)

Figure 12. Decisions taken by the smart avatar during a day of each season of the year in Valparaiso.
Summer on 16 February, Autumn on 2 May, Winter on 29 July, and Spring on 30 October. These
dates were selected based on the seasonal calendar in the Southern Hemisphere. Each activity
performed is represented in a different color. (a) Valparaiso—Summer. (b) Valparaiso—Winter.
(c) Valparaiso—Autumn. (d) Valparaiso—Spring.

For the city of Valparaiso (central region), Figure 12 shows a considerable usage of the
AC (3034 times during the year), most significantly during summer season. In contrast, the
heater was slightly less used than in Calama, being turned on 1326 times, which is explained
by the cool temperatures and Mediterranean climate of the fifth region, in which the city
Valparaiso is the capital. During the year of simulation, alternative recommendations such
as dressing or undressing represented 12.4%, and the frequency of ‘Do Nothing’ increased
as well with respect to Calama, being around the 50.5% of the total amount of actions
taken. This means that the relationship between climate of the region and the building
structure played a more determinant role in this case, thereby saving energy while keeping
the user satisfied.

For the city of Puerto Montt (southern region), Figure 13, the colder and wetter climate
made the smart avatar practically use the heater all the time on certain days (5599 times
in total during the year), including in the spring and summer. Only during the summer
and fall were recommendations such as dressing having a higher impact on the results.
In this case, alternative actions accumulated a frequency of 9.5%, and the times where
no action was needed had a frequency of 14.1%. A similar situation happened in Punta
Arenas (southern region), Figure 14, where ‘Heater ON’ was the most common action taken
(6258 times) during all seasons. In this city, temperatures are even colder than Puerto Montt,
since it is a city near the southernmost tip of Chilean Patagonia; therefore, rain and snow
are quite usual. The percentage of alternative actions taken here was around an 11%, while,
for the times no action needed to be implemented, it 9.6%. In this case, extreme conditions
made it difficult to maintain a balance between energy savings and user comfort; therefore,
a higher power consumption was needed when user comfort was a priority. However,
for 11% of the time, energy was saved by following alternative recommendations, such as
dressing and undressing, which translated into adding or removing a piece of clothing. All
frequency percentage rates of the possible actions to take explained above are shown in
Figure 15.
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(a) (b)

(c) (d)

Figure 13. Decisions taken by the smart avatar during a day of each season of the year in Puerto
Montt. Summer on 16 February, Autumn on 2 May, Winter on 29 July, and Spring on 30 October.
These dates were selected based on the seasonal calendar in the Southern Hemisphere. Each activity
performed is represented in a different color. (a) Puerto Montt—Summer, (b) Puerto Montt—Winter,
(c) Puerto Montt—Autumn, (d) Puerto Montt—Spring.

(a) (b)

(c) (d)

Figure 14. Decisions taken by the smart avatar during a day of each season of the year in Punta
Arenas. Summer on 16 February, Autumn on 2 May, Winter on 29 July, and Spring on 30 October.
These dates were selected based on the seasonal calendar in the Southern Hemisphere. Each activity
performed is represented in a different color. (a) Punta Arenas—Summer. (b) Punta Arenas—Winter.
(c) Punta Arenas—Autumn. (d) Punta Arenas—Spring.
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Table 5. Frequency of the actions taken per each city in the training set.

City Heater ON Heater OFF AC ON AC OFF Dress Close Win. Undress Open Win. Do Nothing

Calama 2812 2 3395 0 260 0 587 0 1704

Valparaiso 1326 1 3034 0 234 0 859 0 3306

Puerto Montt 5599 0 1139 0 459 0 376 0 1187

Punta Arenas 6258 5 681 1 652 0 310 0 853

(a) (b)

(c) (d)

Figure 15. Frequency percentage rates of actions taken by the smart avatar in every city considered
in the training set. (a) Calama. (b) Valparaiso. (c) Puerto Montt. (d) Punta Arenas.

5. Discussion

The proposed smart avatar bases on computing and predicting the future behavior of
the PMV for an experimental room that can be located in distinct zones of diverse Chilean
geography. By using ML techniques, the proposed system can potentially capture the
complex and nuanced interactions between various factors that influence thermal comfort
within specific buildings. In our case, these factors included the external and internal
temperature and relative humidity, metabolic rate (MET), clothes (CLO), and airspeed.
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As a result, the system only needed to sense and incorporate these parameters to achieve
successful outcomes, irrespective of the climate to which the building was exposed.

It is a user-oriented approach that brings the potential to enhance comfort, energy
efficiency, and user satisfaction. By leveraging the data analysis, ML, and personalized
feedback, it helps create a more comfortable and user-centric solution to thermal comfort
evaluation and management. Although the performance of the RF regressor can be im-
proved, acceptable results were obtained with an RMSE of 0.54. In this regard, the main
constraint was the model’s generalization, because, when faced with new data from a
different city, the results were unreliable. To overcome this issue, a wider dataset needs to
be developed that includes data from a larger number of cities.

Regarding the PMV forecasting, the LSTM performance was better than that of the
RF in terms of the metrics obtained: an RMSE of 0.051 and an MAE of 0.025. In addition,
this model exhibited good performance for new data, that is, acceptable generalization
capacity with an RMSE of 0.088 in the city of Santiago. With only a sequence of past values,
whose size could be modified in the range of 3–10 without a considerable negative impact
on the results, the proposed model could provide reliable results. This means that, based
on a database of PMV values, it is possible to obtain the PMV of the user independent of
the geographic zone of residence. The traditional method for evaluating thermal comfort
requires variables that depend on human perception (clothing and metabolism rate), which
implies that it is a computationally complex and expensive procedure. Consequently, the
proposed model can help overcome the issues of the traditional methods related to their
dependence on subjective parameters. However, to do this, it is necessary to have previous
knowledge of the PMV behavior in the first place, which represents a challenge and is
difficult to obtain without any knowledge of the traditional input parameters: temperature,
humidity, metabolic rate, airspeed, and clothes.

For decision making, the results were reasonable given the diverse climatic conditions
that exist in Chile. It is important to note that alternative recommendations, such as
opening a window, dressing, or undressing, were selected sequentially after the prediction
process. In every tested scenario, the PMV results modifying the CLO and airspeed
parameters were almost identical. Hence, the avatar selection was the one with the best
future behavior, which, in all cases, was obtained after adding or subtracting clothes. These
are the main reasons why open or closed windows were never selected; however, the
avatar always considered these options. In addition, when deciding among the alternative
recommendations, the avatar only analyzed the case when the user added or removed
a piece of clothing once, because adding or removing more than two or more can be
uncomfortable and, in some cases, inconvenient. To overcome these issues, exploring
reinforcement learning-based approaches can be useful. This could also be convenient for
the model to learn the behavioral patterns of users and adapt better to the characteristics of
every climate. However, with the proposed algorithm over the entire year, a considerable
percentage of the time thermal comfort was achieved without consuming energy: 31.2% of
the time in a desert such as Calama, 69.2% for Valparaiso, and 23.6% and for the southern
cities of Puerto Montt and Punta Arenas, respectively. These percentages represent the total
percentage of alternative actions and the times when no action was required. At this rate,
the structure of the house played a significant role. Therefore, the design and construction
of a house can affect factors, such as heat transfer, air circulation, and insulation, all of which
contribute to user satisfaction with the environment. For example, in cities such as Calama,
the orientation of the house can affect the amount of sunlight it receives throughout the day,
which can impact the internal temperature. The number and placement of windows can
also affect the amount of natural light and ventilation, which can affect the thermal comfort.

It is important to emphasize that the primary goal of this research was to develop
a user-centric approach by creating a smart avatar that emulated the experiences of an
individual living in a simulated environment. This innovative solution allows for the
enhancement of existing simulation tools by incorporating valuable insights into user
preferences, which are often overlooked in such software. Hence, certain assumptions were
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made. However, it is acknowledged that further research is necessary to explore additional
parameters and metrics, such as the PPD, to develop a more comprehensive and robust
solution. By considering these factors, it will be possible to assess the impact of smart home
technologies, such as home energy management systems (HEMS), on the daily routine of
occupants. Additionally, as this is a simulation-based approach, the research only focused
on the frequency usage of air conditioning (AC) and heater. The values of active power and
other electrical variables remain out of the scope of this paper. An increase in the energy
consumption was attributed to the activation of these appliances, regardless of the varying
power consumption levels that they may exhibit as multi-state devices.

The next step in this work was to apply the ML algorithm directly in Grasshopper
using Python. Once the ML was integrated into the Grasshopper and Rhino platform, the
following stage was to improve the decision-making process by making it autonomous and
by relying on reinforcement learning techniques. This algorithm allowed to understand
multiple variations in the energy consumption of users. However, the process still needs
improvement, since the energy simulation software does not allow for the free modification
of the MET, blinds, and airspeed (opened and closed windows). These inputs were pre-set
before the simulation using a schedule with hourly values between 0 and 1 for the whole
year. While this method is acceptable for general calculations, it does not work to train our
smart avatar.

To test whether an smart avatar would save energy in buildings by taking actions to
improve thermal comfort (PMV), energy simulation plugins must incorporate modifications
in their program structure to allow for the free modification of the MET and CLO values
for PMV calculations. Alternatively, its necessary to design another plugin to evaluate
the energy consumption in buildings using the proposed system. Furthermore, the smart
avatar could interact as a normal human within rooms, thus taking actions to improve
its comfort levels and engaging in activities with different metabolic rates. In fact, this
avatar could have different characteristics, such as gender, age, profession, interests, and
environmental knowledge, to establish which of these factors could save more energy
by classification.

With the integration of ML, the smart avatar can learn and adapt to user behaviors
and preferences over time. This would enable the avatar to make recommendations
that align with the user’s goals while also considering energy-saving opportunities. By
including diverse characteristics, the smart avatar can be personalized to represent a
variety of occupants and improve the accuracy of the energy consumption model. In
order to achieve this, the energy simulation plugins must incorporate a dynamic and
adaptable algorithm that can respond to changes in user behavior and preferences. By
incorporating ML and character into the energy consumption model, the smart avatar has
the potential to significantly reduce energy consumption in buildings while enhancing user
comfort levels. This approach represents an exciting development in the field of sustainable
building design and has the potential to revolutionize the way we think about building
energy consumption.

6. Conclusions

In this work, a smart avatar was developed that aimed to provide a user-centric
approach which allowed for the evaluation of thermal comfort in an experimental room,
which could be located in different regions of Chile. The proposed avatar was based on the
PMV, thus computing this value through environmental and physical parameters such as
temperature, humidity, airspeed, metabolic rate, and clothes. Among them, the internal
temperature was the most relevant variable, which could not be omitted in this type of
analysis. the data from four cities with different climatic conditions in Chile were used to
train a random forest regressor to compute the hourly PMV. The data were generated using
Rhino Grasshopper modelling a 3.0 m × 3.0 m × 2.4 m shoe-box with two adiabatic walls,
which closely resembled a standard bedroom in a typical residential building in Chile. The
RF regressor showed good performanceby reaching an RMSE of 0.54 and an MAE of 0.28.
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In addition, an LSTM network was trained to forecast the future behavior of the PMV and
help a decision-making algorithm select the proper action to reduce energy consumption
while maintaining the comfort. The LSTM achieved an RMSE of 0.051 and an MAE of 0.025.
On the other hand, the avatar’s decision-making algorithm was based on the current and
next-hour PMVs to implement actions related to power consumption, such as turning the
AC or heater ON/OFF, recommendations such as dressing/undressing, opening/closing
the window, and by doing nothing in the case that no action was needed. These last actions
helped save energy by 31.2% of the time in Calama, 69.2% in Valparaiso, and 23.6 % in
the southern cities of Puerto Montt and Punta Arena, respectively. Therefore, achieving
thermal comfort may require an increase in power consumption that depends on the user’s
previous behavior patterns.

The results showed that, by using ML, the PMV can be forecasted accurately, thus
offering an alternative to other simulations that rely on different parameters and external
weather data, which may not always be available. ML techniques proved to be reliable for
the PMV calculation and thermal comfort assessment. With this solution, the impact of ther-
mal comfort maintenance can be accounted to consider user interests. This new approach
allows architects and climate engineers to know the PMV from a different perspective;
however, there is still room for improvement. It is necessary to explore more datasets
and simulations by modifying the MET values and airspeed within the room to get more
information about the user. Due to software limitations, these values remained constant
throughout the year for the proposed avatar. However, the way to get results is still reliable.
Taking into account other actions that are not related to appliances can overcome this issue.
Future work will focus on improving the generalizability of the ML models and exploring
new alternatives for decision making, such as reinforcement-learning-based solutions. In
addition, other parameters such as the PPD will be considered to develop a more robust
solution that emulates a digital twin of Chilean users.
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Abbreviations
The following abbreviations are used in this manuscript:

HVAC Heating, Ventilation, and Air Conditioning
SET Standard Effective Temperature
TSV Thermal Sensation Vote
PPD Predicted Percentage Dissatified
PMV Predicted Mean Vote
CLO Clothing
MET Metabolic Rate
ML Machine Learning
LSTM Long Short-Term Memory
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OTS Observed Thermal Sensation
TS Thermal Sensation
AC Air Conditioning Unit
TCC Thermal-Comfort-Based Controller
RF Random Forest
MSE Mean Square Error
RMSE Root Mean Square Error
MAE Mean Absolute Error
HEMS Home Energy Management System
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