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Abstract: Basalt fiber-reinforced concrete (BFRC) represents a form of high-performance concrete.
In structural design, a 28-day resting period is required to achieve compressive strength. This
study extended an extreme gradient boosting tree (XGBoost) hybrid model by incorporating genetic
algorithm (GA) optimization, named GA-XGBoost, for the projection of compressive strength (CS)
on BFRC. GA optimization may reduce many debugging efforts and provide optimal parameter
combinations for machine learning (ML) algorithms. The XGBoost is a powerful integrated learning
algorithm with efficient, accurate, and scalable features. First, we created and provided a common
dataset using test data on BFRC strength from the literature. We segmented and scaled this dataset to
enhance the robustness of the ML model. Second, to better predict and evaluate the CS of BFRC, we
simultaneously used five other regression models: XGBoost, random forest (RF), gradient-boosted
decision tree (GBDT) regressor, AdaBoost, and support vector regression (SVR). The analysis results
of test sets indicated that the correlation coefficient and mean absolute error were 0.9483 and 2.0564,
respectively, when using the GA-XGBoost model. The GA-XGBoost model demonstrated superior
performance, while the AdaBoost model exhibited the poorest performance. In addition, we verified
the accuracy and feasibility of the GA-XGBoost model through SHAP analysis. The findings indicated
that the water–binder ratio (W/B), fine aggregate (FA), and water–cement ratio (W/C) in BFRC were
the variables that had the greatest effect on CS, while silica fume (SF) had the least effect on CS. The
results demonstrated that GA-XGBoost exhibits exceptional accuracy in predicting the CS of BFRC,
which offers a valuable reference for the engineering domain.

Keywords: BFRC; compressive strength; genetic algorithm; machine learning

1. Introduction

Concrete is the most widely used material in the building-structure industry, but the
demand for its performance is increasing, thus the trend of research and application of
advanced and eco-materials is getting more and more attention and development. Many
methods have been proposed to improve the performance of concrete materials, and the
incorporation of fibers into concrete is a promising solution. Among them, basalt fiber (BF)
is an inorganic and environment-friendly green material that is often used as a concrete
additive to improve its tensile properties [1–4]. Basalt-fiber-reinforced concrete (BFRC)
has the advantage of superior mechanical properties, durability, crack resistance, and frost
resistance and the raw material is readily available, which makes its application promising.
It is essential to accurately predict the basic mechanical performance of BFRC to ensure the
safety of engineering structures.

Wang D et al. [5] investigated the impacts of BF, polypropylene fibers, and blended
fibers on the compressive strength (CS), flexural strength, splitting tensile strength, and
stress–strain curves of HPC. The results indicated that fiber admixture could moderately
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enhance the CS of concrete. Wang X et al. [6] investigated the effects of fiber length and
admixture amount on the mechanical properties and crack resistance of BFRC. The results
demonstrated that adding the appropriate amount of fiber can increased the CS of BFRC.
Chen et al. [7] conducted a comprehensive study on the influence of BF content on basic
mechanical properties of concrete. The investigation involved performing compression
and cracking tensile experiments. The results demonstrated that BF can enhance the CS
of concrete by a moderate amount. Most studies have evaluated the mechanical behavior
of BFRC by using experimental methods [8–13]. However, BFRC is a mixture of a variety
of materials in precise proportions such as basalt fibers, cement, water and aggregate.
If the test results are not sufficiently reliable due to mixture design failures, the entire
concrete-mixture design procedure has to be restarted. However, experimental studies
require a large amount of instrumentation and equipment, which is costly.

In order to surpass the limitations associated with experimental methods, several
researchers have turned to machine learning (ML) methods as a means to predict concrete
strength [14–16]. Hong et al. [17] verified that the RF algorithm can predict the compressive
strength of BFRC well. Severcan et al. [18] employed GEP to effectively capture the split-
ting tensile strength of concrete. Their study demonstrated that GEP exhibited superior
performance in predicting the splitting tensile strength compared to other approaches.
Nguyen et al. [19] used RF, decision trees (DTs), and XGBoost for the prediction of CS on
fly-ash-based polymer concrete and concluded that the XGBoost model outperformed the
other two models. In a study by Gupta et al. [20], the optimal proportions of concrete mixes
were determined using the Gaussian process, M5P model, random forest (RF), and ran-
dom tree (RT) techniques and different applied models were evaluated. It was found that
Gaussian process regression using RBF kernel produced better results than other models.
Asteris et al. [21] used AdaBoost, support vector machine (SVM), RF, DT, and K nearest
neighbors to evaluate the behavior of cement-based mortar CS. Kang et al. [22] extended
and compared various ML models to forecast flexural strength of steel-fiber-reinforced
concrete. Finally, it was found that the CS prediction performance was generally better than
the flexural-strength prediction performance regardless of the machine-learning algorithm
used. A forest deep neural network (FDNN) algorithm proposed by Altayeb et al. [23]
outperformed previous algorithms in predicting the mechanical properties of cementitious
composites. Armaghani et al. [24] used models such as artificial neural networks (ANNs),
and ANFIS to forecast the CS of cementitious mortar materials with or without biased
kaolinite. Ahmed et al. [25] investigated the CS of concrete mixed with fly ash using various
techniques such as linear regression, genetic algorithms, and particle-swarm optimization.
Nazar et al. [26] used random forest regression, DTs and GEP-model multiple machine-
learning approaches for the prediction and valuation of CS in nano-modified concrete
and showed that the RFT model performed better in terms of accuracy and precision of
the results. Esmaeili and Benemaran [27] used particle-swarm optimization (PSO) and
black-widow optimization algorithms (BWOAs) to optimally determine the variables to
generate two XGB structures that predicted the modulus of elasticity (MR) of the modified
substrate under wet and dry cycling conditions. The results showed that the combination
of variables in the M3 model were the most appropriate and that the BWO algorithm was
competent in determining the optimal values of the XGB parameters. Benemaran et al. [28]
used four different optimization methods (particle-swarm optimization, social-spider op-
timization, sinusoidal cosine algorithm, and multi-universe optimization) based on the
extreme gradient-boosting model to predict the modulus of recovery of flexible pavement
foundations. The results showed that all optimization models worked well, but the limit
gradient-boosting model based on particle-swarm optimization exhibited the best predic-
tion accuracy. Li et al. [29] developed four hybrid models based on the aquila-optimizer
algorithm using an adaptive neuro-fuzzy inference system, support vector regression,
random forests, and limiting gradient boosting to accurately predict the unconfined com-
pressive strength of marine clay and recycled tile blends. The results of the study showed
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that the model of extreme gradient boosting with the aquila-optimizer algorithm had the
best performance with a small scatter index and better generalization.

In summary, existing studies have mainly focused on single-scale models without
considering the effects of extensive laboratory-work data or factors in the concrete CS.
Single algorithms often lead to locally optimal solutions that are difficult to generalize
which can ultimately limit their practical application. Many factors influent the CS of
concrete, including the mix ratio, water–cement ratio, and shape of the mixture. Therefore,
designing a hybrid model integrating multiple algorithms can consider these factors more
comprehensively and enhance prediction accuracy and generalizability of concrete CS.
Genetic algorithms (GAs) have good global search capability and robustness and can
avoid getting trapped in locally optimal solutions. XGBoost is a powerful integrated
learning algorithm with efficient, accurate, and scalable features. However, its grid search
increases the time significantly as the parameters increase when performing parameter
tuning. Therefore, a hybrid model was designed to extend the XGBoost model by using
genetic-algorithm parameter optimization (GA-XGBoost) for better and faster prediction
of CS on BFRC as well as optimization of concrete mix ratio designs. The main research
content was as follows:

1. A large dataset on the basic mechanical properties of BFRC was constructed using
experimental data on BFRC strength from published literature and made available to
the public;

2. GA-XGBoost was developed and applied to predict CS on BFRC, and the model was
validated by SHAP analysis;

3. Six independent regression models—XGBoost, gradient-boosted decision tree (GBDT)
regressor, AdaBoost, RF, SVR, and GA-XGBoost—were adopted to predict the concrete
CS, and the accuracy of these models’ predictions was compared.

2. Data Preprocessing

Before constructing a model, the dataset must be assembled and preprocessed. Many
researchers [14–17,30–34] have attempted machine-learning predictions, but no studies
have been conducted to build shared BFRC model datasets. New datasets needed to be
obtained from strength tests of BFRC to develop models for predicting CS.

Since most design criteria for concrete are concerned with strength, this study decided
to use and collect test data from several BFRC strengths and form a common dataset.
This dataset contained a large amount of data regarding the design parameters of BFRC
concrete mixes, as well as several strength parameters. The database included water–
cement ratio (W/C), coarse aggregate (CA), silica fume (SF), water–binder ratio (W/B),
high-efficiency water reducing agent (S), fine aggregate (FA), and fly ash (F) as concrete-mix
design parameters. The ratio of length to diameter of fibers (FL/FD) and fiber content (FC)
were used as fiber-property parameters. Finally, the strength parameter recorded in this
dataset was compressive strength (CS). The dataset contained 12 parameters, 11 of which
are features, and 1 a target. Table 1 presents descriptive statistics for the dataset utilized in
the development of the model.

To enhance the visualization of the graphs, we used Python to create Figures 1 and 2.
Figure 1 is a graphical representation of the pairing matrix, and demonstrates how the
magnitude of the correlation between the variables changed as different factors changed.
Among them, the increase in W/C, W/B, and FA led to a decrease in the concrete CS, while
the improvement in C, S, and SF enhanced the CS, and the effect of other factors on CS was
not significant. Similar conclusions can be drawn from the correlation coefficient matrix
(Figure 2), where W/C, W/B, and FA were negatively correlated with CS with correlation
factors of −0.52, −0.52, and −0.2, while C, SF, and S were positively correlated with CS
to a comparable extent with correlation factors of 0.32, 0.32, and 0.28. In particular, it was
observed from Figure 2 that FC was negatively correlated with CS (−0.15).
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Table 1. Dataset descriptive statistics.

Feature Units Mean Std Min Max Count

W/C - 0.450 0.0722 0.280 0.717 346
W/B - 0.400 0.0753 0.241 0.573 346

C kg/m3 395.3 69.25 217 613.3 346
F kg/m3 40.92 53.98 0 168 346

SF kg/m3 13.14 28.28 0 126 346
CA kg/m3 1093 170.6 512 1540 346
FA kg/m3 697.9 110.7 507 1194 346
W kg/m3 175.2 29.15 112 301 346
S kg/m3 3.088 2.292 0 8.360 346

FL/FD 103 1.037 0.377 0.345 2 346
FC % 0.141 0.131 0 0.730 346
CS MPa 50.15 11.80 15.52 96.25 346
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According to Oey et al. [35], scaling the training and test sets before segmentation can
potentially result in data leakage. In this study, following the separation of the training and
test sets, the dataset was scaled using the robust-scaler function from the sklearn library. By
utilizing median and quartile scaling, the robustness of machine-learning algorithm was
enhanced to minimize the impact of outliers on the model. Then, we could significantly
enhance the accuracy of prediction results.

3. Methodology
3.1. Machine-Learning Algorithm

To make it easier to use these machine-learning algorithms, we adopted python as the
IDE and used the scikit-learn library from it. The purpose of our study was to validate the
GA-XGBoost performance in predicting the CS of BFRC and to compare it with XGBoost,
GBDT, AdaBoost, RF, and SVR. To ensure the reliability of the GA-XGBoost model, feature-
importance analysis and SHAP analysis were performed, and the findings were analyzed
in comparison with previous studies.

3.1.1. Brief Description of RF

RF is described as a consolidated learning model which decreases the variance of
an individual decision tree by building the integration of multiple decision trees [36].
This algorithm leverages the definition of bagging, which involves aggregating randomly
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selected similar datasets from the training set into a forest [37]. In order to randomly select
enough features among the nodes, the RF algorithm uses bagging to optimize them. The
decision tree partitions the randomly selected sample features into left and right subtrees.
This method reduces the instability of the decision tree and improves its generalization
ability, but leads to over-fitting in some noisy classification and regression problems.
Figure 3 presents the schematic diagram depicting the bagging algorithm.
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3.1.2. Brief Description of AdaBoost

The boosting method is a consolidated learning model that constructs a strong learner
based on jointing multiple weak learners. In the boosting method, the sample weights of
follow-up models are increased based on the learning from the previous model. This itera-
tive process results in the creation of strong learners [38]. AdaBoost is a boosting algorithm
that enables training to focus on hard-to-predict samples by dynamically weighting the
training samples, ultimately achieving the optimal weak learner [39]. In each iteration,
each weak learner dynamically modifies the weights of each sample based on the previ-
ously obtained prediction accuracy and trains the new dataset. This algorithm makes the
combination of weak learners more likely to produce accurate prediction results. Figure 4
shows the schematic diagram of the boosting algorithm.
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3.1.3. Brief Description of GBDT

The definition of the GBDT is a decision-tree-based synthesis algorithm designed to fit
the training data by continuously reducing the residuals. Following each round of training
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for the weak learner, the GBDT adjusts itself by moving in the direction of a decreasing
gradient of the loss function [40].

Similar to AdaBoost, the GBDT uses the gradient rather than the weights of error
points to locate weak learner deficiencies. The GBDT can use a wider range of objective
functions than AdaBoost.

3.1.4. Brief Description of SVR

SVR is an algorithm for solving linear and nonlinear regression problems with a
strong generalization capability [41,42]. It predicts export values by combining multiple
kernel functions to construct reliable regression models. Another advantage of this al-
gorithm is that the optimal kernel function can be applied to enhance the forecast result
accuracy. In addition to regression problems, SVR can be used for pattern recognition and
data classification.

3.1.5. Brief Description of XGBoost

XGBoost is an upgraded version of the boosting algorithm based on the GBDT al-
gorithm, and it allows for more accurate and faster fitting by directly using first- and
second-order gradients to extend the loss function [43]. This algorithm has been widely
used in several fields and offers greater problem-solving capabilities and fewer usage
constraints. In contrast to the GBDT, XGBoost exhibits shorter learning times and supe-
rior predictive power, particularly when confronted with large-scale datasets. However,
the disadvantages of XGBoost are that it requires a lot of memory and computational re-
sources during the training process, and may have overfitting problems for certain datasets.
Therefore, careful hyperparameter selection and model optimization are required when
using XGBoost.

3.1.6. Features, Advantages, and Disadvantages of the above Five Models

As mentioned above, RF, AdaBoost, GBDT Regressor and XGBoost are all integrated
learning algorithms based on decision trees, while SVR is a support vector machine based
on a regression algorithm. In general, the DT is the foundation and combinations of DTs
creates a RF that has higher accuracy. AdaBoost adjusts the sample weights at each iteration
to strengthen those samples that are misclassified. GBDT is designed to fit the training
data by continuously reducing the residuals. SVR is a powerful regression algorithm for
dealing with nonlinear regression problems. Finally, in order to address the overfitting
problem, XGBoost extended and possessed the highest accuracy of the four decision tree
methods, while SVR has a high sensitivity to parameters. The main features, advantages,
and disadvantages of the above five models are presented in Table 2.

3.1.7. Combination of Genetic Algorithm and XGBoost

Genetic algorithms (GAs), which originated from computer simulations of biological
systems, are stochastic, efficient, and parallel global search and optimization methods. They
are able to automatically generate and accumulate knowledge about the search space during
the search process and adaptively control the search process to find the optimal solution.

Although XGBoost excels in all aspects, it does have drawbacks, one of which is
that many of the parameters are customizable and results can vary from configuration to
configuration. When using grid search to adjust parameters, the number of parameters
added is correlated with the search time spent. Due to its inherent parallelism and ability
to perform distributed computations, GAs quickly traverse all solving methods in the
solution space without falling into the trap of rapidly decreasing locally optimal solutions.
Consequently, GAs allow faster optimization of many machine-learning parameters and
can achieve higher efficiency, outperforming grid searches.
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Table 2. Summary of the above models [44–48].

Model Main Features Advantages Disadvantages

RF

RF is an integrated model
consisting of multiple decision

trees, which can reduce the
variance of individual

decision trees.

1. Improves model accuracy by
reducing overfitting;

2. Handles both classification and
regression problems;

3. Robust to noise and missing values
in the data sets.

1. The model training time
is longer;

2. Larger storage space is required
to store multiple decision trees;

3. The presence of outliers in the
dataset can influent the
accuracy of the model.

AdaBoost

AdaBoost is an integrated
model consisting of several
weak classifiers for binary

and multivariate
classification problems.

1. Manages overfitting to solve
dichotomous and
multiclassification problems;

2. Handles high-dimensional,
unbalanced datasets.

1. Sensitive to outliers, which may
have a significant impact on
the model;

2. Longer training time;
3. Tendency to overfit when the

data set is too noisy.

GBDT

GBDT Regressor is an
integrated decision-tree-based

learning algorithm that
improves the accuracy and
generalization performance

through gradient
boosting method.

1. Handles effectively nonlinear
relationships and complex
feature interactions;

2. Missing values and outliers are
handled automatically and with
good robustness;

3. Generates feature importance
rankings to facilitate subsequent
feature engineering.

1. Sensitive to noise and outliers
and prone to overfitting;

2. Relatively slow training speed;
3. Prone to prediction bias for

unbalanced datasets.

SVR

SVR is a support vector
machine (SVM)-based

regression algorithm that can
be used to handle nonlinear

regression problems.

1. Handles high-dimensional data sets
and non-linear
regression problems;

2. There is no requirement for the
uniqueness of the solution of
the model;

3. Setting the kernel function to be
well adapted to different data types.

1. Time- and memory-consuming
when dealing with large
data sets;

2. Sensitive to noise and easy
to over-fit;

3. Need to solve convex
optimization problems with
high solution complexity.

XGBoost

XGBoost is a
decision-tree-based gradient
boosting algorithm that also

uses regularization to enhance
the accuracy and

generalization performance.

1. Automatic feature selection and
excellent performance in handling
large scale, high-dimensional data;

2. Handles missing values, outliers,
and unbalanced datasets, and is
less prone to overfitting;

3. Supports parallel computing and
distributed computing with fast
processing time.

1. Requires long training time and
large amount of computational
resources to handle
large-scale datasets;

2. Parameter tuning may lead to
over-fitting or under-fitting;

3. Vulnerable to outliers.

To address the problems of long preparation time and many parameters in XGBoost
models, we adopted GAs to improve the efficiency of parameter search process in XGBoost.
The individual population of GAs is usually defined as the XGBoost parameters and the
fitness function is determined as the average score achieved during XGBoost training. Also,
selection, crossover, and variation are used to enhance the operational efficiency of the
model. Figure 5 shows a schematic representation of GA-XGBoost.

As a result, GAs should be used to optimize the XGBoost model, so that we find the
optimal solution faster, reduce the tuning time, and ease the burden of parameter tuning.
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3.2. Model Performance Evaluation

For machine-learning algorithms, we commonly use mean square error (MSE), co-
efficient of determination (R2), root mean square error (RMSE), and mean absolute error
(MAE) to describe the accuracy and stability of a model.

In these regression models, the key to estimation performance is the variance compo-
nent of the response features, which can have values from negative infinity to 1. Thus, if
the algorithm’s model satisfies the data perfectly, its value will be 1 and also explain the
data variability. The formulae for the four evaluation indicators are shown below.

R2 = 1−
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where ŷi and yi are the predicted value and true value,
−
y is the sample mean, and n is the

count of data samples.

3.3. Methodology Flowchart
3.3.1. Data Collection

The flowchart of the current work included the four main steps above, as shown in
Figure 6.

The database consisted of 346 experimental results collected from 28 published ar-
ticles about the CS of BFRC. This dataset was randomly divided into a training dataset
(accounting for 70%) and a test dataset (the remaining 30%).

3.3.2. Model Training

We used the training dataset to train the ML models mentioned above. These algo-
rithms are described in Section 3.1. The training process was repeated until the above-
mentioned models were successfully trained.
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3.3.3. Model Verification

After step 2, we used the testing set to validate the above models. That is, we used
the GA-XGBoost model proposed in this paper to compare with five other existing models.
Additionally, we used the repeated holdout method to ensure the model prediction perfor-
mance. Model prediction ability was evaluated using four criteria detailed in Section 3.1.

3.3.4. Sensitivity Analysis

Finally, we evaluated the influence of input variables with feature importance and
SHAP values to assess the influence of the 11 input parameters.

First, we obtained the original dataset and selected the most relevant features using
the feature selection function with reference to Figures 1 and 2. Second, in order to evaluate
the performance of the model and ensure the consistency and stability of the model, we
randomly divided the dataset into a training set and a test set, and adjusted the random-
state parameter of the model to 1. In order to improve the speed and accuracy of the model
training, we scaled the training set and the test set by using the median and interquartile
spacing. Then, the corresponding datasets were trained and tested, and tuned by traditional
grid-search methods to obtain five single machine-learning models. The default settings
for the other models’ parameters were used. Finally, we utilize GAs for parameter tuning
of the XGBoost models to obtain an integrated model, and the flow is shown in Figure 5.

4. Results and Discussion
4.1. Evaluation of Six Models

Table 3 shows the results of statistical validation of the model performance on the
dataset under four different metrics. Here, the computed results of four performance
criteria (R2, MSE, RMSE, and MAE) were used to assess the accuracy of the model, a score-
based system was designed to assign a score (from 1 to 6) based on the criterion values, and
the total score described the ranking of the model. A smaller total score represented a better
model performance. Compared to the XGBoost model, the GA-XGBoost model achieved
smaller metric errors on the training set (MSE = 2.2596, RMSE = 1.5032, MAE = 1.0116,
R2 = 0.9834). The results indicated that GAs can be used to maximize performance and
enhance the learning ability of the XGBoost model. Also, GA-XGBoost showed the highest
score on the test set with a metric error of (MSE = 7.6962, RMSE = 2.7742, MAE = 2.0564,
R2 = 0.9483). It is reasonable to use GAs to improve parameter tuning of XGBoost to
maximize its performance. The performance of other models using grid-search optimization



Buildings 2023, 13, 1934 11 of 17

showed that grid-search optimization is also adequate to predict the CS of concrete with
considerable model accuracy.

Table 3. Statistical evaluation metrics of models.

Type of Set Metrics XGBoost GBDT AdaBoost RF SVR GA-
XGBoost

Train

R2 0.9307 0.987 0.7822 0.96 0.9527 0.9834
Rank 5 1 6 3 4 2
MSE 9.4145 1.7631 29.6077 5.4331 6.4333 2.2596
Rank 5 1 6 3 4 2
RMSE 3.0683 1.3278 5.4413 2.3309 2.5364 1.5032
Rank 5 1 6 3 4 2
MAE 1.9637 0.8235 4.4515 1.6056 0.758 1.0116
Rank 5 2 6 4 1 3

Test

R2 0.9133 0.914 0.826 0.9322 0.9123 0.9483
Rank 4 3 6 2 5 1
MSE 12.6259 12.5174 25.321 9.8671 12.7635 7.6962
Rank 4 3 6 2 5 1
RMSE 3.5533 3.538 5.032 3.1412 3.5726 2.7742
Rank 4 3 6 2 5 1
MAE 2.5726 2.473 4.0276 2.2175 2.5728 2.0564
Rank 4 3 6 2 5 1

Total rank score 36 17 48 21 33 13

According to the experimental results shown in Figure 7, all models except the Ad-
aBoost model performed well in predicting the CS on BFRC. The predicted values of
AdaBoost model showed greater deviations relative to their experimental values due to
adaptively increasing the weight of the prediction error. The GA-XGBoost had the best
performance and stability, while the RF, GBDT, XGBoost, and SVR performed slightly
differently. However, after grid-search optimization, the AdaBoost model still performed
poorly because of its lack of sensitivity to noise and outliers. Therefore, we can conclude
that GA-XGBoost is the most suitable ML algorithm for predicting the CS on BFRC.

4.2. SHAP Analysis

SHAP analysis is an algorithm used to interpret the prediction results of ML models
by providing the magnitude of each feature’s impact on the prediction results. The core
of SHAP analysis is based on the Shapley value principle, which assigns each feature’s
contribution to all possible subsets of features and calculates the expected value of the
feature contribution to obtain the magnitude of each feature’s impact on the prediction
results of the model. Shapley values can be used not only to assess the importance of
each input variable, but also to calculate the impact of individual input variables on the
final result, which is presented in the form of a Shapley plot. Feature-importance analysis
is a method used to determine which features or variables have the most influence on
the prediction results of a model to help optimize and explain the model’s performance
and results.

SHAP analysis can help us interpret the model prediction results and determine which
features have the most influence on the prediction results. Also, SHAP can help us validate
the reliability of the model to determine if the model uses reasonable features in making
predictions on the input data. Finally, SHAP analysis can also help us enhance the model
performance by analyzing the impact of each feature on the model’s prediction results
and determining which features need more attention and optimization to enhance the
prediction performance. For BFRC fit design, it is very important to know the impact
of model input variables. In addition, the proposed algorithm should be described in
detail to understand how to analyze and calculate the predicted concrete CS. For the
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global interpretation, we performed SHAP and feature-importance analysis on the best-
performing GA-XGBoost model.
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To test the effect of features on the prediction of the target variables, Figure 8 indicates
the significance of input variables. The results were obtained by averaging the Shapley
values throughout the data collection process. We found that W/B dominated the CS of
BFRC, which is consistent with the experimental results. The variables FA and W/C were
in the second and third place and, in that order, of considerable importance for CS. It is
also clear from this figure that CA content was the least important variable, while SF and
FL/FD were slightly more important than CA.

Aggregate plots summarize the relative importance of input factors and their relation-
ship with the independent variables and therefore play an important role in SHAP analysis.
Figure 9 indicates global interpretation of GA-XGBoost using the SHAP interpretation,
showing the distribution of SHAP values for all model features and the main trends of
the variables. The figure shows SHAP values of 11 input features, where positive values
indicate an aggressive gain to CS and negative values indicate the opposite. Red dots
represent those samples with high eigenvalues and blue dots are the opposite.



Buildings 2023, 13, 1934 13 of 17

Buildings 2023, 13, 1934 13 of 18 
 

detail to understand how to analyze and calculate the predicted concrete CS. For the 
global interpretation, we performed SHAP and feature-importance analysis on the best-
performing GA-XGBoost model. 

To test the effect of features on the prediction of the target variables, Figure 8 indi-
cates the significance of input variables. The results were obtained by averaging the Shap-
ley values throughout the data collection process. We found that W/B dominated the CS 
of BFRC, which is consistent with the experimental results. The variables FA and W/C 
were in the second and third place and, in that order, of considerable importance for CS. 
It is also clear from this figure that CA content was the least important variable, while SF 
and FL/FD were slightly more important than CA. 

 
Figure 8. Feature importance of CS. 

Aggregate plots summarize the relative importance of input factors and their rela-
tionship with the independent variables and therefore play an important role in SHAP 
analysis. Figure 9 indicates global interpretation of GA-XGBoost using the SHAP inter-
pretation, showing the distribution of SHAP values for all model features and the main 
trends of the variables. The figure shows SHAP values of 11 input features, where positive 
values indicate an aggressive gain to CS and negative values indicate the opposite. Red 
dots represent those samples with high eigenvalues and blue dots are the opposite. 

Figure 8. Feature importance of CS.

Buildings 2023, 13, 1934 14 of 18 
 

 
Figure 9. SHAP summary plot. 

Figure 9 shows that the W/B variable has a low sample eigenvalue and a high SHAP 
value. Therefore, the W/B variable with smaller sample eigenvalues has a larger positive 
gain in improving the CS of BFRC. For the FA and W/C variables, SHAP values with lower 
sample eigenvalues are positive, which indicates that reducing FA and W/C can improve 
the CS of BFRC to some extent. Additionally, we can derive from Figure 9 that the SF and 
FL/FD variables have smaller sample eigenvalues and SHAP values close to 0, which in-
dicates that both of them have little influence on improving the CS of BFRC. 

5. Conclusions and Limitations 
In order to avoid local optimal solutions and reduce the time for model parameter 

debugging, an extended XGBoost model (GA-XGBoost) with adoption of GA optimiza-
tion parameters was designed in this study to facilitate the accuracy and stability of pre-
dicting the compressive strength of BFRC. For comparative analysis, we also used 
XGBoost, GBDT regressor, AdaBoost, RF, and SVR—five other regression models. The 
following conclusions were reached: 
(1) Compared to other regression models, the GA-XGBoost model shows the best accu-

racy and stability in predicting CS of BFRC. For the test dataset, the R2, MSE, RMSE, 
and MAE of GA-XGBoost were 0.9483, 7.6962 MPa, 2.7742 MPa, and 2.0564 MPa, and 
the errors were within the acceptable range. 

(2) By using GAs to tune the parameters in the ML algorithm, a lot of debugging work 
can be avoided and the best combination of parameters can be obtained. For engi-
neering applications involving ML algorithms, this can greatly assist in developing 
practical solutions. 

Figure 9. SHAP summary plot.



Buildings 2023, 13, 1934 14 of 17

Figure 9 shows that the W/B variable has a low sample eigenvalue and a high SHAP
value. Therefore, the W/B variable with smaller sample eigenvalues has a larger positive
gain in improving the CS of BFRC. For the FA and W/C variables, SHAP values with lower
sample eigenvalues are positive, which indicates that reducing FA and W/C can improve
the CS of BFRC to some extent. Additionally, we can derive from Figure 9 that the SF
and FL/FD variables have smaller sample eigenvalues and SHAP values close to 0, which
indicates that both of them have little influence on improving the CS of BFRC.

5. Conclusions and Limitations

In order to avoid local optimal solutions and reduce the time for model parameter
debugging, an extended XGBoost model (GA-XGBoost) with adoption of GA optimization
parameters was designed in this study to facilitate the accuracy and stability of predicting
the compressive strength of BFRC. For comparative analysis, we also used XGBoost, GBDT
regressor, AdaBoost, RF, and SVR—five other regression models. The following conclusions
were reached:

(1) Compared to other regression models, the GA-XGBoost model shows the best accuracy
and stability in predicting CS of BFRC. For the test dataset, the R2, MSE, RMSE, and
MAE of GA-XGBoost were 0.9483, 7.6962 MPa, 2.7742 MPa, and 2.0564 MPa, and the
errors were within the acceptable range.

(2) By using GAs to tune the parameters in the ML algorithm, a lot of debugging work
can be avoided and the best combination of parameters can be obtained. For engi-
neering applications involving ML algorithms, this can greatly assist in developing
practical solutions.

(3) According to SHAP analysis, W/B of BFRC is the most important variable that
dominates CS, followed by FA and W/C. The variable FC has some influence on CS,
while other variables, such as CA and SF, have less influence on CS. This can provide
some reference for the design of BFRC fits.

These results show that the model has high prediction accuracy and stability, and has
several application values:

(1) It can guide the calculation of BFRC compressive strength required for engineering;
(2) It effectively reduces the difficulty of obtaining BFRC compressive strength, reduces

the experimental workload, saves time and cost, and is more economical and environ-
mentally friendly;

(3) We developed a genetic algorithm for parameter optimization to determine the key
parameters of the prediction model, which can provide an effective reference for the
optimization of other machine models.

While this study used a large data set containing 11 input variables to build the model,
this also increased the complexity of the model. Having more input variables leads to
more complex models, which may be detrimental to the generalization ability of the model.
At the same time, the presence of these non-independent selected inputs in our input
features may have led to redundant information in the data, affecting the performance and
generalization ability of the model. We can consider optimizing these non-independent
variables by means of feature engineering and quantitative simplification. Therefore, there
may be limitations to machine-learning algorithms for practical engineering applications.
Future research needs to explore whether input-variable reduction can enhance the accuracy
and generalization ability of ML models.
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Nomenclature

BFRC Basalt-fiber-reinforced concrete
XGBoost Extreme gradient boosting tree
ML Machine learning
GBDT Gradient-boosted decision tree
AdaBoost Adaptive gradient boosting
BF Basalt fiber
MSE Mean square error
W/C Water–cement ratio
SF Silica fume
S High-efficiency water reducing agent
FL/FD Ratio of length to diameter of fibers
F Fly ash
CS Compressive strength
GA Genetic algorithm
RF Random forest
SVR Support vector regression
MAE Mean absolute error
R2 Coefficient of determination
RMSE Root mean square error
CA Coarse aggregate
W/B Water–binder ratio
FA Fine aggregate
FC Fiber content
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