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Abstract: In interior space planning, the furnishing stage usually entails manual iterative processes,
including meeting design objectives, incorporating professional input, and optimizing design per-
formance. Machine learning has the potential to automate and improve interior design processes
while maintaining creativity and quality. The aim of this study was to develop a furnishing method
that leverages machine learning as a means for enhancing design processes. A secondary aim was
to develop a set of evaluation metrics for assessing the quality of the results generated from such
methods, enabling comparisons between the performance of different models. To achieve these aims,
floor plans were tagged and assembled into a comprehensive dataset that was then employed for
training and evaluating three conditional generative adversarial network models (pix2pix, Bicycle-
GAN, and SPADE) to generate furniture layouts within given room boundaries. Post-processing
methods for improving the generated results were also developed. Finally, evaluation criteria that
combine measures of architectural design with standard computer vision parameters were devised.
Visual architectural analyses of the results confirm that the generated rooms adhere to accepted
architectural standards. The numerical results indicate that BicycleGAN outperformed the two other
models. Moreover, the overall results demonstrate a machine-learning workflow that can be used to
augment existing interior design processes.

Keywords: machine learning; interior space planning; CGANs; image-to-image translation

1. Introduction

To provide a clear representation of a given design plan, comprehensive drawings
of the walls, doors, windows, and furniture are required. Designers tend to manually
depict their furnishing work using Computer-Aided Design (CAD) software based on their
knowledge and experience and in line with their clients’ requests [1]. Optimally integrating
furniture items within floor plans plays a pivotal role in various stages of the design
process. Not only do furniture arrangements serve to unveil and communicate the quality
of a given space, but they also accentuate the space’s functionality and performance. As
such, when incorporating furniture items into floor plans, interior designers meticulously
consider a wide array of factors in order to create a space that is both aesthetically pleasing
and functional.

To assist with this process, architectural automation has been rapidly improving via
the utilization of techniques such as parametric design and generative design within CAD
software. The recent emergence of Machine-Learning (ML) and Artificial Intelligence
(AI) techniques has introduced processes that impact a wide range of fields [2]. As these
advances become more widely incorporated in architectural designs, it is critical to establish
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effective assessment methods for measuring their impact on design quality. In turn, it
is essential to investigate how these technologies might be utilized to improve design
processes while examining their possible challenges and limitations.

The primary aim of this study was to develop an ML-based method for conducting
automated room furnishing with practical applications that can be implemented throughout
the design process. The secondary aim of this research was to develop comprehensive
evaluation and analysis metrics as a means for effectively assessing the performance of
the proposed method. The use of image generative models, notably image-to-image ML
models such as conditional generative adversarial neural networks (CGANs), which assist
the translation and transference of visual representations from one domain to another, may
be instrumental in achieving the research goals. Such models are relevant to the field of
interior design, as they can learn to translate from the domain of “unfurnished” designs
to that of “furnished” ones. In this study, three CGAN models (pix2pix, BicycleGAN, and
SPADE) were trained to generate interior design layouts from unfurnished plans. The
models were trained using 1290 image pairs of furnished and unfurnished bathrooms. The
models were then tested using 258 images with a focus on the generation of three primary
and functional objects in this room: sink, toilet, and shower.

This paper addresses the following five aspects that, when combined, describe a
proposed workflow and demonstrate its effectiveness: (1) a method for creating room
datasets, including the specifically generated bathroom dataset; (2) the ML model training
processes; (3) post-processing methods for improving the generated results; (4) a set of
evaluation metrics; (5) a comparison of the results, generated via the different models.
Ultimately, the findings of this study describe effective ML training models and evaluation
methods that can be used to improve the overall quality of architectural and interior
space planning.

2. Background and Prior Work
2.1. Machine Learning in Architectural Design Processes

The rapidly expanding field of ML is frequently employed in applications such as on-
line browsing, information filtering, and credit card fraud detection. One key strength of ML
models is their ability to learn complex rules without being explicitly programmed, thereby
achieving human-like performance [2]. Most modern ML models are based on artificial
neural networks, which require large training datasets in order to achieve good results [3].

In architecture, ML techniques are used for a range of tasks. For example, in legacy 2D
floor plan analyses, vision-based detection models are used to identify architectural objects,
such as windows, doors, and furniture in the design [4]. In similar drawings, segmentation
models are used for identifying room boundaries and tracing walls [5,6]. Optical Character
Recognition (OCR) models help identify function types by reading texts on scanned floor
plan images [7]. Owners and real estate agents could use such methods to reduce the need
to create 3D models, which require greater time and effort. Additionally, semantic and
graph-based analyses of Building Information Models (BIM) offer the ability to recognize a
room type based on the objects within its boundaries and on the space features [8,9].

Chaillou [10] demonstrates the potential of CGAN-type ML models for generating
space and furniture layouts of the apartment’s footprint. DPrix et al. [11] use similar
models for generating new exterior designs based on an existing archive of images in their
architecture firm. State-of-the-art advances in image synthesis models, such as Midjourney
(Midjourney, n.d.) [12], Stable Diffusion [13], and DALL-E2 [14], have also been used to
generate architectural images. However, these methods tend to rely on text prompts rather
than on image input and are beyond the scope of this paper.

The novel method presented in this research study employs the CGAN-based gener-
ation method, as proposed by [10], who provided the foundation of this line of research
and demonstrated its feasibility. The researchers also presented several ways in which
CGANs can be used in interior design, such as room allocation, function assignment, and
furnishing. This current study focuses on the interior furnishing of a single functional
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room, i.e., the bathroom, and provides a dataset and comprehensive workflow that outlines
the necessary steps for achieving the research aims. Finally, a set of developed evaluation
criteria is presented to enable the measuring of the performance of the suggested method.

2.2. Interior Residential Design Furnishing

Throughout history, scientists and researchers have studied human body movements,
with behaviors and patterns being collected as a basis for designing spaces that enhance
levels of human comfort [15]. Indeed, object scales and sizes are often defined when
positioned next to a human body [16]. Although definitions of terms such as “comfortable”
or “qualified” spaces may be subjective, unified guidelines and standards are usually
followed when designing spaces for humans.

To reduce the manual work entailed in creating and designing interior spaces, studies
suggest employing interactive tools for positioning objects of furniture while responding to
the users’ real-time selection of furniture pieces. Doing so could provide users with access
to an editable library of furniture pieces [17]. Geman and Geman [18] address the concept
of simulated annealing, which can be used to create indoor scenes for optimizing ergonomic
factors. In a study conducted by [19], the researchers utilize the hierarchy between furniture
objects to enable the generation of indoor furniture arrangements. Generating furniture
layouts has also been achieved via geometrical analyses of objects, using algorithmic hyper-
relations between and within groups of items to assign the positioning and orientation of
each group. For example, the relationship between a group of objects, comprising a sofa,
table, and television, could change based on the layout of the room [20]. Alternatively,
Kim and Lee [21] generated furniture layouts based on a design-style perspective, whereby
different types of rooms were created according to the desired style (casual, modern, classic,
or natural). Their model’s dataset comprised perspective images of interior spaces in which
each architectural style had distinct features, such as materials, forms, patterns, and colors.

2.3. Interior Residential Design Applications

Several online websites offer a range of services relating to interior space planning
and, as such, could be referred to as precedents for the method that is suggested in this
study. PlanFinder, for instance, is a software plugin for CAD and BIM software that enables
designers to furnish spaces with greater ease and speed simply by entering a door point
and clicking on the furnish button [22]. Finch 3D, an additional online service, leverages AI
and graph-based algorithms to optimize building designs and even provides performance
feedback, error detection, and optimal solution identification [23]. Finally, the web-based
Rayon Design service offers an intuitive online interface that allows users to make changes
to their floor plans, delete walls, and add furniture from a suggested set of furniture objects.
Users must, however, have a drawn floor plan prior to uploading the design [24].

2.4. Conditional Generative Adversarial Neural Networks Models

Deep neural networks and other recent ML advancements have significantly expanded
the scope and accuracy of generative modeling across domains to reflect the diverse and
complex nature of real-world data. These highly varied models exhibit a wide range of
capabilities and characteristics that depend on the applied algorithms and parameters.
These include Generative Adversarial Networks (GANs), which offer a range of solutions
based on their ability to learn to generate novel data from a given set of examples [25]. Its
architecture consists of two neural networks that are trained in a competing manner: the
generator strives to create fake yet realistic data samples, while the discriminator attempts
to distinguish between the real and fake samples. Moreover, the generator continuously
improves its ability to generate increasingly realistic data through this adversarial process,
while the discriminator continuously improves its ability to detect real versus fake data [26].
GANs have been used in a wide range of applications, including image generation [27], text-
to-image synthesis [28], and video synthesis [29]. Conditional GANs (CGANs) improve
GAN models by consuming a given condition as input, such as the category or class label
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desired for generation. The CGAN generator is trained to generate images according to
the condition injected into it. The CGAN discriminator is trained not only to distinguish
between real and fake data but also to consider added conditioning information. CGANs
have been found to be useful in image-to-image translation tasks, where they translate
an input image from one domain into a corresponding output image from a different
domain; they do so by maintaining some elements of the original image as the basis of the
newly generated one. This process strives to learn the mapping between input and output
pictures so that the generated output image resembles the desired target image as precisely
as possible [30].

The CGAN family includes many different models. For example, based on label
mappings, the pix2pix model learns to map between pairs of input–output images and then
produces a single synthesized image. This model involves training a generator network
based on the input image using two losses. The first is a regression loss that helps the
generator produce an output image that is similar to a paired ground-truth image. The
second is a learned discriminator loss that encourages the generator to produce realistic
images [31]. This model has been tested on various architectural datasets, such as labels-to-
street and labels-to-facades scenes [30]. An additional CGAN model is SPADE, which is
based on a more advanced mechanism for turning a semantic label map into a photorealistic
image. The model converts the labels and combines them with the style to generate the
desired realistic content [32]. Finally, the BicycleGAN model offers a multimodal image-to-
image translation, generating multiple potential images for the same input. This model
proposes a latent mapping vector between the generator and the discriminator, encouraging
a bijection between the output and the latent space, thereby leading to less ambiguous or
diverse results [31].

2.5. CGAN Models in Architecture

Huang and Zheng [33] utilized a variant of pix2pix to segment room boundaries
and detect doors and windows. In an additional study, Yang et al. [34] applied certain
modifications to the standard CGAN model to create functional floor divisions. Next,
they deployed a fully connected, three-tier neural network for each type of functional area
to place each piece of furniture within each space. Yet, the researchers do not measure
or quantify the quality of such placings. Chaillou [10] introduced the capabilities of
CGAN models in generating interior design, floor plan layout, and urban footprint. His
groundbreaking work demonstrates the potential of ML to generate architectural designs
by filling in “empty” black-and-white architectural drawings. Chaillou [10] proposes using
this framework to address the style and organization of different scale floor plans. Yet,
the researcher does not provide comprehensive descriptions or details of the employed
training processes, GAN models, or the employed settings. In this study, CGAN models
such as pix2pix, SPADE, and BicycleGAN were trained to generate furnishing layouts in
empty floor plans using the room data that were created in this study. This work presents
the training process of the models together with the generated results and proposes various
metrics for quantifying the quality of the generated results.

2.6. Available Architectural Datasets

Most Internet databases provide photographed perspective images of rooms that can
be gathered by anyone, anywhere, via their mobile devices. Examples of such datasets
include the 3D-FRONT Benchmark of synthetic indoor scenes and a large number of
rooms [35]. Kaggle, an online community of data scientists and ML professionals, exposes
images of homes that are taken on mobile telephones and that appear on the Renthop
website, which helps people find home rentals (RentHop|Kaggle) [36,37]. The walls, doors,
windows, and room boundaries in the dataset are presented via three online sources:
(1) Rent3D (R3D) [36], which displays 222 images of round-shaped layouts, as well as
straight ones with nonuniform wall thickness; (2) Raster-to-Vector (R2V), which includes
815 images of rectangular shapes with uniform wall thickness [6,38]; (3) CVC-FP, which
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includes 500 images in two versions, i.e., original floor plans in black-and-white and color-
mapped images [39,40]. The international Ikea furniture chain has an online furniture
dataset that uses furniture objects from their product lists and 298 room scene photos to
convey the context in which these objects can be used or placed [41]. Each of these available
public datasets was created for a specific research topic and does not meet the requirements
of this research since this case study requires a flexible dataset, one that includes top-view
room layouts that can be modified to include or exclude furnishings as a means for training
the models to achieve the defined aims. A customized database, therefore, was created, as
well as a tool that can generate various types of architectural datasets.

2.7. Machine Learning Dataset Formats and Available Annotation Tools

Comma-separated values (CSV) are a popular format for conducting text-data loading;
a text can contain numbers or strings organized in a tabular format [42]. JavaScript Object
Notation (JSON) is another well-known format that is easy to read for humans and can
easily be parsed via machines. This format is interchangeable between several computer
languages and may hold a variety of data [43]. The Common Objects in Context (COCO)
format is a specific JavaScript Object Notation (JSON) structure format. COCO JSON
files are commonly used for object detection and segmentation purposes, with files being
able to store entire data, and with translators into numerous formats [44]. Some online
image annotation platforms provide segmentation polygons and bounding box detection,
with a reference label to imported images. One example of such a platform is the CVAT
website [45]. Image labeling necessitates a significant amount of time and resources since
it is performed manually via annotators. As such, online dataset annotation platforms
may hinder the efficiency with which custom data is created. Designers do not typically
use these online platforms in their work, and, to the best of the authors’ knowledge, no
online tagging tool exists that is compatible with architectural CAD programs. Thus, those
who best understand and have the most to gain from ML design-automation methods,
i.e., designers, are not included in the development processes. To enable multiple types of
architectural datasets to be easily tagged and processed in commonly used CAD tools, this
paper presents a relevant and applicable method and tool for doing so.

2.8. Evaluation Metrics for CGAN Models
2.8.1. GANs Evaluation Metrics

When dealing with image-to-image models, the following two evaluation metrics are
commonly used to measure similarities and differences between two sets of images and to
evaluate the quality of the generated images in CGANs models: Fréchet Inception Distance
(FID) and Kernel Inception Distance (KID) [46].

FID is a metric for measuring the distance between two multivariate Gaussian distri-
butions, which are calculated from the real and generated image features that are extracted
using a pre-trained Inception-v3 network. The FID score is calculated by first computing
the mean and covariance of the feature representations for real and generated images
discretely. Next, the distance between the two sets of images is calculated based on the
statistics of their feature representations in the pre-trained neural network. Lower FID
scores mean smaller distances, indicating higher similarities between the real and generated
image distributions. However, FID requires a large dataset and can be overly sensitive
to the choice of the pre-trained network used to extract the image features. As such, it
may fail to capture certain aspects of image quality, such as diversity or coherence [47,48].
KID is also based on feature representations of the images extracted using a pre-trained
Inception-v3 network, a statistical method that is used to measure the similarity between
two sets of data, such as real and generated images. Both FID and KID measure distances
between the distributions of deep features of real and fake images. They differ in how they
measure these differences. However, KID can provide accurate results with less data since
its predicted value is independent of the sample size [46,49].
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2.8.2. Object Detection Metrics

Precision, recall, and intersection over union (IOU) metrics are commonly used for eval-
uating computer vision tasks, such as object detection, tracking, and segmentation [50,51].
These metrics compare the generated image against its respective ground truth. Precision is
the metric that measures the proportion of true positive predictions out of the total number
of predictions and can be seen as a measure of quality. Recall, on the other hand, is the
metric that measures the proportion of true positive results out of the total number of actual
positive instances and can be seen as a measure of quantity [50]. Finally, the IOU calculates
the intersection of the predicted and ground-truth bounding boxes divided by the union of
the two boxes.

CGAN models are expected to generate new and optimally synthesized images while
considering the overall features of the dataset. Although these three detection metrics
cannot be used to compare the generated images to overall ground-truth ones, it is im-
portant to find an alternative that will enable the evaluation of each generated image
against its respective ground truth to evaluate similarities and diversities of the output. The
Results section of this paper describes how each evaluation metric was used in assessing
the generated results and explains how they provide insight into design quality.

3. Methods

The primary research aim of this study was to develop an ML-based method for
automating the interior space planning process. The secondary aim was to develop meth-
ods for effectively assessing the performance of the design method. To accomplish this,
this study developed a workflow comprising the following stages, as seen in Figure 1:
(1) building the dataset, including annotating floor plans and creating color field images
for each room; (2) training the CGANs with specific parameters and generating images;
(3) developing a post-processing method to improve the generated results; (4) evaluating
the generated images using various metrics. This approach allowed us to train and evaluate
the effectiveness of CGANs in the floor plan design.
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Figure 1. Research technique stages.

As seen in Figure 2, the main method connects the empty room (with a door and
label) and the model’s results. In this model, the output transitions through the final
post-processing step to emphasize the placement of furniture objects in the room; next,
the designers can receive the output with an actual drawing. (At present, the process of
converting colors into their corresponding objects must be conducted manually.)
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3.1. “CAD2COCO” Pipeline

The developed annotation method was coded into CAD2COCO, an upcoming tool
for Rhino and Grasshopper users, which will be accessible as a Grasshopper plugin. The
plugin’s aim is to allow designers to work in their typical environment while collecting their
annotated data in a well-known ML format: COCO JSON (as explained in Section 2.7). The
tool provides one component with the following five input parameters: Layers, ImageFrame,
FilePath, ScaleFactor, and CreateCOCO. Additionally, it provides the output as a COCO
JSON file, as depicted in Figure 3. It is through this pipeline that the published bathroom
dataset for this study was created.
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Designers can use the suggested method and tool to build bespoke ML datasets
from readily available designs. Native CAD, PDF, JPEG, or PNG files can all be directly
imported into Rhino for annotation. The advantages of using a CAD environment are
multiple, including the ease of learning for designers; the capacity for handling large-scale
architectural drawings; the ability to correctly manipulate scales; and the utilization of CAD
tools like snaps, arrays, and guides within the tagging workflow. Using this Grasshopper
tool, users may produce COCO JSON files directly from the Rhino file, as shown in Figure 4.

Buildings 2023, 13, x FOR PEER REVIEW 8 of 22 
 

Figure 3. Main components of the plugin. 

Designers can use the suggested method and tool to build bespoke ML datasets from 

readily available designs. Native CAD, PDF, JPEG, or PNG files can all be directly im-

ported into Rhino for annotation. The advantages of using a CAD environment are mul-

tiple, including the ease of learning for designers; the capacity for handling large-scale 

architectural drawings; the ability to correctly manipulate scales; and the utilization of 

CAD tools like snaps, arrays, and guides within the tagging workflow. Using this Grass-

hopper tool, users may produce COCO JSON files directly from the Rhino file, as shown 

in Figure 4. 

 

Figure 4. Pipeline: The importing of multiple types of drawings for generating COCO JSON. 

The “categories” section in the COCO JSON format comprises “color”, “name”, “id”, 

and “supercategory”; the developed workflow utilizes Rhino layers to store information 

for each annotated category. The following are the plugin input parameters: 

• “Layers”. This parameter accepts a list of layer names and fills the categories section 

with it. Using the name and color of each layer minimizes the number of input pa-

rameters; hence, the layer’s name must follow the stated naming syntax, “superCat-

egory_category_categoryId”. Figure 5 presents an example of a door annotation. 

The suggested approach makes it easier for designers to stay organized when label-

ing the custom data. The plugin contains an error-handling mechanism that notifies 

if there is duplicated info, wrong format, or a nonexistent layer. COCO JSON files 

include the metadata of all images, the dataset creator needs to determine the size of 

the image frame. 

• “imageFrame”. This parameter enables designers to insert the relevant frames as a 

list of curves. The plugin workflow aligns the frames and their internal annotations, 

allowing the annotator to position the drawing freely, anywhere in the Rhino pro-

gram. The COCO JSON format maps the annotation point to the image frame’s XY 

dimensions. 

• “ScaleFactor”. This parameter enables users to define the desired scale for the dataset. 

• “filePath”. This parameter accepts a text file path, presenting where the user wants 

to save the exported COCOJSON file. 

• “CreateCOCO”. Clicking on this button enables users to receive all tagged data or-

ganized in a COCO JSON file, all saved in the file path that they entered. 

 

Figure 5. Layers in Rhino used to fill categories of detected objects. 

Figure 4. Pipeline: The importing of multiple types of drawings for generating COCO JSON.

The “categories” section in the COCO JSON format comprises “color”, “name”, “id”,
and “supercategory”; the developed workflow utilizes Rhino layers to store information
for each annotated category. The following are the plugin input parameters:

• “Layers”. This parameter accepts a list of layer names and fills the categories sec-
tion with it. Using the name and color of each layer minimizes the number of input
parameters; hence, the layer’s name must follow the stated naming syntax, “superCat-
egory_category_categoryId”. Figure 5 presents an example of a door annotation. The
suggested approach makes it easier for designers to stay organized when labeling the
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custom data. The plugin contains an error-handling mechanism that notifies if there
is duplicated info, wrong format, or a nonexistent layer. COCO JSON files include
the metadata of all images, the dataset creator needs to determine the size of the
image frame.

• “imageFrame”. This parameter enables designers to insert the relevant frames as a list
of curves. The plugin workflow aligns the frames and their internal annotations, allow-
ing the annotator to position the drawing freely, anywhere in the Rhino program. The
COCO JSON format maps the annotation point to the image frame’s XY dimensions.

• “ScaleFactor”. This parameter enables users to define the desired scale for the dataset.
• “filePath”. This parameter accepts a text file path, presenting where the user wants to

save the exported COCOJSON file.
• “CreateCOCO”. Clicking on this button enables users to receive all tagged data

organized in a COCO JSON file, all saved in the file path that they entered.
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The developed tool allows for the creation of data for various design disciplines, such
as urban design, industrial design, and interior design. Data may be produced using the
plugin instructions, providing the necessary naming syntax is preserved.

3.2. Room Dataset Annotation

In light of the lack of a detailed residential room dataset, the authors of this study
created one that can be used to train image-based ML models for the specific task of
furnishing. For this purpose, floor plans were collected from various online real estate
websites, mainly of local buildings in Israel. The collected and tagged floor plans were
then automatically split up into rooms by the plugin, whereby a single apartment file led to
5–7 images of different rooms. For tagging the floor plans, each design image was imported
into Rhino and scaled to its original size, guided by given measurements that appeared on
the drawing. Next, bounding boxes were drawn in the appropriate layer names. Finally,
the plugin automatically extracted and stored the data in COCO JSON format. At this stage,
the code detected the room boundaries and the furniture objects inside it and correlated
between the room’s IDs, names, and categories.

3.3. COCO JSON Conversion to Room Images

When the annotation stage is completed, and the COCO JSON file is formed, the
images for each apartment’s room can then be generated. A method was developed
for transforming the drawings into dataset images, where objects in the floor plan are
represented using representative colors. Instead of using the original black-and-white room
furniture, the annotation bounding boxes in the COCO JSON files can be converted into
images with color masks. The final dataset is composed of pairs of colored images in two
primary variants: the first with furnished rooms to represent the ground-truth images that
the ML models are expected to learn; the second with empty rooms that only have doors
and windows to represent the user’s input, as shown in Figure 6. The generated dataset is
available to the public on GitHub (Tanasra, n.d.) [52].
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Figure 6. Detected residential categories, introduced with label colors.

To effectively utilize CGAN models, training them on images of equal size is crucial.
The chosen size should strike a balance between capturing essential details and remaining
computationally feasible for model training. Architectural room sizes vary depending on
their design and function. While a standard bathroom is smaller than a living room, it is
imperative that both images adhere to a consistent scale factor to ensure the generation of
suitable architectural spaces. The color boxes of each room, therefore, are automatically
centered on a separate 256 × 256 canvas to maintain the same scale factor in all images, as
shown in Figure 7.
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Figure 7. Ground-truth images centered on 256 × 256 canvas. Left: with furniture; Right: with doors
or windows, if found.

To diversify the room dataset, two image-augmentation techniques were leveraged:
rotation and flipping. This effectively expanded the dataset, multiplying each image by six.
To differentiate between the augmented data and the original sources, the image names
were coded to incorporate information such as the source site, file name, room category,
category ID, and count, as well as the augmentation status.

3.4. Training CGANs on the Data

Using the described workflow, the authors of this study were able to annotate over
80 floor plans, creating 660 original room images and 3340 augmented images (Figure 8).

The three CGAN models employed in this study were initially trained on all room
categories combined. However, during this process, the models were inaccurately mixing
room categories and furniture sets, for example, placing a bed in a living room. To apply
the models more efficiently, the training was altered to be conducted in phases across
the various room categories. As explained in the Methods section below, the model was
trained with one room (i.e., bathroom) and with a fixed set of three pieces of furniture
(i.e., toilet, sink, shower). All models were trained on a dataset of 1032 training pairs of input
image/ground-truth image bathrooms, including 172 original images and 860 augmented
ones. The models were then tested on 258 new, previously unseen input images.
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3.4.1. Pix2pix and BicycleGAN

The entire scheme was implemented using Tensorflow version 2.5. and in line
with [30,31]. The training parameters of these two models were altered numerous times
to match the dataset size and improve the results. According to [30], the batch size set to
1 is found to be effective and recommended for tasks like those presented in this study. To
train the pix2pix model, we conducted tests to ensure that the model achieves the optimal
prediction after being trained for 80–90 epochs. The training duration lasted 7–10 h, using a
laptop with a medium-range dedicated graphics card. Using the same dataset, BicycleGAN
was trained with 700 epochs. The training duration for this model lasted 25 h.

3.4.2. SPADE Versions

The SPADE model was trained in two different versions, using 1275 training images
and 15 test ones. First, using the model network as is, the model was trained in 300 steps,
in line with guidelines by [32]. Second, since the data in this study were categorical, an
encoded output was explored rather than a numeric RGB image one, especially as the
dataset comprised four distinct input color labels (corresponding to room, windows, and
two types of doors), and the target images comprised three additional colors (corresponding
to toilet, sink, shower). These colors can be represented using the standard one-hot binary
representation via a 3D tensor with the image spatial dimensions multiplied by the number
of categories (e.g., 256 × 256 × 7 for the output), where the first two dimensions represent
the image coordinates, while the third one represents the number of categories. As such,
if the nth category is placed at the x,y pixel, then the value of the one-hot representation
tensor at the place (x,y,n) equals 1; otherwise, it equals 0. In this version, there were four
input labels and seven output labels, which led to changing the model’s output, disabling
the VGG loss layer, and yielding inferior results.

3.5. Post-Processing
3.5.1. Denoising Generated Images

Images generated via ML models frequently contain noise or artifacts that decrease
their quality. Such noise may appear as grainy or speckled patterns and could cause
distortions and artifacts that reduce the visual quality of the image, interfering with image-
analysis tasks. Image denoising is, therefore, an important step in the post-processing
stage (Buades et al., 2005) [53]. In addition to decreasing such artifacts, denoising filters
help obtain more precise results when identifying bounding boxes for various objects
in an image. The commonly used median filter (Flores, 2020) [54] was applied to the
generated image, a method that replaces each pixel in the image with the median value of
its neighboring pixels, which effectively removes isolated outliers yet preserves edges and
other important image features (Figure 9).
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3.5.2. Detecting Label Bounding Boxes

For the final stage of the generative process, a series of post-processing manipulations
was developed with the aim of improving the generated image results. Since the generated
images are composed only of color patches, a post-processing approach was applied to
detect objects by finding the extent of the color range of each label color, locating it in the
image, and then demarcating it using a bounding box. For instance, when searching for
the shower in each image, the algorithm sought pixels that fell within the brighter and
darker variations of the original label color while using the expanded range to locate the
corresponding color blob, as shown in Figure 10. The bounding box of each furniture object
is then computed by identifying the minimum and maximum x and y coordinates of the
located object’s pixels. At this stage, the bounding box information is used to define its
location and size within the image boundaries.
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Figure 10. Detecting bounding boxes based on category color range. Left: color label; Right: example
of shower with blue-range color-detection bounding box.

3.5.3. Filing Bounding Boxes

After detecting the furniture label color from the generated image, a new bounding
box for the object was created and filled with the furniture label color. This method can
produce clear new images, where the relevant objects are accurately identified and labeled,
as shown in Figure 11.
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3.5.4. Filtering Bounding Boxes

One challenge encountered in this research was that both the pix2pix and the Bicycle-
GAN generated multiple bounding boxes, as shown in Figure 12.
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Figure 12. Samples of problematic results due to detection of multiple bounding boxes (in yellow).

To eliminate multiple boxes, a filtering system was designed to discard boxes that
were significantly smaller than the threshold values, which were determined according to
area, short length, and long length. To set these threshold values, the minimum–maximum
range of values for each parameter from the ground-truth images was defined. These
values are expressed in their 256 × 256 pixels ground-truth images, as shown in Table 1.

Table 1. Threshold range of values in pixels for the sink, toilet, and shower.

Parameter Toilet (pix) Sink (pix) Shower (pix)

Min area 200 250 1000
Max area 2800 2600 7000

Min short length 10 10 15
Max short length 50 40 75
Min long length 15 15 45
Max long length 70 120 110

Two filters were then devised: (1) the strict filter, which discards elements from the
dataset that are below the minimum value, with a small tolerance for error; (2) the more
lenient soft filter, which only discards elements smaller than 1/5 of the minimum values
found in the dataset.

3.6. Evaluating the Generated Images

The previously mentioned evaluation methods, the CGAN evaluation metrics (FID
and KID) and the object detection metrics for comparing the generated images with the
ground truth (i.e., precision, recall, and IOU), are generalized methods often used in
Computer Vision. As such, they provide only very generic results and are not specifically
adapted to the task at hand: furniture layout generation. The following section proposes
two novel architectural evaluation parameters that address this issue. In the Results section,
all the above-mentioned metrics were used to test the performance of the model.

3.6.1. Architectural Metrics between the Generated Image and the Ground Truth Image

While the metrics described in the previous section are widely accepted for comparing
objects between two images, they have little, if any, architectural meaning and might be too
general for this case.

Chaillou [10] proposes six metrics for quantifying different aspects of floor plan
designs: (1) footprint; (2) program; (3) orientation; (4) thickness and texture; (5) connectivity;
(6) circulation. After receiving the evaluation results, users can then choose the design
option that best matches their needs and preferences. However, these metrics are related
to the building’s layout, wall thickness and orientation, and room inter-connectivity, not
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to the furniture layout. In addition, the researcher does not elaborate on the outcomes or
effectiveness of the proposed evaluation set.

We, therefore, developed two additional architectural metrics that are more specific to
interior design (Figure 13):

• Area ratio: This parameter compares the size of the generated bounding box to that of
the ground-truth bounding box and calculates the ratio between the two values. In
terms of architecture, this expresses an understanding of the relationship between the
function and size of the architectural elements.

• Center distance: This parameter compares the distance between the center point of
the furniture bounding box to that of the room and calculates the ratio between the
generated image and the ground-truth bounding box in the generated image. The
minimal term is always the numerator of the equation in order to maintain a value
of <1. In terms of architecture, the higher the score of this metric, the greater the
model’s understanding of the positioning of the furniture in relation to the geometry
of the room.
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As both metrics can only be measured in relation to a single, well-defined bounding
box, they are only measured after applying the filters.

3.6.2. Metrics between Generated Image and Entire Dataset–Furniture Object Properties

Unlike the comparison to the furnished version of the same design in the ground truth,
this evaluation method did not involve a direct comparison to specific images, instead
evaluating the overall accuracy of the model in capturing the properties of the furniture
objects. The comparison was achieved by scoring the properties of each furniture object
according to the range of predefined values detailed above. Each property received a score
of 1 if it fell in the range of the properties measured in the dataset and 0 if it fell outside the
range. The resulting score is the average of the three properties of the bounding box (area,
short length, and long length).

4. Results

This section describes the performance of the different ML models. On all the models,
three versions of generated images were evaluated: (1) the original image; (2) a post-
processed image consisting of denoised images; (3) a post-processed image consisting of
new images with filled bounding boxes.

4.1. Pix2pix Model Results

The pix2pix model managed to produce results that resemble architectural designs.
However, the results show significant variability and inconsistency between samples,
ranging from good-quality images to unsatisfactory results. This inconsistency made it
difficult to confidently assess the overall quality of the model. Selected examples of the
generated images are presented in Figure 14.
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4.2. BicycleGAN Model Results

As mentioned, the bicyleGAN model generates multiple potential images for the same
input. In these results, most images were almost identical, indicating that the model mostly
generated the same output, as shown in Figure 15. Hence, the encoded result was applied
for the evaluation process. As will be demonstrated later, these images are generally closer
to the ground truth than the ones generated via pix2pix.

Buildings 2023, 13, x FOR PEER REVIEW 15 of 22 
 

 

Figure 14. Samples of pix2pix models with diverse results. 

4.2. BicycleGAN Model Results 

As mentioned, the bicyleGAN model generates multiple potential images for the 

same input. In these results, most images were almost identical, indicating that the model 

mostly generated the same output, as shown in Figure 15. Hence, the encoded result was 

applied for the evaluation process. As will be demonstrated later, these images are gener-

ally closer to the ground truth than the ones generated via pix2pix. 

 

Figure 15. Multiple results of bicycleGAN for one input. 

4.3. SPADE Model Results 

Although the training parameters of the two versions of the SPADE model were 

modified multiple times, it appears that the SPADE-RGB version mainly generated sinks 

or empty rooms, while the SPADE-OneHot version did not manage to create bounding 

boxes, merely creating patches of colors instead, as shown in Figure 16. As visual exami-

nation found these results to be insufficient, this model was discarded from the compari-

son; as such, it is not addressed in the detailed evaluation provided in the following sec-

tions.  

 

Figure 16. The results of SPADE versions. Left: examples of SPADE-RGB results. Right: examples 

of SPADE-OneHot results. 

4.4. Object Detection Metrics  

In general, the BicycleGAN model outperformed the P2P model in all measures (Ta-

ble 2), demonstrating the superiority of the multimodal model. Surprisingly, although the 

model did not fully utilize its ability to generate a variety of images, the latent layer im-

proved the quality of the generated images.  

Figure 15. Multiple results of bicycleGAN for one input.

4.3. SPADE Model Results

Although the training parameters of the two versions of the SPADE model were
modified multiple times, it appears that the SPADE-RGB version mainly generated sinks or
empty rooms, while the SPADE-OneHot version did not manage to create bounding boxes,
merely creating patches of colors instead, as shown in Figure 16. As visual examination
found these results to be insufficient, this model was discarded from the comparison; as
such, it is not addressed in the detailed evaluation provided in the following sections.
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4.4. Object Detection Metrics

In general, the BicycleGAN model outperformed the P2P model in all measures
(Table 2), demonstrating the superiority of the multimodal model. Surprisingly, although
the model did not fully utilize its ability to generate a variety of images, the latent layer
improved the quality of the generated images.
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Table 2. Object detection results of pix2pix and BicycleGAN models.

Model Test Toilet
IOU

Toilet
Precision

Toilet
Recall Sink IOU Sink

Precision
Sink

Recall
Shower

IOU
Shower

Precision
Shower
Recall

no-filter 0.09 0.143 0.147 0.091 0.165 0.167 0.047 0.196 0.267
Pix2pix strict filter 0.037 0.06 0.062 0.081 0.145 0.147 0.006 0.012 0.023

soft filter 0.037 0.06 0.062 0.081 0.145 0.147 0.01 0.019 0.039
no-filter 0.169 0.31 0.304 0.178 0.295 0.295 0.091 0.325 0.497

BicycleGAN strict filter 0.113 0.202 0.217 0.178 0.291 0.291 0.009 0.012 0.023
soft filter 0.113 0.202 0.217 0.178 0.291 0.291 0.009 0.014 0.027

On a different vector of comparison, the results of both models prior to filtering were
higher than the post-filtered results (Table 3) since some of the filtered bounding boxes
were actually found within the bounding boxes of the ground truth, yet their dimensions
did not meet the standards. This could mean that instead of filtering, bounding boxes
below certain values may somehow be adjusted. Such heuristics will need to be developed
in future work.

Table 3. Comparison between mean scores of the two models in object detection metrics.

Test IOU
(P2P)

IOU
(BicycleGAN)

Precision
(P2P)

Precision
(BicycleGAN)

Recall
(P2P)

Recall
(BicycleGAN)

No-filter 0.075 0.146 0.167 0.31 0.193 0.365
Strict filter 0.041 0.1 0.072 0.168 0.078 0.177
Soft filter 0.042 0.1 0.075 0.169 0.083 0.178

Figure 17 demonstrates that even if precision, recall, and IOU scores are low, the
design may not necessarily be bad. In the generated image, the toilet, shower, and sink
were juxtaposed in the generated image, leading to 0 in the precision, recall, and IOU
scores of the objects. However, architecturally speaking, the generated design is acceptable,
despite certain design faults. For example, the sink would have been better situated in
front of the door to improve access, yet the generated design could still be acceptable.
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4.5. CGAN Evaluation Metrics

To conduct the KID and FID metrics on the generated images, we tested three versions
of each image: the original generated image, the denoised images (see Section 3.5.1), and
new images with filled bounding boxes (see Section 3.5.2).

As explained, both KID and FID metrics evaluate the quality of generated images, with
higher scores suggesting poorer quality and vice versa. In this study, although the results
of the FID parameter were high in the original images generated via the two models, these
outcomes greatly improved (i.e., the scores decreased) once the images were filtered and



Buildings 2023, 13, 1793 16 of 20

filled using the developed bounding-box method. These results present our overall finding,
whereby the BicycleGAN model outperformed the pix2pix model (Table 4). Moreover,
unlike the object detection metrics, the CGAN evaluation metrics support the filtering
process, which can be verified via visual evidence of improvement in quality.

Table 4. KID and FID results on BicycleGAN and pix2pix models.

Test FID
(P2P)

FID
(BicycleGAN)

KID
(P2P)

KID
(BicycleGAN)

Original generated images 184.091 167.385 0.1454 0.1296
denoised images 193.348 162.594 0.1713 0.1308

Images with filled bounding boxes 140.740 108.868 0.0860 0.0613

4.6. Architectural Metrics

When comparing the architectural metrics (as seen in Table 5), once again, BicycleGAN
outperforms pix2pix in all measures. Regarding the specific measures, the higher center
distance score indicates that both models learned to place objects in the correct location to
a greater degree than their ability to correctly size them. The Furniture Object Properties
metric is more general than the area ratio and center distance since it is trained against the
entire dataset, not a specific ground-truth image. The fact that this metric is considerably
higher in both models indicates that they both managed to generalize about the size of
the different furniture types to a greater degree than their ability to fit them into a specific
room. Improvement in the metrics of area ratio and center distance would indicate that
the models have learned to place the correct size of furniture in the same place the human
designer did.

Table 5. Parameter testing after applying Filter 1 (the strict filter).

Test Pix2pix BicycleGAN

Area ratio 0.209 0.339
Center distance 0.258 0.389

Furniture object properties 0.47 0.48

5. Discussion

The aim of this study was twofold, as it strove to develop an applicable ML-based
method for automated room furnishing, as well as comprehensive evaluation metrics for
assessing the performance of the proposed method.

5.1. Open Access Method and Dataset

As mentioned in Section 2.3, there are various existing online platforms available that
automate a multitude of design tasks. Yet, despite their benefits and advantages, these
platforms also have significant drawbacks, such as the required subscription fees in order
to access their full range of features. Additionally, these software companies withhold
their intellectual property (IP) and accumulated knowledge, thereby hindering scientific
discourse. This study addresses these limitations by describing the model training and
post-processing method in detail. This foundation serves as a resource for both research
and practice in the field of architecture and interior design. The proposed dataset creation
method provides an open-access platform for generating and developing customized
architectural datasets. The dataset is accessible online (https://github.com/hanantanasra/
buildings, accessed on 29 May 2023). The CAD2COCO plugin is intended to be a simple-to-
use tool that can be implemented within the architectural workflow. Researchers can also
utilize this tool for generating different types of data in relation to buildings, apartments,
rooms, and even furnishing details. In the current dataset, the apartment data were divided
into rooms, giving additional opportunities for training multiple ML models. Currently,
the plugin only collects the positional data from the floor plan, yet additional information,

https://github.com/hanantanasra/buildings
https://github.com/hanantanasra/buildings
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such as contextual, topological, numerical, and textual data, may be added to the COCO
representation to increase the usefulness of the dataset for different types of research.

5.2. Representation of Architecture

Using the described method, the graphic architectural objects were simplified into
machine-readable, clear data information using labels, bounding boxes, and colors. The
results show that clearing the graphic “noise” from the images and training directly on the
colored areas enables us to efficiently train image-to-image models on a relatively small
dataset. Automating bathroom interior space furnishing via models such as CGANs proved
their ability to “understand” architectural design standards from the colored bounding
box dataset. The bounding box representation also helped us to develop evaluation met-
rics for the design, which are specific to the field of architecture rather than to generic
image processing. The colored representations can be used as internal representations
for the generative software and automatically interpreted into traditional graphics for the
human designer.

At this stage of the research, focusing on a specific category of rooms (i.e., the bathroom)
reduced various complexities. It is important to note that furnishing a room based solely
on its boundaries represents just one approach to addressing the challenge of automating
space furnishing. Alternative approaches include furnishing processes that are based on
room-style room description and other similar factors. The advantages of ML stem from its
ability to acquire intricate details from images. The model can potentially learn the concept
of distances, item relationships, and even human behaviors without algorithmic guidance.
An expanded dataset could enable the model to comprehend the arrangement of loose
furniture or fixtures within a room while deepening its understanding as it encounters
more diverse data.

5.3. Evaluation Metrics

Visual observation indicated that the models could generate designs adhering to the
architectural standards learned from the overall dataset. However, it was also clear that the
designs were not perfect and needed to be improved. While standard architectural design
processes rely only on human, “eye-based” design evaluation, one cannot train ML models
using these mechanisms. Therefore, several numerical metrics were developed to measure
the quality of the design. The metrics came from different worlds, such as object detection,
CGANs, and architectural standards. These metrics helped us evaluate the performance
of different models and of post-processing methods. They clearly demonstrated that the
bicycleGAN model arrives at better results. We suggest that further work should be directed
towards developing architectural evaluation metrics, which somehow capture amorphous
terms such as design functionality and aesthetics. These measures can then be the base for
any further work in ML-based layout generation.

5.4. Limitations and Future Improvements

Ultimately, the FID and KID evaluation scores of the models were not high in com-
parison to CGANs from non-architectural fields. One recurring issue that seems to have
caused this was the generation of multiple bounding boxes for the same furniture category,
especially in the pix2pix model. We believe that the CGAN models can be improved in
several ways. As with all ML models, the size of the dataset generated directly impacts
the quality of the results. The larger the dataset, the better the results are likely to be. The
models described in this work were trained using 172 original and 860 augmented images
and generated results on 258 images. This is considered a relatively low number in the
field of ML and can surely be increased. The COCOTOJSON plugin can be instrumental
in expanding the dataset. The dataset generated for this study included standard straight
walls without diagonal rooms or curved walls; this type of data can be added in the fu-
ture. As another avenue of inquiry, additional ML models should also be tested, such as
transformers, attentionGANs, and styleTransferGAN. Finally, the post-processing method
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suggested could be expanded and made to further modify the CGAN results to make them
better fit well-known design standards.

6. Conclusions

This study set out to create an automated method for furnishing interior space plan-
ning, using a simple design process. A new plugin within a standard design software was
used to source a room-based interior design dataset based on real architectural plans. The
plugin was used to translate the black-and-white architectural drawings in the dataset into
color masks representing functions and furniture. These colored images were then used to
train various types of CGAN models to generate a range of suitable interior design alterna-
tives. An innovative post-processing method was also developed to evaluate and improve
the generated results. Due to the inadequacy of existing CGAN evaluation methods for
capturing the intricacies of design information, a series of evaluation criteria for examining
the performance of these models was also developed and applied in this study.

The workflow was tested on a series of unfurnished bathroom images, where it
showed a strong ability to generate viable interior designs. Several evaluation metrics
demonstrated that the BicycleGAN model outperformed the two other alternative CGANs
that were tested in this study (pix2pix and SPADE). A visual inspection of the generated
images supports these findings while demonstrating that the proposed model is capable of
generating architecturally valid designs. The post-processing method suggested was also
shown to improve generated results by 30–50% in both CGAN and architectural metrics.

These findings offer a novel perspective on how ML models can be effectively lever-
aged to enhance informed decision making in the field of interior space planning. They also
demonstrate the need for customized evaluation methods tailored to the interior design
problem. The simplicity and performance of the process suggests that in the future, it
could empower professional and lay designers to effectively harness ML capabilities in
their design processes. Utilizing the findings of this study, diverse users can leverage
the upcoming plugin for extracting floor plan data. Additionally, our online dataset, test
parameters, and evaluation metrics can serve as valuable resources for others encountering
similar floor plan challenges.
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