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Abstract: Rail-transit hub classification in TOD refers to the categorization of transit stations based
on their level of connectivity and ridership and the potential for development around them as part of
a Transit-Oriented Development (TOD) strategy. TOD, as an essential concept in developing smart
cities and public transportation accessibility, has attracted the focus of many policymakers. To this
end, many research projects have been dedicated to classifying the rail-transit stations, although the
necessity of integrated models for rail-transit hubs could have been mentioned in previous papers.
Therefore, this parametric case study is directed to apply the Node–Place–Ridership–Time (NPRT)
model to provide a logical classification model for Chengdu rail-transit hubs at the junctions of
high-speed railway and subway stations. Multiple Linear Regression (MLR) provided a series of
equations, including the effective parameters of the NPRT model. These equations were then verified
by the Artificial Neural Network (ANN) to provide the effect of each node and place values on the
integrated ridership of rail-transit hubs in different time periods. The results proved the consistent
contribution of the integrated ANN-NPRT-HUB algorithm to the TOD concept for smart cities.

Keywords: rail-transit hub; TOD; smart cities; NPRT model; ANN

1. Introduction

A rail-transit hub is a transportation center where different modes of rail-based trans-
portation intersect and connect, such as commuter trains, subways, light rail, and high-
speed trains. These hubs are designed to facilitate the transfer of passengers and goods
between different rail lines and modes of transportation and provide access to other forms
of transportation, such as buses, taxis, and bicycles. Rail-transit hubs are typically located
in urban areas and are often designed as multi-level structures with multiple platforms,
tracks, and concourses. They may also include retail, dining, and other amenities to serve
the needs of passengers and visitors. Examples of well-known rail-transit hubs include
Grand Central Terminal in New York City, Gare du Nord in Paris, and Shinjuku Station in
Tokyo. These hubs are critical transportation network components, providing a convenient
and efficient way for people to move within and between cities and regions. Rail transit
networks highlight the efficiency of public transportation in reducing air pollution and
urban traffic loads, especially in developed cities such as Beijing, Shanghai, Chengdu, and
New York [1–3].

A smart city is a concept that refers to the integration of technology and data-driven
solutions to improve the quality of life, sustainability, and efficiency of urban areas. It uses
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advanced technologies, such as the Internet of Things (IoT), artificial intelligence (AI), and
data analytics, to optimize various aspects of urban living, including transportation, energy,
governance, infrastructure, and public services. The classification of railway transportation
hubs using ANN, combined with a TOD approach, can help optimize urban transportation,
enhance mobility services, improve real-time monitoring and management, and promote
sustainable urban development. These elements collectively contribute to the development
of smart cities by leveraging technology and data-driven solutions for a better urban
living experience.

Critical stations, having the most significant impact on the rail transit network, are
essential to smart cities’ transportation accessibility. These influential nodes could create
critical areas, including other stations and rail-transit hubs, around themselves to facilitate
the highly in-demand ridership destinations. Therefore, an accurate classification method
for policymakers and city planners sounds vital to evaluate rail-transit hubs’ efficiency,
especially in smart cities where people are encouraged daily to apply public transportation
to reach their final destinations.

Transit-Oriented Development (TOD), as an applicable concept for developing smart
cities and providing more access to public transportation, has attracted the attention of
considerable researchers and municipal governments. TOD approaches supplement the
analysis of the node function of the transit hubs, with a focus on the urban context often
captured in the idea of place. To date, considerable research works have been conducted to
propose station classification methods, such as Node–Place (NP) in 1999 [4], Node–Place–
Ridership (NPR) in 2020 [5], and Node–Place–Ridership–Time (NPRT) in 2022 [6]. The NP
model proposed by Bertolini provided a simple two-dimensional model for classifying
stations with regards to their node and place values. According to this model, each
station has five significant classes: Stress, Balance, Dependence, Unbalanced node, and
unbalanced place.

Although NP was used for many years, ridership as a critical indicator did not receive
any attention in this model. Therefore, Zhejing Cao et al. [5] proposed a new idea of
considering ridership and creating a three-dimensional model of NPR. Their proposed
model was comparably more accurate than the NP model, but the ridership was considered
an independent value that could not prove the precise classification results that Ahad
A. Pishro produced in 2022 [6]. Hence, we directed a research project on the effect of
time as a critical indication of ridership and proposed a four-dimensional model of NPRT.
A comprehensive analysis and comparison between NP, NPR, and NPRT models verified
the logically accurate classification results for rail transit stations extracted from the NPRT
model. In other words, the ridership is a dependent factor and varies during different
time categories over weekdays and weekends [6]. This approach stream aims to enrich
the initial NP model with key variables describing hubs and transit stations in their urban
context, as an alternative to developing a complete transport model. Inspiration is also
taken from the TOD literature with 3Ds and additional parameters [7–9]. Although all of
the mentioned models have tried to provide classification methods, their focus was on
stations and not hubs. An in-depth review of the existing literature showed the importance
of having a precise hub rail transit classification method since the previous researchers have
not achieved enough progress to propose a four-dimensional model for hubs in smart cities.

Many researchers tried to extend the classification models for a broader scale of rail
transit networks by considering the high degree of centrality, betweenness, and topology
property indexes while the ridership was neglected [10–12]. Zhang et al. [13] investi-
gated the importance of transfer stations in the entire network. Wang et al. [14] applied
the participation and z-score coefficient to determine the critical stations of the network
in Dublin.

The classification of rail-transit hubs in TOD research is vital for effective planning,
land use decision-making, understanding transit demand, promoting equity, and evaluat-
ing system performance. It provides a framework for analyzing and addressing the diverse
needs of communities and facilitates the creation of sustainable, accessible, and efficient
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transportation systems. Classifying rail-transit hubs is crucial for understanding their
characteristics and functionalities and guiding effective station design and infrastructure
development. By categorizing hubs based on size, capacity, connectivity, and accessibility,
planners and designers can make informed decisions regarding platform design, pedes-
trian flow management, parking facilities, and integration with other transportation modes.
Additionally, hub classification is vital in determining land use patterns and enabling
tailored land use policies and regulations that promote transit-supportive development,
including mixed-use developments, higher density, and pedestrian-friendly environments.
Understanding transit ridership and demand patterns is facilitated through station and
hub classification, allowing researchers to analyze location, connectivity, proximity to
residential and commercial areas, and parking availability, providing valuable insights for
investment prioritization, resource allocation, and service planning. Moreover, hub classifi-
cation helps identify disparities in transit access, facilitating efforts to address inequities
through station improvements, equitable resource distribution, and targeted investments in
underserved areas. Lastly, it supports performance evaluation by comparing metrics such
as ridership, efficiency, service quality, and customer satisfaction across hub categories,
allowing for benchmarking and targeted interventions to enhance the overall performance
of rail transit systems.

This research considered the Chengdu rail transit network as the case study to inves-
tigate the NPRT algorithm for classifying the rail-transit hubs and study the correlations
between the NPRT effective parameters. The Min–Max normalization method and the
integrated NPRT values provided a reliable database for this study. Moreover, an Artificial
Neural Network (ANN) was applied to predict and evaluate the results of our proposed
NPRT-HUB model. The outcomes of this research aimed to provide new insight into the
TOD concept with an exclusive focus on rail transit networks. These results can be imple-
mented by municipal governments, city planners, and policymakers to adapt and improve
the efficiency of their rail transit networks.

2. Methodology and Data Acquisition
2.1. Approach

This research is a case study on the Chengdu city rail transit network. Four hub district
sizes were identified according to the results of questionnaires and statistical data collected
from the riders, residents, and real estate. Each hub includes active rail transit stations
which connect the whole district to the hub center. The hubs’ arrangement was assigned
according to the counterclockwise direction starting from North. Regarding the statistical
data and the questionnaire results, after several trials of integrating the stations’ data and
applying the Min–Max normalization method, a 3000 m radius was set as the right active
radius for the hubs.

Table 1 presents more details for our case study hubs. The Chengdu rail transit
network, including four hubs, is shown in Figure 1.

Table 1. Chengdu rail-transit hubs.

Rail-Transit Hub Active Radius (m) Central Location

Hub 1 3000 North Railway Station

Hub 2 3000 West Railway Station

Hub 3 3000 South Railway Station

Hub 4 3000 East Railway Station

We integrated the stations’ data and applied Min-Max normalization to provide
a reliable database for each hub.
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In this study, we employed a comprehensive methodology to analyze and classify
rail-transit hubs using various data analysis techniques. First, we applied Min–Max Nor-
malization to standardize the range of our data attributes, ensuring fair comparisons and
preventing any attribute from dominating the classification process due to its scale. This
normalization technique transformed the attribute values to a standard range between 0
and 1.

To determine the relative importance of attributes in the classification task, we utilized
the Improved Entropy Weight (IEW) method. We assessed their diversity and randomness
by calculating the entropy for each attribute. Lower entropy values indicated attributes
with higher uniformity and specific information for classification. We assigned weights to
the attributes based on these values, emphasizing those with lower entropy values. The
attribute weights were then normalized to ensure meaningful comparisons and summing
up to 1.

Next, we employed the Multiple Linear Regression (MLR) algorithms to build a classi-
fication model for rail-transit hubs. MLR allowed us to learn the linear relationship between
input features (attributes) and the target variable (rail-transit hub classification). The at-
tribute weights obtained from the IEW method were incorporated into the MLR model,
giving higher importance to attributes with lower entropy during the training process.

To evaluate the performance of the MLR model, we utilized several metrics. Mean
Squared Error (MSE) measured the average squared difference between the predicted and
actual classification values, reflecting the model’s accuracy. R2 (coefficient of determination)
indicated the proportion of variance in the target variable that the MLR model could explain.
Adjusted R2 adjusted for the number of predictors, considering the model’s complexity
and preventing overfitting.

We calculated the Variance Inflation Factor (VIF) to assess multicollinearity, which
helped identify attributes with high intercorrelations that might impact the model’s stability



Buildings 2023, 13, 1944 5 of 24

and interpretability. Additionally, we employed statistical tests such as the F-Test and T-Test
to evaluate the overall significance of the MLR model and the individual significance of
the attribute coefficients, respectively. Finally, ANN was applied to predict and verify
the results.

By integrating Min–Max Normalization, IEW, MLR, MSE, R2, Adjusted R2, VIF, F-Test,
and T-test into our analysis pipeline, we gained insights into the classification of rail-
transit hubs. These techniques allowed us to preprocess and normalize the data, determine
attribute weights, build a classification model, assess its performance and significance, and
address potential multicollinearity issues. This comprehensive approach provided a robust
framework for analyzing and classifying rail-transit hubs.

This study advocates for a paradigm shift in the classification model by acknowledg-
ing and incorporating the time value. By completing three-dimensional models with time
as a main dimension, the accuracy and precision of predictions can be significantly im-
proved while also unraveling more profound correlations between various indicators. This
approach aligns the classification model with the dynamic nature of real-world data, facili-
tating a more sophisticated understanding of evolving patterns and trends and ultimately
leading to more reliable and insightful analyses.

Using mathematical concepts allows for a systematic and quantitative approach to
the classification process. By leveraging mathematical models, factors such as connec-
tivity, accessibility, and spatial patterns can be precisely analyzed and incorporated into
the classification framework. This objective and data-driven methodology enhances the
accuracy and reliability of the classification results. Moreover, the integration of ANN adds
a powerful ML component to the classification process. ANN can effectively learn and
recognize complex patterns and relationships within the data, enabling the identification of
subtle nuances and hidden features that may not be readily apparent through traditional
methods. This combination of mathematical concepts and ANN creates a sophisticated
and advanced approach to classifying rail-transit hubs, facilitating a deeper understanding
of their characteristics and aiding in the planning and development of transit-oriented
communities. Therefore, using mathematical concepts and ANN in classifying rail-transit
hubs within the context of TOD represents a cutting-edge and innovative approach that
enhances decision-making and fosters sustainable urban development.

Figure 2 presents the research framework applied in this study.
Buildings 2023, 13, x FOR PEER REVIEW 6 of 25 
 

 
Figure 2. Research Framework. 

2.2. NPRT Indicators 
A list of NPR (node, place, and ridership) indicators are provided in Table 2. As men-

tioned before, the ridership value of each hub cannot be considered a constant or inde-
pendent value since the number of people using the subway is different during working 
days and weekends. Moreover, on weekdays, three primary time categories lead to dif-
ferent ridership rates on the day. Therefore, we applied four time classes, T1 to T4, on 
weekdays and weekends to consider our hubs’ ridership value. Table 2 presents normal-
ized integrated time classes applied in this research. 

Table 2. Normalized Integrated Time class definition for the ANN-NPRT-HUB algorithm. 𝐓𝐢𝐦𝐞 𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 Days Hours 𝐌𝐚𝐱 𝐌𝐞𝐚𝐧 𝐌𝐢𝐧 IT1 Inbound traffic during working hours Monday to Friday   6:00–9:00 12,005.652 4643.215 540.652 IT2 Inbound traffic during off − hours Monday to Friday 17:00–20:00 46,668.609 5735.578 561.478 IT3 Inbound traffic during the rest of the day Monday to Friday 9:00–17:00/20:00–23:00 54,702.087 6720.584 782.913 IT4 Inbound traffic on two days of the weekend Saturday and Sunday 6:00–23:00 51,955.625 5660.126 610.500 OT1 Passengers leaving the station during working hours Monday to Friday 6:00–9:00 56,982.348 6788.879 581.348 OT2 Passengers leaving the station during off − hours Monday to Friday 17:00–20:00 26,532.478 4930.341 349.609 OT3 Passengers leaving the station during the rest of the day Monday to Friday 9:00–17:00/20:00–23:00 28,991.217 5501.752 411.522 OT4 Passengers leaving the station on both days of the weekend  Saturday and Sunday 6:00–23:00 55,496.875 5691.951 457.625 

Table 3 fully describes the node and place value indicators, including relevant sub-
branches. The node value has been divided into eight sections from 𝑁1 to 𝑁8, repre-
sented by the principal concepts of TOD mentioned as sub-branches in this table. Moreo-
ver, 𝑃1 to 𝑃9 also provide nine sub-values of Place value. 

  

Figure 2. Research Framework.

2.2. NPRT Indicators

A list of NPR (node, place, and ridership) indicators are provided in Table 2. As
mentioned before, the ridership value of each hub cannot be considered a constant or



Buildings 2023, 13, 1944 6 of 24

independent value since the number of people using the subway is different during working
days and weekends. Moreover, on weekdays, three primary time categories lead to different
ridership rates on the day. Therefore, we applied four time classes, T1 to T4, on weekdays
and weekends to consider our hubs’ ridership value. Table 2 presents normalized integrated
time classes applied in this research.

Table 2. Normalized Integrated Time class definition for the ANN-NPRT-HUB algorithm.

Time Definition Days Hours Max Mean Min

IT1
Inbound traffic

during
working hours

Monday to
Friday 6:00–9:00 12,005.652 4643.215 540.652

IT2 Inbound traffic
during off−hours

Monday to
Friday 17:00–20:00 46,668.609 5735.578 561.478

IT3
Inbound traffic

during the rest of
the day

Monday to
Friday 9:00–17:00/20:00–23:00 54,702.087 6720.584 782.913

IT4
Inbound traffic on

two days of
the weekend

Saturday and
Sunday 6:00–23:00 51,955.625 5660.126 610.500

OT1
Passengers leaving
the station during

working hours

Monday to
Friday 6:00–9:00 56,982.348 6788.879 581.348

OT2
Passengers leaving
the station during

off−hours

Monday to
Friday 17:00–20:00 26,532.478 4930.341 349.609

OT3
Passengers leaving

the station during the
rest of the day

Monday to
Friday 9:00–17:00/20:00–23:00 28,991.217 5501.752 411.522

OT4
Passengers leaving
the station on both

days of the weekend

Saturday and
Sunday 6:00–23:00 55,496.875 5691.951 457.625

Table 3 fully describes the node and place value indicators, including relevant sub-
branches. The node value has been divided into eight sections from N1 to N8, represented
by the principal concepts of TOD mentioned as sub-branches in this table. Moreover, P1 to
P9 also provide nine sub-values of Place value.

Table 3. Node and Place Indicators.

Dimension Sub − Branch Indicator Max Mean Min

Node Value

Station Facility N1. Number of entrances and exits in each metro
station (unit) 10.000 4.990 2.000

Accessible Transits

N2. Number of metro stations that one station can
reach within 20 min (unit) 88.000 59.311 19.000

N3. Number of stations to CBD (Chunxi
Road) (unit) 13.000 6.520 1.000

N4. Number of stations to CBD (3rd Tianfu
Street) (unit) 22.000 13.272 2.000

Accessible Destinations N5. Distance to CBD (Chunxi Road) (km) 17.006 7.388 0.862

N6. Distance to CBD (3rd Tianfu Street) (km) 26.568 15.137 2.417

Network Centrality
N7. Degree centrality 6.000 2.699 2.000

N8. Closeness centrality (1/1000 km) 4767.649 3312.691 2731.193



Buildings 2023, 13, 1944 7 of 24

Table 3. Cont.

Dimension Sub − Branch Indicator Max Mean Min

Place Value

Design
P1. The average price of office land inside the

1000 m−radius catchment area (CNY/m2)
46,084.000 11,204.997 6600.000

Density P2. Number of offices within 1000 m (unit) 197.000 40.204 1.000

Design
P3. The average price of commercial land inside
the 1000 m−radius catchment area (CNY/m2)

34,310.900 22,414.351 15,553.143

Density P4. Number of shops within 1000 m (unit) 397.000 151.755 9.000

Design
P5. The average price of residential land inside the

1000 m−radius catchment area (CNY/m2)
42,663.308 21,000.180 13,107.429

Density P6. Number of residences within 1000 m (unit) 552.000 163.699 8.000

Diversity
P7. Number of public facilities

(parks, cultural facilities, schools, hospitals)
inside the 1000 m−radius catchment area (unit)

41.000 15.243 2.000

Design

P8. Number of parking lots inside the
500 m−radius catchment area (unit) 132.000 28.748 0.000

P9. Number of bus stops inside the 500 m−radius
catchment area (unit) 26.000 8.592 1.000

Resources: SOSO (https://map.qq.com/ (accessed on 20 January 2023)), Amap (https://www.amap.com/
(accessed on 20 January 2023)), (https://www.chengdurail.com/index_en.html (accessed on 20 January 2023)),
(https://www.chengdurail.com/index_en.html (accessed on 20 January 2023)), Anjuke (https://chengdu.anjuke.
com/ (accessed on 20 January 2023)), Fang (https://cd.newhouse.fang.com/ (accessed on 20 January 2023)).

Normalized integrated node, place, and ridership values collected from all stations in
each Hub area are presented in Tables 4–6, respectively.

Table 4. Normalized Integrated Node Indicators for each Hub.

Subway Station N1 N2 N3 N4 N5 N6 N7 N8

Hub 1 (North Railway Station) 1.000 0.987 0.000 1.000 0.000 0.653 0.538 0.057

Hub 2 (West Railway Station) 0.759 0.000 1.000 0.891 1.000 1.000 0.000 1.000

Hub 3 (South Railway Station) 0.963 1.000 0.446 0.000 0.457 0.000 1.000 0.000

Hub 4 (East Railway Station) 0.000 0.221 0.185 0.663 0.297 0.573 0.668 0.954

Table 5. Normalized Integrated Place Indicators for each Hub.

Subway Station P1 P2 P3 P4 P5 P6 P7 P8 P9

Hub 1 (North Railway Station) 0.056 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000

Hub 2 (West Railway Station) 0.000 0.274 0.223 0.055 0.259 0.212 0.156 0.431 0.861

Hub 3 (South Railway Station) 0.899 0.947 0.894 0.115 1.000 0.433 0.566 0.718 1.000

Hub 4 (East Railway Station) 1.000 0.000 0.000 0.000 0.405 0.000 0.000 0.000 0.128

Table 6. Normalized Integrated Ridership for each Hub from IT1 to OT4.

Subway Station IT1 IT2 IT3 IT4 OT1 OT2 OT3 OT4

Hub 1 (North Railway Station) 0.333 0.160 0.179 0.107 0.087 0.076 0.268 0.096

Hub 2 (West Railway Station) 0.877 0.000 0.000 0.180 0.041 0.523 0.000 0.123

Hub 3 (South Railway Station) 0.000 1.000 0.263 0.000 0.000 0.000 1.000 0.000

Hub 4 (East Railway Station) 1.000 0.493 1.000 1.000 1.000 1.000 0.036 1.000

https://map.qq.com/
https://www.amap.com/
https://www.chengdurail.com/index_en.html
https://www.chengdurail.com/index_en.html
https://chengdu.anjuke.com/
https://chengdu.anjuke.com/
https://cd.newhouse.fang.com/
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2.3. Information Entropy Weighting (IEW)

Information Entropy Weighting (IEW) [15] was applied to compose the N1− N8 and
P1− P9 value indexes into one integrated value of node and place, respectively. To this
end, we could process the composed indicators to implement the database analysis started
by the decision matrix presented in Equation (1). m stations and n node value indicators of
each hub are consisted in X. Xpq represents the value of indicator q at station p. Equation (2)
shows the decision matrix normalization:

X =
{

Xpq
}

m×n (1)

X′pq =
Xpq −min

{
Xq
}

max
{

Xq
}
−min

{
Xq
} (2)

The proportion of station p for indicator q is calculated by Equation (3):

R′pq =
X′pq

∑m
p=1 X′pq

(3)

To compute the entropy value eq of indicator q, we can apply Equation (4):

eq = − 1
ln m

×
m

∑
p=1

R′pq. ln R′pq (4)

If R′pq = 0, then ln R′pq = 0.
The imbalance coefficient is shown in Equation (5):

gq = 1− eq (5)

Equation (10) provides the weight of indicator q indicated by Wq. The result of
Equation (6) is used in Equation (7) to compose the Np (node value index) for station p.

Wq =
gq

∑n
q=1 gq

(6)

Np =
n

∑
q=1

Wq × X′pq (7)

To normalize the node value index in [0, 1], we apply Equation (8), in which N denotes
the index in the array of node values, m indicates the number of stations, and p is the target
station:

N′p =
Np −min{N}

max{N} −min{N} (8)

2.4. Multiple Linear Regression (MLR)

In this study, we applied Multiple Linear Regression (MLR) to investigate the relation-
ships between the effective parameters (factor variable and multiple variables) on our TOD
models and equations.

Regarding the linear Equation (9), a1 and a2 can be determined by applying linear
regression of multiple variables using machine learning techniques.

u = a1x1 + a2x2 (9)

The MLR equations are a regression analysis applying the least-square function to
model the argument relationships. This function provides a linear combination of one or
more effective parameters, known as regression coefficients [16].
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The corresponding model for our n-dimensional feature sample data using linear
regression is presented in Equation (10):

hθ(x1, x2, · · · , xn) = θ0 + θ1x1 + · · ·+ θnxn (10)

A simplified equation considering x0 = 1 would be:

hθ(x0, x1, x2, · · · , xn) =
n

∑
i=0

θixi (11)

The matrix form provides a more concise understanding of the above equations:

hθ(X) = Xθ, (12)

where

θ =


θ0
θ1
...

θn

, x =


x0
x1
...

xn

, Y =


y0
y1
...

yn

, X =

 x01 · · · x0n
...

. . .
...

xm1 · · · xmn

 (13)

In Equation (13) m denotes the number of samples and n presents the number of
sample features. We use the Mean Square Error (MSE) as the loss function for our linear
regression model. The algebraic equation and the matrix form of the loss function are
presented in Equations (14) and (15), respectively.

J(θ0, θ1, θ2, · · · , θn) =
m

∑
i=0

(hθ(x0, x1, x2, · · · , xn)− yi)
2 (14)

J(θ) = (Xθ −Y)T(Xθ −Y) (15)

Applying Equations (16) and (17) and parameter estimation of the MLR model leads
to minimizing of the loss function.

∂J(θ)
∂θ

= 2XTXθ − 2XTY (16)

Then,

θ =
(

XTX
)−1

XTY (17)

Thus, the following multilinear regression model is achieved.

f (x) = xT
(

XTX
)−1

XTY (18)

3. Machine Learning Application in TOD

An Artificial Neural Network (ANN), as an application of Machine Learning (ML), is
widely used to predict outcomes, classify the results, and check the accuracy of research
achievements. Seven main steps create the primary process of ANN applications: importing
the data, cleaning the data, splitting the data into training/test sets, model creation, model
training, predictions, and model evaluation and improvement.

The ANN structure is created by three main layers, shown in Figure 3. For simplicity,
the activation function is not shown in the figure; therefore, we use the same one between
two adjacent layers.
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The ANN structure directs the input to output in one-way information processing.
After receiving the input data by the ANN, the error value is calculated. Each layer
contains groups of neurons that have their importance determined by assigned weight.
The backpropagation algorithm leads to learning and solving errors based on the data of
the input and output layers. Mean Square Error (MSE) provides a valuable loss function
for regression problems to predetermine the logical minimum error [16–18].

MSE
(
y, y′

)
=

∑n
i=1
(
yi − y′i

)2

n
(19)

In this research, the neurons’ activation function ( f ) supports the Rectified Linear Unit
(ReLU) function, as shown in Figure 4.

ReLU(x) =
{

x i f x > 0
0 i f x ≤ 0

(20)
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Based on the existing applications of deep learning methods [19–24], this study applied
the MSE loss function, shown in Figure 5. Moreover, adaptive moment estimation (ADAM)
was used to optimize the convergence and enhance the model accuracy.
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Model Evaluation Method

As mentioned before, to verify the Multiple Linear regression (MLR) equations’ accu-
racies of fit in the regression method, we used the Mean Square Error (MSE), presented in
Equation (21).

MSE =
1
n

n

∑
i=1

(
yi − f̂ (xi)

)2
(21)

The Multiple Determination Coefficients
(

R2), a valuable indicator to evaluate the
convergence of MLR equations, reflects the proportions described by the estimated re-
gression equations in the variance of the factor variable y, calculated as the proportion of
progression squares to the sum of total squares [25].

Regarding Equations (22)–(24), ŷi shows the model forecast value, y stands for the
average of y, SSR indicates the Regression Sum of Squares, SSE represents the Error Sum
of Squares, and SST denotes the Total Sum of Squares [16,17,25].

SSR =
m

∑
i=1

(ŷi − y)2 (22)

SSE =
m

∑
i=1

(yi − y)2 (23)

R2 − SSR
SST

= 1− SSE
SST

(24)

4. Results and Discussion
4.1. The NPRT Variables’ Correlations

We applied Python as a high-level programming language for creating our ANN-
NPRT-HUB algorithm and investigated the correlations between independent values (node
and place) and dependent values (integrated ridership-time). Using Python’s pandas and
numpy libraries, the correlations between the positive or negative variables were obtained
and presented in Table 7. A positive correlation is a statistical measure that signifies
a simultaneous increase in one variable as the other variable also experiences an increase.
This phenomenon implies that the two variables exhibit a coherent behavior, moving in the
same direction. Conversely, a negative correlation denotes an inverse relationship, wherein
an increase in one variable corresponds to a decrease in the other variable. This indicates
a tendency for the variables to move in opposite directions. A correlation coefficient is
employed to ascertain the magnitude of the correlation, offering a numerical representation
of the relationship between the variables. The correlation coefficient ranges from −1 to 1,
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providing valuable insights into the strength and direction of the correlation. A correlation
coefficient close to 1 or −1 implies a robust correlation, with the variables exhibiting
a highly consistent pattern of behavior. In contrast, a coefficient closer to 0 suggests
a weaker correlation, indicating that the variables have less synchrony in their variations.

Table 7. The correlations between dependent and independent values.

Independent
Values

Dependent Values

IT1 IT2 IT3 IT4 OT1 OT2 OT3 OT4

N1 −0.771334 −0.00302 −0.89232 −0.98724 −0.96816 −0.95286 0.529008 −0.98187

N2 −0.920694 0.51648 −0.19789 −0.53933 −0.42357 −0.81764 0.765575 −0.49288

N3 0.262923 −0.2372 −0.49709 −0.26712 −0.37334 0.092877 −0.13028 −0.31042

N4 0.581252 −0.95709 −0.13298 0.176322 0.102728 0.296284 −0.86524 0.143892

N5 0.347413 −0.21838 −0.38831 −0.15149 −0.2593 0.20443 −0.178 −0.19509

N6 0.750428 −0.96956 −0.20556 0.187105 0.072138 0.445079 −0.91666 0.13838

N7 −0.635475 0.913791 0.422403 0.02761 0.154792 −0.30006 0.774317 0.081373

N8 0.958216 −0.48371 0.330308 0.654078 0.548117 0.89137 −0.79245 0.611863

P1 −0.081878 0.837763 0.767937 0.513484 0.589733 0.300946 0.419866 0.547957

P2 −0.937089 0.28764 −0.56859 −0.81855 −0.73908 −0.97225 0.709613 −0.7879

P3 −0.925206 0.274289 −0.53634 −0.78837 −0.70582 −0.95717 0.686738 −0.7565

P4 −0.397904 −0.33189 −0.33953 −0.39838 −0.35263 −0.55255 0.002391 −0.38259

P5 −0.481973 0.9115 0.121717 −0.1438 −0.08788 −0.21237 0.798931 −0.11843

P6 −0.644239 −0.15213 −0.52795 −0.64919 −0.594 −0.78908 0.274455 −0.6295

P7 −0.763744 0.024199 −0.49458 −0.67969 −0.60735 −0.85408 0.435999 −0.65261

P8 −0.793568 −0.01781 −0.72169 −0.8638 −0.81557 −0.94264 0.479526 −0.84677

P9 −0.303243 0.359447 −0.48772 −0.51308 −0.54549 −0.30907 0.504687 −0.52547

Using the correlations between the values provided in Table 7, we can adjust and
improve the efficiency of each rail-transit hub by increasing or decreasing the corresponding
value(s). The correlation between variables can provide valuable insights into optimizing
the efficiency of rail-transit hubs. By focusing on these critical factors, improvements can
be targeted where they have the most significant impact.

4.2. MLR Equations for the ANN-NPRT-HUB Model

This research applied Multiple Linear Regression (MLR) to extract eight regression
equations for the proposed ANN-NPRT-HUB model. A comprehensive form for the MLR
equations is presented in Equation (25). This equation is made of three main terms. α
indicates the intercept, while β and γ represent the coefficients of node and place values, re-
spectively. To determine the three parameters of α, β, and γ, from the sklearn.linear_model
of Python, we imported the LinearRegression function.

Ridership = α +
8

∑
i=1

βi Ni +
9

∑
j=1

γjPj (25)

Appendix A provides a list of constants and variable coefficients for the dependent
variable of IT1 to OT4. The complete results of our MLR models are presented in Table 8.
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Table 8. MLR models results.

IT1 IT2 IT3 IT4 OT1 OT2 OT3 OT4

Ad.R2 0.3 0.467 0.245 0.206 0.252 0.227 0.589 0.234

CV p CV p CV p CV p CV p CV p CV p CV p

Constant −4595.88 0.723 12,022.14 0.643 181,04.91 0.633 11,838.94 0.715 8425.112 0.811 −2767.62 0.877 −2767.62 0.84 5025.627 0.877
N1 −25.376 0.889 −657.282 * 0.074 −1318.949 ** 0.015 −964.227 ** 0.036 −1083.452 ** 0.03 −346.841 0.169 −346.841 0.143 −943.496 ** 0.041
N2 7.483 0.915 −48.441 0.728 −106.723 0.6 −89.607 0.607 −67.367 0.721 −8.61 0.928 −8.61 0.966 −58.054 0.739
N3 561.364 0.214 630.5 0.483 500.433 0.703 393.954 0.726 431.01 0.724 612.772 0.323 612.772 0.403 368.891 0.743
N4 −449.041 ** 0.025 −815.953 ** 0.04 −942.555 0.103 −854.403 * 0.084 −846.086 0.115 −654.006 ** 0.017 −654.006 * 0.078 −770.442 0.12
N5 −867.804 ** 0.031 −1129.19 0.156 −1366.88 0.239 −1196 0.228 −1289.4 0.231 −1075.195 * 0.051 −1075.195 0.192 −1142.52 0.25
N6 234.298 0.161 570.856 * 0.088 850.038 * 0.083 761.852 * 0.069 781.668 * 0.085 443.716 * 0.055 443.716 0.219 714.178 * 0.089
N7 326.503 0.438 2316.741 *** 0.007 3954.057 *** 0.002 3022.925 *** 0.005 3267.77 *** 0.005 1137.145 * 0.052 1137.145 *** 0.006 2934.299 *** 0.006
N8 3.8 0.15 −0.784 0.881 −2.142 0.78 −0.798 0.903 −0.252 0.972 2.893 0.423 2.893 0.934 0.17 0.979
P1 0.004 0.948 −0.03 0.808 −0.047 0.796 −0.044 0.777 −0.061 0.714 −0.007 0.936 −0.007 0.68 −0.055 0.724
P2 −33.321 *** 0.002 96.926 *** 0.001 63.024 ** 0.043 39.064 0.14 53.189 * 0.066 −6.939 0.633 −6.939 *** 0.001 45.053 * 0.091
P3 0.028 0.722 0.03 0.846 0.137 0.546 0.144 0.457 0.165 0.433 0.093 0.383 0.093 0.903 0.165 0.396
P4 16.891 ** 0.026 12.614 0.4 18.805 0.391 27.532 0.143 26.859 0.188 23.934 ** 0.022 23.934 ** 0.882 28.477 0.131
P5 −0.111 * 0.089 0.057 0.66 0.031 0.869 0.03 0.853 0.054 0.76 −0.052 0.561 −0.052 0.696 0.057 0.726
P6 −2.658 0.587 −7.99 0.414 −10.479 0.463 −8.525 0.485 −10.502 0.428 −3.731 0.579 −3.731 0.379 −9.079 0.458
P7 −31.787 0.496 −183.022* 0.052 −151.554 0.267 −172.084 0.141 −177.163 0.163 −95.857 0.137 −95.857 0.232 −173.106 0.14
P8 22.276 0.287 −7.219 0.862 15.054 0.805 3.561 0.945 12.022 0.832 10.351 0.718 10.351 0.925 2.635 0.96
P9 157.088 ** 0.03 −52.297 0.714 −73.514 0.725 −85.692 0.631 −50.335 0.795 81.313 0.409 81.313 0.7 −72.751 0.684

If p < 0.01⇒ ***; p < 0.05⇒ **; p < 0.1⇒ *, CV: Coefficient of Variation.
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The Ad.R2 indicates how well the model fits the data, with a value of 1 indicating
a perfect fit. Generally, a value of Ad.R2 greater than 0.2 is considered acceptable for the
fitted model. In statistical analysis, the significance level of a result is typically represented
by the p value, where a smaller p value corresponds to a more substantial effect of the
independent variable on the dependent variable. The coefficient of variation (CV) indicates
the impact of an independent variable on a dependent variable. A higher CV value
indicates a more substantial influence of the independent variable on the dependent
variable. And a negative CV implies a negative correlation between the independent
and dependent variables.

Applying the constant and coefficient values from Table 8 to Equation (25), we can
construct a series of eight MLR equations for the rail-transit hubs provided in Table 9.

Table 9. Extracted MLR Equations.

General MLR
Equation (25) Extracted MLR Equations from Table 8

R
id

er
sh

ip
=

α
+

8 ∑ i=
1

β
iN

i
+

9 ∑ j=
1

γ
jP

j

IT1 = −4595.878−25.376N1 + 7.483N2 + 561.364N3 − 449.041N4 − 867.804N5 + 234.298N6

+326.503N7 + 3.8N8 + 0.004P1 − 33.321P2 + 0.028P3 + 16.891P4 − 0.111P5

−2.658P6 − 31.787P7 + 22.276P8 + 157.088P9

IT2 = 12022.143−657.282N1 − 48.441N2 + 630.5N3 − 815.953N4 − 1129.194N5 + 570.856N6

+2316.741N7 − 0.784N8 − 0.03P1 + 96.926P2 + 0.03P3 + 12.614P4 + 0.057P5

−7.99P6 − 183.022P7 − 7.219P8 − 52.297P9

IT3 = 18104.908−1318.949N1 − 106.723N2 + 500.433N3 − 942.555N4 − 1366.881N5 + 850.038N6

+3954.057N7 − 2.142N8 − 0.047P1 + 63.024P2 + 0.137P3 + 18.805P4 + 0.031P5

−10.479P6 − 151.554P7 + 15.054P8 − 73.514P9

IT4 = 11838.943−964.227N1 − 89.607N2 + 393.954N3 − 854.403N4 − 1196.002N5 + 761.852N6

+3022.925N7 − 0.798N8 − 0.044P1 + 39.064P2 + 0.144P3 + 27.532P4 + 0.03P5

−8.525P6 − 172.084P7 + 3.561P8 − 85.692P9

OT1 = 8425.112−1083.452N1 − 67.367N2 + 431.01N3 − 846.086N4 − 1289.399N5 + 781.668N6

+3267.77N7 − 0.252N8 − 0.061P1 + 53.189P2 + 0.165P3 + 26.859P4 + 0.054P5

−10.502P6 − 177.163P7 + 12.022P8 − 50.335P9

OT2 = −2767.615−346.841N1 − 8.61N2 + 612.772N3 − 654.006N4 − 1075.195N5 + 443.716N6

+1137.145N7 + 2.893N8 − 0.007P1 − 6.939P2 + 0.093P3 + 23.934P4 − 0.052P5

−3.731P6 − 95.857P7 + 10.351P8 + 81.313P9

OT3 = −2767.615−346.841N1 − 8.61N2 + 612.772N3 − 654.006N4 − 1075.195N5 + 443.716N6

+1137.145N7 + 2.893N8 − 0.007P1 − 6.939P2 + 0.093P3 + 23.934P4 − 0.052P5

−3.731P6 − 95.857P7 + 10.351P8 + 81.313P9

OT4 = 5025.627−943.496N1 − 58.054N2 + 368.891N3 − 770.442N4 − 1142.524N5 + 714.178N6

+2934.299N7 + 0.17N8 − 0.055P1 + 45.053P2 + 0.165P3 + 28.477P4 + 0.057P5

−9.079P6 − 173.106P7 + 2.635P8 − 72.751P9

Multiple Linear Regression (MLR) equations can be highly beneficial for analyzing
ridership in rail-transit hubs. MLR models provide a statistical framework for understand-
ing the relationships between multiple independent variables and the dependent variable
of ridership. By considering various factors influencing ridership, MLR equations offer
valuable insights into understanding and forecasting the demand for rail-transit services.

4.3. Classification Results

Applying the MLR equations of Table 9 and the NP (Node, Place) values, we can
achieve the actual ridership values of the NPRT model for rail-transit hubs. Moreover, we
used the ANN to predict the NPRT model results presented in this research. Table 10 shows
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a list of predicted values provided by the ANN and the MLR equations’ actual results. In
this table, p denotes the predicted value.

Table 10. Predicted and actual results.

Model HUB 1 HUB 2 HUB 3 HUB 4

P.IT1 4553.709 7765.223 5191.758 5850.328

IT1 4310.488 10,068.957 5140.873 5622.964

P.IT2 4429.563 7269.329 7246.624 4512.556

IT2 3406.512 8087.725 6822.873 5015.938

P.IT3 6150.541 9040.156 7015.845 6246.506

IT3 4647.051 10,010.928 6434.328 7915.960

P.IT4 5542.270 8464.807 5749.719 5772.651

IT4 4147.919 9412.0 5058.965 6851.5

P.OT1 6544.339 9521.689 6955.400 6470.205

OT1 5012.225 10,658.768 6402.264 7585.407

P.OT2 4708.928 8213.316 5364.432 5646.256

OT2 3970.437 10,121.782 5294.794 5663.470

P.OT3 4708.928 8213.316 5364.432 5646.256

OT3 3279.386 7510.681 6796.430 3806.182

P.OT4 5596.776 8303.321 5695.017 5520.744

OT4 4165.272 9155.417 5093.886 6416.920

The ANN-predicted ridership for individual rail-transit hubs holds significant im-
portance in various technical aspects. It primarily enables effective demand forecast-
ing, capacity planning, resource allocation, service optimization, revenue estimation, and
decision-making. Leveraging the capabilities of ANN models empowers transit authorities
to make well-informed decisions to enhance operational efficiency, improve the passenger
experience, and ensure the sustainable growth and development of rail transit systems.

In Table 10, the predicted ridership by the ANN is based on the underlying pat-
terns and associations discovered during the model training. By leveraging the power of
the ANN, which excels in capturing intricate relationships in complex datasets, transit
authorities gain insights into the anticipated demand for each rail-transit hub.

Figure 6 illustrates a comparison between the actual NPRT-HUB results created by
MLR equations and the predicted ones by the ANN. As mentioned before, the predicted
classes can be distinguished by the letter p before the name of the class. This figure shows
that the ANN could logically predict the NPRT model ridership values. For example, the
ANN predicted that the class IT1 covers 19% of the ridership of HUB#1 (North Railway
Station), while the actual MLR value is 17%. This logical prediction comes true while
looking at the other hubs’ classes, such as POT2 and OT2 for HUB#4 (East Railway Station),
with values of 24% and 23%, respectively. Therefore, applying the ANN in classifying and
assessing the efficiency of rail-transit hubs could bring new insight into TOD.

ANNs can be helpful for city planners in assessing the rail-transit hubs because they
can assist in identifying significant patterns and relationships within large and complex
datasets. In the case of rail-transit hubs, ANNs can be used to analyze data on passen-
ger flows, station usage, train schedules, and other factors that affect the efficiency and
effectiveness of a hub. Using ANNs, city planners can create predictive models to help
them make informed decisions about optimizing a rail-transit hub’s performance. For
example, ANNs can forecast passenger demand at different times of the day or during
special events, allowing transit planners to adjust train schedules and allocate resources
accordingly. ANNs can also identify patterns in passenger behavior, such as how they
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move through a station or which routes they tend to take, which can inform decisions about
station design and layout. In addition to these practical applications, ANNs can also be
used to test hypothetical scenarios and predict the potential impact of different planning
decisions. For example, planners can use ANNs to simulate the effects of adding new train
lines or changing the location of a station, helping them make informed decisions that will
benefit both passengers and the city as a whole.
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Figure 6. Comparison between the predicted and actual NPRT-HUB results.

Rail-transit hub classification empowers city planners and policymakers to optimize
network efficiency. It guides network optimization, service planning, infrastructure devel-
opment, land use decisions, and policy formulation. By using the results of hub classifica-
tion, cities can create more efficient and sustainable rail transit networks that cater to the
diverse needs of their residents and visitors. Classification helps identify key hub types,
such as significant transfer or high-demand ones, which require specific infrastructure
and operational considerations. Planners can strategically allocate resources, prioritize
investments, and optimize service frequencies to ensure efficient connectivity and minimize
delays and congestion. For example, a city may identify a particular hub as a central trans-
fer point between multiple rail lines and allocate additional platform space and staffing
to facilitate smooth transfers and reduce overcrowding. Hub classification assists in de-
termining service patterns and frequencies based on hub types. Planners can allocate
more frequent service to high-demand hubs, ensuring efficient transportation access for
a larger population.

Conversely, lower-demand hubs may receive less frequent service, optimizing resource
utilization. For instance, a city may identify specific hubs as high-demand destinations
due to their proximity to employment centers or popular tourist attractions. Higher
service frequencies can be scheduled during peak hours to accommodate commuter and
tourist travel.

By understanding the characteristics of different hub types, city planners can make
informed decisions about infrastructure development and station design. For example,
if a hub is classified as a major transfer point, planners can allocate sufficient space for
platform-to-platform transfers, install clear wayfinding signage, and ensure adequate ac-
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cessibility features. This promotes smooth passenger flow and minimizes bottlenecks,
contributing to overall network efficiency. Rail-transit hub classification informs land
use and development strategies around hubs. Planners can identify hubs with potential
for transit-oriented development (TOD) and focus on creating vibrant, mixed-use neigh-
borhoods with a high-density residential and commercial mix. This fosters a walkable
environment, reducing the dependence on private vehicles and enhancing the efficiency of
the overall transit network. For instance, a city may classify a hub near a university as a po-
tential hub for mixed-use development, with student housing, retail establishments, and
recreational facilities. Hub classification provides valuable data for policymakers to make
informed decisions regarding transit policies and investments. It helps prioritize funding
and resources for infrastructure improvements, station upgrades, and system expansion.
Planners can identify hubs in underserved areas and allocate targeted investments to en-
hance accessibility and connectivity. Additionally, policymakers can use hub classification
results to shape transportation policies, such as promoting transit-oriented development,
implementing fare integration systems, or introducing innovative mobility solutions.

ANNs can analyze diverse data sets obtained from railway transportation hubs,
including passenger flow, peak hours, and travel patterns. By utilizing this data, ANNs
can effectively detect areas of congestion and optimize transportation planning, enabling
city authorities to make well-informed decisions regarding infrastructure development,
scheduling, and resource allocation. Additionally, ANNs can be leveraged to develop
predictive models anticipating the demand for transportation services. By analyzing
historical data and current trends, cities can optimize the deployment of transportation
resources, such as trains, buses, and shared mobility services, ensuring efficient and reliable
mobility options for residents and visitors.

Moreover, ANNs can monitor and analyze real-time data from railway transportation
hubs, encompassing train arrival and departure times, passenger volumes, and service
disruptions. This valuable information empowers city authorities to respond to dynamic
conditions promptly, improve service reliability, and deliver timely updates to passengers,
thus significantly enhancing the overall transportation experience.

In the context of sustainable urban development, integrating Transit-Oriented Devel-
opment (TOD) with ANN-based classification of railway transportation hubs becomes
pivotal. By strategically designing compact and mixed-use neighborhoods around transit
stations, cities can effectively diminish reliance on private vehicles, foster the adoption
of walking and cycling, and foster vibrant communities. ANN plays a critical role in
identifying optimal locations for TOD by considering crucial factors such as population
density, land use patterns, and proximity to transit infrastructure.

This research explored and incorporated the time dimension into the classification
model, recognizing its critical importance in enhancing predictive accuracy. By conducting
an in-depth review of existing research works [5,26,27], it became evident that two and
three-dimensional models lacked the crucial element of time. Thus, the necessity arose
to complete these models by incorporating time as a main dimension, providing a more
comprehensive and precise analysis.

One of the key benefits of integrating time into the classification model is the ability to
establish stronger correlations between indicators. As time plays a significant role in various
processes and trends, taking it into account enables a more accurate understanding of the
relationships between different indicators. This, in turn, leads to improved predictions and
a deeper insight into the dynamics of the phenomena under investigation.

By acknowledging the importance of the time value, this study tried to bridge the
gap between traditional static models and the dynamic nature of real-world data. The
classification model’s capabilities are significantly enhanced by considering time as a main
dimension, paving the way for more sophisticated and reliable analysis.
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5. Conclusions

This research study aimed to analyze and assess Chengdu rail-transit hubs using the
integrated Node, Place, Ridership, and Time (NPRT) method. The investigation employed
a temporal segmentation into four distinct time periods, uncovering a direct correlation
between ridership and time. Combining mathematical techniques and machine learning,
we developed a series of eight Multiple Linear Regression (MLR) equations for each hub.
These MLR equations incorporated node and place values as independent variables to
examine their influence on ridership throughout different time periods. Integrating MLR
analysis into planning, resource allocation, and policy formulation processes facilitates
well-informed decision-making, optimized ridership levels, and enhanced efficiency of
rail-transit systems. The identified correlations highlight the significance of NPRT models
as valuable tools for policymakers and city planners in evaluating the effectiveness of rail
transportation hubs. In Transit-Oriented Development (TOD) context, evaluating factors
like station location, ridership, and connectivity is essential for efficiency. NPRT models
contribute to establishing development objectives and formulating effective strategies.
Moreover, the inclusion of Artificial Neural Networks (ANNs) in assessing rail-transit
hubs provides valuable insights that inform decision-making and support the creation of
transportation systems that are efficient, effective, and sustainable.

6. Possible Directions for Future Studies

This study conducted a case study on Chengdu rail-transit hubs to investigate the
effect of node and place values on ridership in different time periods. Although the study
provided accurate results, applying other methods, such as Partial Differential Equations
(PDE), to study the correlations between dependent and independent variables sounds
interesting for future studies. Utilizing PDEs for studying correlations between variables
in a rail-transit hub classification model provides a powerful and flexible approach to
analyzing the complex dynamics of the system, making predictions, optimizing operations,
and validating the model against real-world data.

Additionally, future research should consider the significance of the economy; ecology;
and sociodemographic factors, such as the proportion of people using public transportation,
the frequency of household outings, and the distribution of age groups concerning the NPRT
model for rail-transit hubs. Moreover, applying train schedules, infrastructure capacity,
and operational efficiency can improve the limitations of the 3D indicators presented in
this study.
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Appendix A. Constants and Variable Coefficients of MLR Models

Table A1. Dependent variable: IT1—Coefficient a.

Model
Unstandardized Coefficient Standardization

Coefficient Time Significance 95.0% Confidence
Interval for B

B Standard
Error β T I Min Max

1

Constant −4595.878 12,944.799 −0.355 0.723 −30,338.030 21,146.274

N1 −25.376 181.741 −0.019 −0.140 0.889 −386.789 336.037

N2 7.483 69.518 0.045 0.108 0.915 −130.762 145.728

N3 561.364 448.738 0.585 1.251 0.214 −331.002 1453.729

N4 −449.041 196.083 −0.689 −2.290 0.025 −838.974 −59.108

N5 −867.804 394.813 −1.085 −2.198 0.031 −1652.932 −82.676

N6 234.298 165.839 0.427 1.413 0.161 −95.491 564.088

N7 326.503 419.123 0.126 0.779 0.438 −506.969 1159.975

N8 3.800 2.615 0.582 1.453 0.150 −1.400 8.999

P1 0.004 0.062 0.007 0.065 0.948 −0.119 0.127

P2 −33.321 10.529 −0.500 −3.165 0.002 −54.258 −12.384

P3 0.028 0.077 0.035 0.357 0.722 −0.126 0.181

P4 16.891 7.476 0.496 2.259 0.026 2.024 31.759

P5 −0.111 0.065 −0.256 −1.719 0.089 −0.240 0.018

P6 −2.658 4.872 −0.139 −0.546 0.587 −12.347 7.031

P7 −31.787 46.503 −0.114 −0.684 0.496 −124.264 60.690

P8 22.276 20.802 0.184 1.071 0.287 −19.091 63.643

P9 157.088 71.323 0.240 2.203 0.030 15.255 298.922

Table A2. Dependent variable: IT2—Coefficient a.

Model
Unstandardized Coefficient Standardization

Coefficient Time Significance 95.0% Confidence
Interval for B

B Standard
Error β T I Min Max

2

Constant 12,022.143 25,839.016 0.465 0.643 −39,361.575 63,405.861

N1 −657.282 362.773 −0.214 −1.812 0.074 −1378.695 64.131

N2 −48.441 138.765 −0.127 −0.349 0.728 −324.391 227.509

N3 630.500 895.723 0.287 0.704 0.483 −1150.744 2411.744

N4 −815.953 391.400 −0.548 −2.085 0.040 −1594.294 −37.611

N5 −1129.194 788.082 −0.617 −1.433 0.156 −2696.383 437.994

N6 570.856 331.030 0.455 1.724 0.088 −87.434 1229.146

N7 2316.741 836.608 0.391 2.769 0.007 653.054 3980.428

N8 −0.784 5.219 −0.053 −0.150 0.881 −11.163 9.595

P1 −0.030 0.123 −0.022 −0.243 0.808 −0.275 0.215

P2 96.926 21.016 0.636 4.612 0.000 55.134 138.719

P3 0.030 0.154 0.017 0.195 0.846 −0.277 0.337

P4 12.614 14.924 0.162 0.845 0.400 −17.063 42.291

P5 0.057 0.129 0.057 0.441 0.660 −0.200 0.314

P6 −7.990 9.726 −0.182 −0.822 0.414 −27.331 11.350

P7 −183.022 92.825 −0.288 −1.972 0.052 −367.615 1.570

P8 −7.219 41.522 −0.026 −0.174 0.862 −89.791 75.352

P9 −52.297 142.367 −0.035 −0.367 0.714 −335.408 230.815
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Table A3. Dependent variable: IT3—Coefficient a.

Model
Unstandardized Coefficient Standardization

Coefficient Time Significance 95.0% Confidence
Interval for B

B Standard
Error β T I Min Max

3

Constant 18,104.908 37,781.340 0.479 0.633 −57,027.431 93,237.246

N1 −1318.949 530.439 −0.350 −2.487 0.015 −2373.786 −264.112

N2 −106.723 202.900 −0.228 −0.526 0.600 −510.212 296.766

N3 500.433 1309.710 0.186 0.382 0.703 −2104.070 3104.936

N4 −942.555 572.298 −0.515 −1.647 0.103 −2080.632 195.522

N5 −1366.881 1152.320 −0.608 −1.186 0.239 −3658.396 924.633

N6 850.038 484.027 0.552 1.756 0.083 −112.502 1812.578

N7 3954.057 1223.273 0.544 3.232 0.002 1521.445 6386.670

N8 −2.142 7.631 −0.117 −0.281 0.780 −17.318 13.034

P1 −0.047 0.180 −0.028 −0.259 0.796 −0.405 0.311

P2 63.024 30.729 0.336 2.051 0.043 1.915 124.133

P3 0.137 0.226 0.062 0.607 0.546 −0.312 0.586

P4 18.805 21.821 0.196 0.862 0.391 −24.588 62.198

P5 0.031 0.189 0.026 0.166 0.869 −0.345 0.408

P6 −10.479 14.221 −0.195 −0.737 0.463 −38.758 17.800

P7 −151.554 135.727 −0.194 −1.117 0.267 −421.461 118.354

P8 15.054 60.713 0.044 0.248 0.805 −105.681 135.789

P9 −73.514 208.166 −0.040 −0.353 0.725 −487.475 340.447

Table A4. Dependent variable: IT4—Coefficient a.

Model
Unstandardized Coefficient Standardization

Coefficient Time Significance 95.0% Confidence
Interval for B

B Standard
Error β T I Min Max

4

Constant 11,838.943 32,274.532 0.367 0.715 −52,342.502 76,020.388

N1 −964.227 453.125 −0.307 −2.128 0.036 −1865.317 −63.138

N2 −89.607 173.326 −0.229 −0.517 0.607 −434.286 255.071

N3 393.954 1118.814 0.175 0.352 0.726 −1830.931 2618.838

N4 −854.403 488.883 −0.561 −1.748 0.084 −1826.600 117.793

N5 −1196.002 984.364 −0.639 −1.215 0.228 −3153.517 761.513

N6 761.852 413.477 0.594 1.843 0.069 −60.393 1584.097

N7 3022.925 1044.975 0.499 2.893 0.005 944.877 5100.973

N8 −0.798 6.519 −0.052 −0.122 0.903 −13.762 12.166

P1 −0.044 0.154 −0.031 −0.285 0.777 −0.350 0.262

P2 39.064 26.250 0.250 1.488 0.140 −13.138 91.266

P3 0.144 0.193 0.078 0.748 0.457 −0.239 0.528

P4 27.532 18.640 0.345 1.477 0.143 −9.536 64.600

P5 0.030 0.162 0.029 0.186 0.853 −0.291 0.351

P6 −8.525 12.148 −0.190 −0.702 0.485 −32.683 15.632

P7 −172.084 115.944 −0.264 −1.484 0.141 −402.652 58.483

P8 3.561 51.864 0.013 0.069 0.945 −99.576 106.699

P9 −85.692 177.825 −0.056 −0.482 0.631 −439.316 267.933
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Table A5. Dependent variable: OT1—Coefficient a.

Model
Unstandardized Coefficient Standardization

Coefficient Time Significance 95.0% Confidence
Interval for B

B Standard
Error β T I Min Max

5

Constant 8425.112 35,054.394 0.240 0.811 −61,284.395 78,134.620

N1 −1083.452 492.154 −0.308 −2.201 0.030 −2062.153 −104.750

N2 −67.367 188.255 −0.154 −0.358 0.721 −441.734 306.999

N3 431.010 1215.179 0.171 0.355 0.724 −1985.507 2847.528

N4 −846.086 530.991 −0.496 −1.593 0.115 −1902.020 209.848

N5 −1289.399 1069.149 −0.616 −1.206 0.231 −3415.519 836.720

N6 781.668 449.091 0.544 1.741 0.085 −111.399 1674.734

N7 3267.770 1134.981 0.482 2.879 0.005 1010.736 5524.804

N8 −0.252 7.081 −0.015 −0.036 0.972 −14.332 13.829

P1 −0.061 0.167 −0.039 −0.368 0.714 −0.394 0.271

P2 53.189 28.511 0.305 1.866 0.066 −3.509 109.887

P3 0.165 0.209 0.080 0.787 0.433 −0.252 0.582

P4 26.859 20.246 0.301 1.327 0.188 −13.402 67.120

P5 0.054 0.176 0.047 0.306 0.760 −0.295 0.403

P6 −10.502 13.194 −0.209 −0.796 0.428 −36.740 15.737

P7 −177.163 125.930 −0.243 −1.407 0.163 −427.590 73.263

P8 12.022 56.331 0.038 0.213 0.832 −99.999 124.042

P9 −50.335 193.141 −0.029 −0.261 0.795 −434.417 333.748

Table A6. Dependent variable: OT2—Coefficient a.

Model
Unstandardized Coefficient Standardization

Coefficient Time Significance 95.0% Confidence
Interval for B

B Standard
Error β T I Min Max

6

Constant −2767.615 17,788.204 −0.156 0.877 −38,141.409 32,606.179

N1 −346.841 249.741 −0.198 −1.389 0.169 −843.479 149.798

N2 −8.610 95.529 −0.039 −0.090 0.928 −198.580 181.361

N3 612.772 616.638 0.488 0.994 0.323 −613.479 1839.024

N4 −654.006 269.449 −0.768 −2.427 0.017 −1189.835 −118.177

N5 −1075.195 542.535 −1.029 −1.982 0.051 −2154.085 3.695

N6 443.716 227.889 0.619 1.947 0.055 −9.467 896.899

N7 1137.145 575.941 0.336 1.974 0.052 −8.178 2282.467

N8 2.893 3.593 0.339 0.805 0.423 −4.252 10.038

P1 −0.007 0.085 −0.009 −0.081 0.936 −0.175 0.162

P2 −6.939 14.468 −0.080 −0.480 0.633 −35.710 21.832

P3 0.093 0.106 0.091 0.877 0.383 −0.118 0.305

P4 23.934 10.274 0.537 2.330 0.022 3.503 44.364

P5 −0.052 0.089 −0.091 −0.584 0.561 −0.229 0.125

P6 −3.731 6.695 −0.149 −0.557 0.579 −17.045 9.583

P7 −95.857 63.903 −0.264 −1.500 0.137 −222.935 31.221

P8 10.351 28.585 0.065 0.362 0.718 −46.494 67.195

P9 81.313 98.009 0.095 0.830 0.409 −113.588 276.214
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Table A7. Dependent variable: OT3—Coefficient a.

Model
Unstandardized Coefficient Standardization

Coefficient Time Significance 95.0% Confidence
Interval for B

B Standard
Error β T I Min Max

7

Constant 3947.471 19,451.734 0.203 0.840 −34,734.434 42,629.377

N1 −403.968 273.097 −0.154 −1.479 0.143 −947.051 139.115

N2 4.441 104.463 0.014 0.043 0.966 −203.296 212.177

N3 567.266 674.305 0.301 0.841 0.403 −773.663 1908.195

N4 −525.296 294.648 −0.411 −1.783 0.078 −1111.235 60.643

N5 −781.117 593.272 −0.498 −1.317 0.192 −1960.903 398.670

N6 308.789 249.201 0.287 1.239 0.219 −186.775 804.353

N7 1772.962 629.802 0.350 2.815 0.006 520.531 3025.394

N8 0.325 3.929 0.025 0.083 0.934 −7.489 8.138

P1 −0.038 0.093 −0.033 −0.415 0.680 −0.223 0.146

P2 96.265 15.821 0.737 6.085 0.000 64.804 127.727

P3 −0.014 0.116 −0.009 −0.122 0.903 −0.245 0.217

P4 −1.666 11.234 −0.025 −0.148 0.882 −24.007 20.675

P5 0.038 0.097 0.045 0.392 0.696 −0.156 0.232

P6 −6.474 7.321 −0.172 −0.884 0.379 −21.034 8.085

P7 −84.048 69.879 −0.154 −1.203 0.232 −223.010 54.914

P8 2.942 31.258 0.012 0.094 0.925 −59.219 65.102

P9 41.508 107.174 0.032 0.387 0.700 −171.620 254.636

Table A8. Dependent variable: OT4—Coefficient a.

Model
Unstandardized Coefficient Standardization

Coefficient Time Significance 95.0% Confidence
Interval for B

B Standard
Error β T I Min Max

8

Constant 5025.627 32,361.785 0.155 0.877 −59,329.332 69,380.587

N1 −943.496 454.350 −0.295 −2.077 0.041 −1847.022 −39.971

N2 −58.054 173.795 −0.146 −0.334 0.739 −403.664 287.556

N3 368.891 1121.839 0.161 0.329 0.743 −1862.008 2599.790

N4 −770.442 490.204 −0.495 −1.572 0.120 −1745.267 204.384

N5 −1142.524 987.025 −0.598 −1.158 0.250 −3105.331 820.283

N6 714.178 414.595 0.545 1.723 0.089 −110.290 1538.646

N7 2934.299 1047.800 0.475 2.800 0.006 850.633 5017.965

N8 0.170 6.537 0.011 0.026 0.979 −12.829 13.170

P1 −0.055 0.154 −0.038 −0.354 0.724 −0.361 0.252

P2 45.053 26.321 0.283 1.712 0.091 −7.290 97.396

P3 0.165 0.193 0.088 0.854 0.396 −0.219 0.550

P4 28.477 18.691 0.350 1.524 0.131 −8.692 65.645

P5 0.057 0.162 0.055 0.352 0.726 −0.265 0.379

P6 −9.079 12.181 −0.198 −0.745 0.458 −33.301 15.144

P7 −173.106 116.257 −0.261 −1.489 0.140 −404.296 58.085

P8 2.635 52.004 0.009 0.051 0.960 −100.781 106.051

P9 −72.751 178.306 −0.046 −0.408 0.684 −427.332 281.829
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