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Abstract: Asphalt pavement maintenance section classification is an important prerequisite for
accurately determining asphalt pavement maintenance needs and formulating accurate maintenance
plans. This paper introduces the three-dimensional (3D) ground-penetrating radar (GPR) pavement
internal crack rate index on the basis of an original road surface performance data matrix, and the
dimensionality of the road section classification data matrix was reduced through the principal
component technique. An analysis of variance was used to compare the significance of the differences
in the results for road section classification using different clustering methods and different clustering
data and to investigate the influence of the clustering method, principal component technique and
crack rate index on the maintenance road section classification results. The results showed that the
principal component technique could reduce the dimensionality of the data matrix by 33% and retain
more than 84% of the information. There was a genetic relationship between the clustering data and
the technical characteristics of the classified sub-sections, and the internal crack rate was important
for the characterisation of internal defects in asphalt pavement sub-sections and the determination
of maintenance needs. The results of section classification varied considerably between clustering
methods, and the choice of clustering method had a relationship to the pavement maintenance
objectives. The dynamic clustering method combined with principal component analysis could
significantly improve the significance of the differences in the clustering results, effectively improving
the division of maintenance sections.

Keywords: 3D GPR; principal components; internal crack rate; clustering; analysis of variance

1. Introduction
1.1. Background

Maximising technical and economic benefits is the ultimate goal of scientific decision
making for preventive maintenance [1,2]. The scientific decision, which is mainly about
applying the right preventive maintenance measures in the right place at the right time,
usually includes the determination of the maintenance timing, the division of maintenance
intervals and the selection of maintenance solutions [3,4]. Segmenting is an important
technical tool to differentiate the maintenance needs of different segments and to allocate
maintenance resources appropriately [5–7].

The initial division of asphalt pavement preventive maintenance sections is usually
based on geology, weather, traffic, bridging, culverting, tunnel structure distribution and
other spatial characteristics, with the same external condition characteristics of the various
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components of the road section being pre-divided into categories [8–10]. This method is
still used in current maintenance management practice due to its simplicity of operation,
but the results of section classification are fixed. It is difficult to relate this classification to
the variability of external conditions, pavement disease characteristics (especially internal
pavement disease characteristics), etc. With the development of preventive maintenance
techniques [11,12], scholars have undertaken more in-depth research on the classification
of maintenance sections, and the importance of asphalt pavement distress characteristics
in section classification has increased [13–15]. The development of more efficient classifi-
cation algorithms has become a major research hotspot, aiming to help fully exploit the
differentiated information for asphalt pavement sections [16–18].

The above research has greatly contributed to the advancement of scientific decision
making in preventive maintenance plans but still remains at the level of using surface
functional indicators as the basis. These studies have limitations because internal pavement
distress is easily covered by frequent preventive maintenance and surface indicators do
not fully reflect the whole pavement condition [19,20]. Although methods for determin-
ing the preventive or structural maintenance needs of different road sections have been
proposed [21,22], in practice, it is often found that several road sections that have been
determined to be in need of preventive maintenance require preventive maintenance of
different intensity or with different capacity levels because of the differences in the internal
condition of these sections. Unfortunately, the technical indicators on which decision mak-
ing about asphalt pavement maintenance plans is based do not so far include indicators of
pavement internal damage, such as cracks, and relevant studies are less common [8,23–25].

When a certain clustering algorithm is used for a certain set of clustered data, the
optimal classification result can be obtained from the iteration of the algorithm, but the
samples under different classes do not necessarily have statistically significant differences,
and it is difficult to match the pavement maintenance decision-making plan with the
actual demand. This problem reduces the reliability of the classification results for asphalt
pavement maintenance sections. Unfortunately, while previous studies have focused on the
improvement of specific algorithms’ own classification effects, there is a lack of in-depth
research on the composition of clustering data, the choice of clustering methods and the
relationship between them [26–28].

1.2. Objective and Scope

The objectives of this study were first to adopt the three-dimensional GPR-based
pavement internal crack rate index and the principal component technique to realize
the segmentation of asphalt pavement maintenance sections and secondly to analyse the
influence of different clustering methods and clustering data on the classification results.
This will provide a theoretical basis for the determination of the basic data indicators and
the selection of clustering methods for the classification of asphalt pavement and enable a
more scientific classification of maintenance sections.

2. Methods

Cluster analysis is a method of classifying research objects without knowing how
many classes they should be divided into using the help of statistical methods and based
on the information already collected. The method of clustering analysis is to find some
statistical quantities that objectively reflect the relationship between the research objects
and their proximity. There are three main methods of cluster analysis: systematic clustering,
dynamic clustering and ordered clustering [29,30].

2.1. Systematic Clustering Methods

The systematic clustering method, also named the hierarchical clustering
method [31,32], is one of the most widely used all around the world. It involves first
looking at the clustered samples or variables as specific groups, determining the similarity
statistics between classes, selecting the two closest classes or a number of classes to merge
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into a new class, calculating the similarity statistics between the new class and the other
classes, and then selecting the two closest clusters or a number of clusters to merge into a
new class until all the samples or variables are combined into one class. The specific steps
for classifying road sections using the systematic clustering method are as follows:

Step 1: The project is pre-divided into n unit sections according to a fixed length l0.
For each unit section, a sample set of m disease indicators is collected to form the sample
set X(n×m) for the maintenance project, as shown by Equation (1):

X =
{

xij
}
=

x11 · · · x1m
...

. . .
...

xn1 · · · xnm

, (i = 1, 2, . . . , n; j = 1, 2, . . . , m) (1)

where xij is the mth disease characteristic indicator in the nth unit section.
Due to the variation in the range of values for each disease characteristic indicator, xij

is dimensionless for mathematical purposes, as shown by Equation (2):

xij
∗ =

xij − xj

sj
, (i = 1, 2, . . . , n; j = 1, 2, . . . , m) (2)

where xj is the mean of each characteristic variable, and sj is the standard deviation.
The dimensionless sample set X∗ is calculated according to Equation (3):

X∗ =

x11
∗ · · · x1m

∗

...
. . .

...
xn1
∗ · · · xnm

∗

 (3)

Step 2: The distance dij between two sections of the nth unit is calculated.
Defining each of the n unit sections as a class, the number of classes for all the unit

sections is l = n, and the matrix Y of sections of the conservation project is shown in
Equation (4):

Y = {Xi
∗}, (i = 1, 2, . . . , n) (4)

The distance dii′ between two sections of the nth unit can be calculated using Equation (5):

dii′ =
1
m∑m

j=1

∣∣∣xij
∗ − xi′ j

∗
∣∣∣, (i, i′ = 1, 2, . . . , n

)
(5)

Step 3: The two closest classes in the matrix Y are merged into one new class, and the
number of classes in all unit sections of the combined project becomes l = n− 1. Then, in
the new class, it is necessary to continue to find the two closest classes to merge and to
repeatedly merge them until the classification ends when the number of divided sections
reaches the target l = t. When a new class contains at least two unit sections, the distance
between the classes is calculated according to Equation (6):

dRS =

√
1

nRnS
∑i∈YR ,i′∈YS

dii′
2, (nR ≥ 1, nS ≥ 1) (6)

where dRS is the distance between two new classes, YR and YS; and nR and nS are the
number of unit sections contained in them, respectively.

2.2. Dynamic Clustering Methods

The dynamic clustering method involves randomly selecting a group of coalescence
points, letting the other samples coalesce towards the coalescence points according to
some principle (usually the minimal Euclidean distance) and iterating on the coalescence
points until the coalescence points are stable. A popular dynamic clustering method is the
k-means method [33,34].
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The specific steps for classifying road sections using dynamic clustering are as follows:
Step 1: The dimensionless processing of the raw data matrix is consistent with the

systematic clustering approach;
Step 2: The number of categories t is specified and a random sample of X∗ is selected

as the cluster centre δc for each category.

δc = (δc1 , δc2 , . . . , δct) (7)

δck =
(

xξk1
∗, xξk2

∗, . . . , xξkm
∗), (k = 1, 2, . . . , t; ξk = index(Xi

∗, randbetween(1, n))) (8)

where ξk is the serial number of the randomly selected sample in X∗;
Step 3: The distance of each sample in X∗ from each cluster centre δck is calculated.

dick =

√
∑m

j=1

(
xij
∗ − δck j

)2, (i = 1, 2, . . . , n; k = 1, 2, . . . , t) (9)

Step 4: All samples with the smallest distance from δck in X∗ are combined into one
set (the set t can be obtained), and the updated cluster centres for each set are recalculated.
The cluster centres are determined using an iterative calculation, and the cluster centres
obtained in the ηth iteration are denoted as δck

(η).

δck
(η) =

1
Nk

∑Nk
i=1 xij

∗, (j = 1, 2, . . . , m; k = 1, 2, . . . , t) (10)

where Nk is the number of samples in the new set k;
Step 5: The final clustering result is obtained when the samples in the set corresponding

to the update of the clustering centre δck
(η+1) for the step η + 1 match the samples in the

set corresponding to the ηth step clustering centre δck
(η).

2.3. Ordered Clustering Methods

Compared to systematic clustering methods in terms of sample data capacity, dynamic
clustering methods have a greater range of application. However, both the methods disrupt
the original unit sections denoted by asphalt pavement serial numbers; for example, the
unit sections numbered 1, 3, 5 and 7 are classified as the first category, while the unit
sections numbered 2, 4, 6 and 8 are classified as the second category. The two types of
maintenance needs are different and require different maintenance programs. They must be
constructed in phases, which greatly increases the difficulty of implementing maintenance
construction, especially for projects with high traffic volumes, as well as increasing the
frequency and reducing the efficiency of the deployment of construction equipment and
other resources. Ordered clustering methods, also called optimal partitioning methods, can
achieve a constant front-to-back order for each unit section [35,36]. The specific steps of the
ordered clustering method are as follows:

Step 1: The dimensionless processing of the raw data matrix is consistent with the
systematic clustering approach;

Step 2: The number of categories t is specified. It is assumed that one of the category
is Cii′ , which is listed in Equation (11):

Cii′ = {xi
∗, xi+1

∗, . . . , xi′
∗},
(
i′ > i

)
(11)

The mean value of Cii′ is calculated using Equation (12):

xll′ =
1

i′ − i + 1∑i′

ζ=i xζ
∗ (12)
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The diameter Dii′ of each category of Cii′ is calculated using Equation (13):

Dii′ = ∑i′

ζ=i

(
xζ
∗ − xll′

)′(xζ
∗ − xll′

)
(13)

Step 3: The objective function is calculated.
A particular classification scheme is C(n, t) : {i′, i + 1, . . . , i2 − 1},

{i2, i2 + 1, . . . , i3 − 1}, . . . , {it, it + 1, . . . , n}; then, the objective function is as shown by
Equation (14):

e[C(n, t)] = ∑t−1
k=1 D(ik, ik+1 − 1) (14)

When n and t are fixed, the smaller e[C(n, t)] is, the smaller the sum of squares of the
deviations of each class is and the more reasonable the classification.

e[C(n, t)] is calculated using the recursive Equations (15) and (16):

e[C(n, 2)] = min
2≤i≤n

{D(1, i− 1) + D(i, n)} (15)

e[C(n, t)] = min
t≤i≤n

{e[C(i− 1, t− 1)] + D(i, n)} (16)

Step 4: The optimal classification is calculated.
Under the condition that the number of categories t is set, it can be found such that

the objective function e[C(n, t)] is minimised.

e[C(n, t)] = e[C(it − 1, t− 1)] + D(it, n) (17)

The classification Ct =
{

xit
∗, xit+1

∗, . . . , xn
∗} is obtained. Further, it − 1 is found and

e[C(it − 1, k− 1)] can be calculated using Equation (18):

e[C(it − 1, k− 1)] = e[C(it−1 − 1, t− 2)] + D(it−1, it − 1) (18)

Thus, we obtain Ct−1 =
{

xit−1
*, xit−1+1

*, . . . , xit−1
*}. All categories Ck, (k = 1, 2, . . . , t)

can be obtained by analogy.

3. Data Collection

In order to obtain more accurate unit section maintenance requirements for maintenance
section classification, this paper proposes a technical condition evaluation index system that
includes both pavement surface and pavement internal disease characteristics. The pave-
ment surface technical condition indicators include the pavement condition index (PCI), skid
resistance index (SRI), rut depth index (RDI) and ride quality index (RQI). The technical
indicators for the characterisation of internal pavement distress are the internal pavement crack
rate indicators. The length of a unit section in this paper is set to 1000 m [37].

3.1. Project and Materials

This research was based on an expressway named GB1 that was opened to traffic in
2005; it is an important highway section of the Beijing–Hong Kong–Macau Expressway
in Guangdong province. The traffic volume has increased rapidly to the current average
of 120,000 vehicles per day (converted to passenger cars). Traffic congestion is becoming
more and more normal, especially during holidays. Table 1 provides some information
on the structure of a typical section. The upper layer of the pavement structure is a 5 cm
AK-16 anti-skid wear layer, while the middle layer and lower layer adopt the widely used
continuous dense-gradation 6 cm AC-20 and 7 cm AC-25 materials, respectively. The base
layer is almost 54 cm of cement-stabilized gravel. In the last five years, some 0.5–2 cm
ultra-thin overlays have been successively paved on the upper layer, such as Novachip.
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Table 1. Pavement structure information for a typical section.

Layer Definition

Asphalt overlay 0.5–2 cm preventive maintenance measures
Upper layer (asphalt) 5 cm AK-16 (with base binder asphalt)
Middle layer (asphalt) 6 cm AC-20 (with base binder asphalt)
Lower layer (asphalt) 7 cm AC-25 (with base binder asphalt)

Base layer 38 cm stabilized gravel (cement content: 5–6%)
Sub-base layer 16 cm stabilized gravel (cement content: 4%)

Subgrade Soil

3.2. Data Collection for the Surface Technical Condition

The multifunctional vehicle mainly consisted of a charge-coupled device (CCD) camera
system, laser scanner system, GPS system and distance measuring device (DMI). The CCD
camera with a resolution of 1920 × 1080 pixels could simultaneously record images at
different angles and identify different kinds of surface diseases. The surveying width was
more than 4 m. The vehicle could detect one time period during which the full width of
each lane with a width of 3.75 m could be covered in a continuous project. The vehicle
speed during detection ranged from 60 km/h to 80 km/h.

The multifunctional vehicle could simultaneously determine the three surface condi-
tion indexes (pavement condition index (PCI), rut depth index (RDI) and riding quality
index (RQI)), while the skid resistance index (SRI) required a special sideway-force coeffi-
cient detection vehicle.

3.3. Data Collection for the Pavement Internal Crack Rate

This project used 3D GPR to detect the inner damage affecting pavement
structures [38,39]. The 3D GPR used was produced by 3D Radar (Trondheim, Norway)
as Figure 1a). The radar host was GEOSCOPE MK IV, and the ground-coupled antennas
were the DXG1820 model with a frequency bandwidth of 200–3000 MHz. The utilized 3D
GPR could provide 20 emitting and receiving channels for electromagnetic wave signals
through a linear combination of 20 pairs of antennas. The separation between antennas
was 7.5 cm and the single sampling width for the GPR was 1.5 m. Changes in the GPR’s
detection parameters caused variations in the vehicle speed during data collection, and
the general vehicle speed ranged from 5 km/h to 60 km/h. The trigger spacing was 1 cm,
dwell time was 10.0 µs and the time window was 25 ns [19]. The software used to process
the 3D GPR data was 3D-Radar Examiner 3.5 as Figure 1b).
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The pavement internal crack rate was utilized to characterize the cracks of the unit
sections and calculated using Equation (19) [19]:

Cr(i) = 50lci/Si (19)
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where Cr(i) is the pavement internal crack rate at the depth of hi (m/100 m2). lci is the
length of the cracks within a surveying section at the depth of hi (m). Si is the surveying
area at the depth of hi (m2).

4. Results and Analysis

In this paper, data for 46 unit sections from the GB1 project were collected using a
multifunctional vehicle, sideway-force coefficient detection vehicle and 3D GPR equipment
(see Table 2). According to previous studies [40], the life of a semi-rigid-base asphalt
pavement is mainly composed of the fatigue cracking life of the semi-rigid base and the
fatigue cracking life of the asphalt layer, which is influenced by the integrity (cracking
state) of the structural layer. Therefore, this study used the asphalt surface crack rate Cr(0)
and the base layer’s crack rate as indicators for evaluating the maintenance needs of a unit
section. The sum thickness of the whole asphalt layer and the ultra-thin overlay plus 0.05 m
was taken as the radar signal pick-up depth for the base layer. Data collected from the GB1
project are listed in Table 2.

Table 2. Pavement condition index.

Unit Section Number PCI SRI RDI RQI Cr(0) Cr(0.25)

1 74 96 84 94 53.0 26.0
2 74 96 84 94 53.0 28.0
3 76 99 82 93 0.0 39.0
4 86 99 82 97 28.7 45.0
5 86 100 85 95 20.5 37.0
6 86 100 85 95 20.5 18.0
7 86 100 85 95 20.5 79.0
8 86 100 85 95 20.5 3.0
9 80 100 83 95 18.8 28.0

10 80 100 83 95 18.8 65.0
11 80 100 83 95 18.8 0.0
12 86 98 83 95 9.0 14.0
13 82 99 84 94 15.1 12.0
14 82 99 84 94 15.1 56.0
15 80 99 85 94 15.5 74.0
16 80 99 85 94 15.5 65.0
17 85 99 84 95 11.7 57.0
18 85 99 84 95 11.7 44.0
19 88 97 83 95 17.7 50.0
20 97 99 82 93 14.5 57.0
21 97 99 82 93 14.5 45.0
22 93 98 84 95 7.1 38.0
23 93 98 84 95 7.1 11.0
24 93 98 84 95 7.1 31.0
25 87 93 81 95 15.5 42.0
26 87 93 81 95 15.5 21.0
27 85 98 84 96 14.4 6.0
28 84 98 83 95 14.0 50.0
29 90 98 85 93 8.1 9.0
30 90 98 85 93 8.1 39.0
31 84 98 82 93 12.2 73.0
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Table 2. Cont.

Unit Section Number PCI SRI RDI RQI Cr(0) Cr(0.25)

32 100 93 82 97 4.5 44.0
33 94 98 85 95 12.4 2.0
34 100 97 84 94 4.1 59.0
35 100 97 84 94 4.1 79.0
36 93 99 83 95 12.9 20.0
37 81 98 85 94 14.8 37.0
38 81 98 85 94 14.8 25.0
39 81 98 85 94 14.8 32.0
40 88 98 84 94 13.9 5.0
41 93 98 84 94 10.0 41.0
42 93 98 84 94 10.0 74.0
43 93 98 84 94 10.0 77.0
44 93 98 84 94 10.0 39.0
45 100 100 82 95 0.2 43.0
46 96 96 85 98 0.0 47.0

4.1. Principal Components Analysis

There is often a certain correlation between the pavement performance indicators
during service life; for example, ride quality indicators are often influenced by rutting
indicators. This eliminates the requirement to subject all the metrics collected to calculation
to assess the need for pavement maintenance, saving computing resources. The principal
component analysis (PCA) technique is a commonly used method of data dimensionality
reduction [41,42].

(1) Applicability test for PCA

Principal component factor analysis was performed for the six technical indicators
(shown in Table 2) in this study using the Kaiser–Meyer–Olkin test and Barlett’s test of
sphericity [43]. The test model is shown by Equation (20):

KMO =

{
≥ 0.5, OK

< 0.5, Not OK
,

(
KMO =

∑ ∑i 6=j rij
2

∑ ∑i 6=j rij
2 + ∑ ∑i 6=j αij

2

)
(20)

where rij, and αij are, respectively, the simple and bias correlation coefficients for each pair
of indicators in Table 2. The correlation matrix for the PCA is shown in Table 3.

As can be seen from Table 3, the absolute values of the cross-correlation coefficients
for the six technical indicators ranged from 0.033 to 0.617, with the correlation coefficient
between PCI and Cr(0) being the largest and most significant; thus, it can be presumed
that the main surface disease affecting the GB1 project is cracking. Secondly, the correla-
tion between RDI and RQI was also somewhat significant, in line with the engineering
understanding that rutting has some effect on the ride quality provided by a road surface.
The result of the KMO test was 0.517 > 0.5 and the result of Barlett’s test of sphericity was
p < 0.05 (p value of 0.003), thus, the six technical indicators were judged to be suitable for
principal component analysis.
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Table 3. Correlation matrix for PCA.

Correlation Coefficient PCI SRI RDI RQI Cr(0) Cr(0.25)

PCI 1.000 0.162 −0.136 −0.181 −0.617 0.158
SRI 0.162 1.000 −0.074 −0.206 −0.044 −0.143
RDI −0.136 −0.074 1.000 0.341 0.064 −0.082
RQI −0.181 −0.206 0.341 1.000 −0.033 0.011

Cr(0) −0.617 −0.044 0.064 −0.033 1.000 −0.153
Cr(0.25) 0.158 −0.143 −0.082 0.011 −0.153 1.000

Significance PCI SRI RDI RQI Cr(0) Cr(0.25)

PCI 0.141 0.184 0.115 0.000 a 0.146
SRI 0.141 0.312 0.084 0.386 0.171
RDI 0.184 0.312 0.010 b 0.337 0.293
RQI 0.115 0.084 0.010 b 0.414 0.472

Cr(0) 0.000 a 0.386 0.337 0.414 0.154
Cr(0.25) 0.146 0.171 0.293 0.472 0.154

Note: a significance p-value < 0.01, b significance p-value < 0.05.

(2) Principal component retention

The GB1 measured sample data matrix X =
{

Xj
}

, (j = 1, 2, . . . , 6) was normalized
according to Equation (2) to obtain X∗ =

{
Xj
∗}, (j = 1, 2, . . . , 6). Then, we calculated

the data correlation matrix R(X∗) = R(X) (see Table 3). The eigenvalues of R(X∗) were
calculated from |R(X∗)− λE| = 0 and are shown in Table 4. Each eigenvalue corresponded
to a principal component Zς, (ς = 1, 2, . . . , 6), and the cumulative contribution of Zς was
calculated from cς = ∑ς

j=1 λj/∑6
j=1 λj (see Table 4). The eigenvectors corresponding to the

eigenvalues of R(X∗) were also calculated from |R(X∗)− λE| = 0, and the eigenvectors
are listed in Table 5.

Table 4. Eigenvalues of correlation matrix.

Principal Component Eigenvalues, λj Cumulative Contribution Rate, cς/%

Z1 1.808 30.128
Z2 1.362 52.826
Z3 1.089 70.974
Z4 0.761 83.662
Z5 0.637 94.278
Z6 0.343 100.000

Table 5. Eigenvectors corresponding to the eigenvalues.

Index Z1 Z2 Z3 Z4 Z5 Z6

E1* 0.632 0.190 −0.180 0.089 0.171 0.704
E2* 0.227 −0.419 −0.539 −0.605 −0.334 −0.071
E3* −0.324 0.417 −0.474 −0.326 0.622 −0.053
E4* −0.311 0.584 −0.204 0.011 −0.683 0.233
E5* −0.549 −0.397 0.204 −0.231 0.072 0.664
E6* 0.216 0.340 0.608 −0.683 −0.014 −0.041

From Tables 4 and 5, it can be seen that, when the four principal components Z1,
Z2, Z3 and Z4 were selected, their variance accounted for about 84% of the total variance,
indicating that these four principal components were able to retain about 84% of the
information from the original data matrix. The principal component matrix was obtained
using Equation (21), and the model of the relationship with the original variables is shown
in Equation (22):

Z =
{

Ziς
}

(21)
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Ziς = ∑ς

j=1 Ej
∗Xij, (i = 1, 2, . . . , n; ς = 1, 2, 3, 4) (22)

(3) Principal component matrix

For the GB1 project, the principal component scores for each unit section were calcu-
lated according to Equations (21) and (22), as shown in Table 6.

Table 6. Scores for principal components.

Unit Section Number Z1 Z2 Z3 Z4

1 −11.371 51.559 −97.436 −107.845
2 −10.939 52.239 −96.220 −109.211
3 23.438 74.725 −101.169 −105.477
4 14.081 69.627 −94.292 −115.259
5 16.715 69.814 −102.376 −109.513
6 12.611 63.354 −113.928 −96.536
7 25.787 84.094 −76.840 −138.199
8 9.371 58.254 −123.048 −86.291
9 12.577 65.467 −106.173 −102.848
10 20.569 78.047 −83.677 −128.119
11 6.529 55.947 −123.197 −83.724
12 18.260 66.568 −116.682 −89.283
13 12.171 62.124 −116.745 −90.622
14 21.675 77.084 −89.993 −120.674
15 23.761 83.086 −79.083 −133.562
16 21.817 80.026 −84.555 −127.415
17 25.337 79.924 −90.820 −120.296
18 22.529 75.504 −98.724 −111.417
19 22.303 76.157 −92.842 −115.095
20 32.638 79.079 −91.047 −119.252
21 30.046 74.999 −98.343 −111.056
22 28.588 77.229 −104.212 −104.939
23 22.756 68.049 −120.628 −86.498
24 27.076 74.849 −108.468 −100.158
25 20.869 74.947 −94.863 −106.150
26 16.333 67.807 −107.631 −91.807
27 12.312 62.523 −120.947 −85.466
28 21.995 76.419 −93.402 −115.218
29 20.144 65.627 −121.153 −85.992
30 26.624 75.827 −102.913 −106.482
31 28.897 83.369 −78.903 −130.207
32 34.637 84.068 −99.123 −104.110
33 18.182 63.472 −125.662 −81.824
34 39.279 86.725 −92.573 −117.372
35 43.599 93.525 −80.413 −131.032
36 22.039 67.951 −114.027 −94.276
37 16.514 71.361 −101.347 −107.454
38 13.922 67.281 −108.643 −99.258
39 15.434 69.661 −104.387 −104.039
40 14.861 61.764 −121.778 −84.434
41 27.922 76.490 −101.580 −107.683
42 35.050 87.710 −81.516 −130.222
43 35.698 88.730 −79.692 −132.271
44 27.490 75.810 −102.796 −106.317
45 38.976 81.323 −103.967 −106.698
46 34.598 86.673 −100.730 −108.269

As can be seen from Table 6, the original six variables PCI, SRI, RDI, RQI, Cr(0)
and Cr(0.25) were turned into the four principal component variables Z1, Z2, Z3 and Z4
using principal component analysis, achieving a reduction of over 33% in the number of
variables while retaining over 84% of the information in the original variables.

4.2. Analysis of Clustering Results

The systematic clustering, dynamic clustering and ordered clustering analysis methods
mentioned in Section 2 were used to cluster the original variable data matrix {X1, . . . , X6},
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surface technical condition data {X1, . . . , X4} and principal components {Z1, . . . , Z4}, re-
spectively, in order to investigate the influence of the clustering methods, principal compo-
nent analysis and pavement internal crack rate on the results of the section classification.

Considering that the asphalt pavement maintenance planning cycle generally lasts
five years, the number of clusters in this was uniformly set to five. The results for the 46
unit sections classified for the GB1 project are shown in Table 7.

Table 7. Clustering results for 46 unit sections for the GB1project.

Clustering Method Category 1 Category 2 Category 3 Category 4 Category 5

Systematic
clustering

X1 –X4 1–3
4–19, 22–24,
27–31, 33,
36–44, 46

20–21,
34–35, 45 25–26 32

X1 –X6 1–2 3 4 5–19, 21–33,
35–46 20, 34

Z1 –Z4 1–2 3, 5–31, 33,
35–44 4 32, 45–46 34

Dynamic
clustering

X1 –X4
1–3, 9–11,

13–16, 37–39 32, 46

4–8, 12,
17–19,

25–28, 31,
40

20–21, 34–35,
45

22, 24, 29–30,
33, 36, 41–44

X1 –X6

6, 8, 11–13,
23, 26–27,

29, 33, 36, 40
1–2

3–5, 9, 18,
22, 24–25,
30, 37–39,

41, 44

7, 10, 15–16,
31, 35, 42–43

14, 17, 19–21,
28, 32, 34,

45–46

Z1 –Z4

14, 17,
19–21, 28,

32, 34,
45–46

1–2 7, 10, 15–16,
31, 35, 42–43

3–5, 9, 18, 22,
24–25, 30,

37–39, 41, 44

6, 8, 11–13,
23, 26–27, 29,

33, 36, 40

Ordered
clustering

X1 –X4 1–33 34 35–38 39–45 46
X1–X6 1–9 10–13 14–25 26–28 29–46
Z1 –Z4 1–12 13 14–25 26–44 45–46

As shown in Table 7, there were significant differences in the classification results of
the various clustering methods. The results using the principal components {Z1, . . . , Z4}
and {X1, . . . , X6} had a relatively high degree of overlap, which side-by-side verified the
ability of the PCA to retain information about the original data.

Box plots indicating the statistical distribution of each technical indicator for different
combinations of clustered data and different clustering methods and principal component
techniques are shown in Figures 2–10. These figures show the mean value and the range of
distribution for each technical indicator in each of the five categories. Using Figure 2 as
an example, the means of Cr(0) and Cr(0.25) were relatively distinctly different, while the
means of PCI, SRI, RDI and RQI were very similar. The graphs could reflect the variability
of the results under the scheme using the data matrix {X1, . . . , X6} with the application of
the hierarchical clustering method.
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Figure 10. Distribution of the different technical indicators of the classification results using data
matrix {Z1, . . . , Z4} with the application of the ordered clustering method and PCA: (a) PCI; (b) SRI;
(c) RDI; (d) RQI; (e) Cr(0); (f) Cr(0.25).

As shown by Figures 2–10, the results obtained by the different clustering methods
did not necessarily differ when analysing their individual specific indicators. In addition,
when the ordered clustering method was utilized, the mean values and distribution ranges
of the technical indicators obtained for each clustered sub-section were less differentiated,
regardless of the type of clustered data used and regardless of whether the principal
component method was used. When the hierarchical clustering method was used, the
differentiation of indicator PCI in the clustered sub-sections was better. When the dynamic
clustering method was used, the differentiation of Cr(0.25) in the clustered sub-sections
was better. In terms of the selection of clustered data, when the clustered data did not
contain Cr(0) and Cr(0.25), Cr(0) and Cr(0.25) also did not appear in the clustered results
for indicators with high differentiation.

The ultimate goal of clustering is to classify the most similar unit sections into a
particular sub-section. In order to more objectively compare the advantages and disadvan-
tages of different clustering methods, a statistical ANOVA was conducted for the data for
each technical index of the sub-sections classified by different clustering methods, and a
p-value was used to characterise the significance of the differences between the data of each
sub-section (see Figure 11). Statistically, the smaller the p-value, the more significant the
differences between the data for each sub-section will be.

As can be seen from Figure 11, there was a genetic relationship between the clustering
base data characteristics and the technical characteristics of the delineated sub-sections.
When using {X1, . . . , X6} and {Z1, . . . , Z4}, the p-values for Cr(0.25) obtained by the dy-
namic and ordered clustering methods were significantly larger than those obtained by
using {X1, . . . , X4}. The sub-sections resulting from {X1, . . . , X4} did not reflect the differ-
ential characteristics of Cr(0.25), which was related to the fact that the underlying data
used for the clustering segments did not contain Cr(0.25). Cr(0) also exhibited similar
characteristics, with the p-values from {X1, . . . , X6} and {Z1, . . . , Z4} being significantly
smaller than that from {X1, . . . , X4}, and this pattern held true for the systematic clustering
approach as well. This result suggests that, when classifying asphalt pavements, if the
difference in the technical characteristics of an aspect of the asphalt pavement is to be
reflected in the classified section, it is necessary to include that technical indicator in the
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construction of the clustering data matrix, such as with Cr(0) and Cr(0.25) studied in
this paper.
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Figure 11. Significance of the differences in the results obtained with different clustering data by
different clustering methods: (a) using data for X1–X4; (b) using data for X1–X6; (c) using data for
Z1–Z4.

According to the results in Table 3, PCI and Cr(0) were the most significantly cor-
related, so they reflected essentially the same pattern of data. However, the p-values of
the clustering results for indicators SRI, RDI and RQI did not reflect a similar pattern
as for PCI, Cr(0) and Cr(0.25). In particular, for SRI, the p-values of {X1, . . . , X6} and
{Z1, . . . , Z4} were significantly greater for the systematic and dynamic clustering meth-
ods than that of {X1, . . . , X4}, but the results were reversed when the ordered clustering
method was used. For RDI, the ordered clustering method resulted in significantly larger
p-values for {Z1, . . . , Z4} than for {X1, . . . , X6} and {X1, . . . , X4}, while the systematic and
dynamic clustering methods resulted in significantly larger p-values for {X1, . . . , X6} and
{Z1, . . . , Z4} than that for {X1, . . . , X4}. For RQI, dynamic and ordered clustering meth-
ods showed significantly larger p-values for {X1, . . . , X6} and {Z1, . . . , Z4} than for the
segmentation results for {X1, . . . , X4}.

In general, there were certain applicable relationships between the different clustering
methods and the clustered data.

4.3. Applicability of Clustering Methods

In the practice of asphalt pavement maintenance and management, managers usually
wish to design maintenance plans according to consecutive ordered segments, as this
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makes it more convenient and easier to allocate maintenance resources (which involve the
transportation of construction materials, equipment and personnel, traffic organisation and
other management issues), and consecutive segments are more conducive to mechanised
operations and maintenance and repair quality assurance. Therefore, the ordered clustering
method has been the more widely recommended method. However, as shown by Figure 11,
although the ordered clustering method maximised the continuous and ordered merging
of the different unit sections, the final clustering results did not guarantee that the technical
characteristics of each sub-section were in a significantly different state after clustering. Five
of the seven indicators (more than 71%) from the ordered clustering results in Figure 11a
had higher p-value levels than in the systematic and dynamic clustering. The technical
disadvantage of the ordered clustering method is that it tends to make it difficult to
differentiate the maintenance plans for each sub-section, and it is not suitable for projects
that require a high degree of refinement in the technical requirements of the maintenance
plans. However, for projects that are limited by traffic volumes or other management
factors, the ordered clustering method can be used.

Observing Figure 11, it can be seen that the p-value levels with the systematic clus-
tering method were lower than 0.05 for all indicators except the indicator when cluster-
ing the segmentation of {X1, . . . , X4} (see Figure 11a). In addition, when applying the
systematic clustering method, adding the internal crack rate to the data matrix caused
significantly higher p-values for indicators SRI, RDI and Cr(0.25) for different sub-sections
(see Figure 11a,b). Combining the functional indicators and the internal crack rate when
classifying pavement sections using the systematic clustering method may have nega-
tive effects. Therefore, for projects that focus only on the surface functional indicators, a
systematic clustering approach is advantageous.

The dynamic clustering method is suitable for projects that focus on the impact of the
internal pavement condition on pavement maintenance needs. Adding the internal crack
rate indicator resulted in significantly higher p-values for indicators PCI, SRI, RDI and
RQI for different sub-sections but also significantly reduced the p-values for indicators
Cr(0) and Cr(0.25), allowing the clustering to delineate sub-sections that could better
reflect the differentiation of the internal disease characteristics of the asphalt pavements
(see Figure 11a,b). The dynamic clustering method combined with principal component
analysis could significantly improve the significance of the differences for the indicators
of interest (Cr(0) and Cr(0.25)) in the clustering results. It could also further reduce
the p-values of the indicators not of interest (PCI, SRI, RDI and RQI) in the clustering
results (see Figure 11b,c), effectively improving the segmentation of asphalt pavement
maintenance sections.

5. Conclusions

To classify pavement maintenance sections, a clustering method based on 3D GPR and
principal component analysis was proposed in this work. The effects of the clustering meth-
ods, principal component analysis and pavement internal crack rate on the classification
results were investigated by analysing the significance of the variations in the classification
results. The conclusions are as follows.

(1) The characteristics of the cluster data and the technical characteristics of the sub-
divisions are genetically related. A clustering data matrix that takes into account
internal cracking rates is essential in order to provide an effective means of classifying
differences in asphalt pavement performance or maintenance requirements;

(2) Classification results vary considerably between clustering methods and the choice of
clustering method is related to pavement maintenance objectives. Ordered clustering
is not suitable for projects requiring sophisticated maintenance plans, whereas it could
be considered for traffic-limited projects. For projects focusing on surface functional
indicators only, systematic clustering is advantageous, but combining functional and
internal crack rates may be counterproductive. Dynamic clustering is suitable for
projects focusing on internal distress effects;
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(3) Principal component analysis could reduce data matrix dimensionality by 33% and
retain more than 84% of the information. The dynamic clustering method combined
with the principal component analysis could significantly improve the significance
of the differences for the indicators of interest in the clustering results, as well as the
indicators not of interest, effectively improving the classification of asphalt pavement
maintenance sections.

The limitations of this study were that limited data from one project were used for the
analysis, but the data need to be more representative, and a more in-depth analysis will be
conducted using data from multiple projects in the future. The application and validation
of the asphalt pavement maintenance section classification method studied in this paper in
maintenance science decision making will be followed up.

Author Contributions: Conceptualization, C.X. and J.Y.; methodology, C.X.; investigation, H.L., J.Z.,
W.L. and J.D.; formal analysis, C.X., H.L., J.Z. and W.L.; writing—original draft, J.D.;
writing—review and editing, H.L. and C.X. All authors have read and agreed to the published
version of the manuscript.

Funding: The authors would like to acknowledge the financial support provided by the National
Natural Science Foundation of China (52178426), the Fundamental Research Funds for the Central
Universities (2022ZYGXZR066 and 2023ZYGXZR001) and the Special Project of Foshan Science and
Technology Innovation Team (2120001010776).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would also like to acknowledge the project data support from
Guangdong Highway Construction Co., Ltd.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Peterson, J.C.; Bourgin, D.D.; Agrawal, M.; Reichman, D.; Griffiths, T.L. Using large-scale experiments and machine learning to

discover theories of human decision-making. Science 2021, 372, 1209–1214. [CrossRef] [PubMed]
2. Davids, E.L. The Interaction between Basic Psychological Needs, Decision-Making and Life Goals among Emerging Adults in

South Africa. Soc. Sci. 2022, 11, 316. [CrossRef]
3. Babashamsi, P.; Khahro, S.H.; Omar, H.A.; Al-Sabaeei, A.M.; Memon, A.M.; Milad, A.; Khan, M.I.; Sutanto, M.H.; Yusoff, N.I.

Perspective of Life-Cycle Cost Analysis and Risk Assessment for Airport Pavement in Delaying Preventive Maintenance.
Sustainability 2022, 14, 2905. [CrossRef]

4. Mousa, M.R.; Elseifi, M.A.; Zhang, Z.; Gaspard, K. Development of a Decision-Making Tool to Select Optimum Preventive
Maintenance Treatments in a Hot and Humid Climate. Transp. Res. Rec. J. Transp. Res. Board 2020, 2674, 44–56. [CrossRef]

5. Miah, M.T.; Oh, E.; Chai, G.; Bell, P. An overview of the airport pavement management systems (APMS). Int. J. Pavement Res. Technol.
2021, 13, 581–590. [CrossRef]

6. Fani, A.; Golroo, A.; Mirhassani, S.A.; Gandomi, A.H. Pavement maintenance and rehabilitation planning optimisation under
budget and pavement deterioration uncertainty. Int. J. Pavement Eng. 2020, 23, 414–424. [CrossRef]

7. Chen, W.; Zheng, M. Multi-objective optimization for pavement maintenance and rehabilitation decision-making: A critical
review and future directions. Autom. Constr. 2021, 130, 103840. [CrossRef]

8. Mo T. JTG 5142-2019; Technical Specifications for Maintenance of HighwayAsphalt Pavement. China Communications Press:
Beijing, China, 2019.

9. JTG H20-2007; Highway Performance Assessment Standards. Ministry of Transport of the People’s Republic of China: Beijing,
China, 2008.

10. Anastasopoulos, P.C.; Mannering, F.L. Analysis of Pavement Overlay and Replacement Performance Using Random Parameters
Hazard-Based Duration Models. J. Infrastruct. Syst. 2015, 21, 04014024. [CrossRef]

11. Cinar, Z.M.; Abdussalam Nuhu, A.; Zeeshan, Q.; Korhan, O.; Asmael, M.; Safaei, B. Machine Learning in Predictive Maintenance
towards Sustainable Smart Manufacturing in Industry 4.0. Sustainability 2020, 12, 8211. [CrossRef]

12. Li, F.; Feng, J.; Li, Y.; Zhou, S. Introduction to the Pavement Preventive Maintenance Technology. Preventive Maintenance Technology for
Asphalt Pavement; Springer Tracts on Transportation and Traffic; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–35.

13. Amarasiri, S.; Muhunthan, B. Evaluating the Effectiveness of Pavement Preventive-Maintenance Treatments in Mitigating
Longitudinal Cracks in Wet-Freeze Climatic Zones. J. Transp. Eng. Part B Pavements 2020, 146, 04020014. [CrossRef]

https://doi.org/10.1126/science.abe2629
https://www.ncbi.nlm.nih.gov/pubmed/34112693
https://doi.org/10.3390/socsci11070316
https://doi.org/10.3390/su14052905
https://doi.org/10.1177/0361198119898397
https://doi.org/10.1007/s42947-020-6011-8
https://doi.org/10.1080/10298436.2020.1748628
https://doi.org/10.1016/j.autcon.2021.103840
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000208
https://doi.org/10.3390/su12198211
https://doi.org/10.1061/JPEODX.0000158


Buildings 2023, 13, 1752 20 of 21

14. Yamany, M.S.; Abraham, D.M. Hybrid Approach to Incorporate Preventive Maintenance Effectiveness into Probabilistic Pavement
Performance Models. J. Transp. Eng. Part B Pavements 2021, 147, 04020077. [CrossRef]

15. Li, J.; Yin, G.; Wang, X.; Yan, W. Automated decision making in highway pavement preventive maintenance based on deep
learning. Autom. Constr. 2022, 135, 104111. [CrossRef]

16. Hassan, M.U.; Steinnes, O.-M.H.; Gustafsson, E.G.; Løken, S.; Hameed, I.A. Predictive Maintenance of Norwegian Road Network
Using Deep Learning Models. Sensors 2023, 23, 2935. [CrossRef] [PubMed]

17. Nautiyal, A.; Sharma, S. Cost-Optimized Approach for Pavement Maintenance Planning of Low Volume Rural Roads: A Case
Study in Himalayan Region. Int. J. Pavement Res. Technol. 2022, 1–18. [CrossRef]

18. Liang, X.; Yu, X.; Chen, C.; Jin, Y.; Huang, J. Automatic Classification of Pavement Distress Using 3D Ground-Penetrating Radar
and Deep Convolutional Neural Network. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22269–22277. [CrossRef]

19. Xiong, C.; Yu, J.; Zhang, X. Use of NDT systems to investigate pavement reconstruction needs and improve maintenance treatment
decision-making. Int. J. Pavement Eng. 2021, 1–15. [CrossRef]

20. Liu, Z.; Wu, W.; Gu, X.; Li, S.; Wang, L.; Zhang, T. Application of Combining YOLO Models and 3D GPR Images in Road Detection
and Maintenance. Remote Sens. 2021, 13, 1081. [CrossRef]

21. Hong, X.; Tan, W.; Xiong, C.; Qiu, Z.; Yu, J.; Wang, D.; Wei, X.; Li, W.; Wang, Z. A Fast and Non-Destructive Prediction Model for
Remaining Life of Rigid Pavement with or without Asphalt Overlay. Buildings 2022, 12, 868. [CrossRef]

22. Di Mascio, P.; Moretti, L. Implementation of a pavement management system for maintenance and rehabilitation of airport
surfaces. Case Stud. Constr. Mater. 2019, 11, e00251. [CrossRef]

23. Gkyrtis, K.; Plati, C.; Loizos, A. Mechanistic Analysis of Asphalt Pavements in Support of Pavement Preservation Decision-Making.
Infrastructures 2022, 7, 61. [CrossRef]

24. Nautiyal, A.; Sharma, S. Methods and factors of prioritizing roads for maintenance: A review for sustainable flexible pavement
maintenance program. Innov. Infrastruct. Solut. 2022, 7, 190. [CrossRef]

25. Elmansouri, O.; Alossta, A.; Badi, I. Pavement Condition Assessment Using Pavement Condition Index and Multi-Criteria
Decision-Making Model. Mechatronics Intell. Transp. Syst. 2022, 1, 57–68. [CrossRef]

26. Fang, N.; Chang, H.; Hu, S.; Li, H.; Meng, Q. Climate zoning of asphalt pavement based on spatial interpolation and Fuzzy
C-Means algorithm. Int. J. Pavement Eng. 2022, 1–14. [CrossRef]

27. Milad, A.A.; Adwan, I.; Majeed, S.A.; Memon, Z.A.; Bilema, M.; Omar, H.A.; Abdolrasol, M.G.M.; Usman, A.; Yusoff, N.I.M. Development
of a Hybrid Machine Learning Model for Asphalt Pavement Temperature Prediction. IEEE Access 2021, 9, 158041–158056. [CrossRef]

28. Han, C.; Ma, T.; Chen, S. Asphalt pavement maintenance plans intelligent decision model based on reinforcement learning
algorithm. Constr. Build. Mater. 2021, 299, 124278. [CrossRef]

29. Ezugwu, A.E.; Ikotun, A.M.; Oyelade, O.O.; Abualigah, L.; Agushaka, J.O.; Eke, C.I.; Akinyelu, A.A. A comprehensive survey
of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects.
Eng. Appl. Artif. Intell. 2022, 110, 104743. [CrossRef]

30. Dalmaijer, E.S.; Nord, C.L.; Astle, D.E. Statistical power for cluster analysis. BMC Bioinform. 2022, 23, 205. [CrossRef] [PubMed]
31. Li, T.; Rezaeipanah, A.; El Din, E.M.T. An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering

technique and the novel similarity measurement. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 3828–3842. [CrossRef]
32. Habib, A.; Akram, M.; Kahraman, C. Minimum spanning tree hierarchical clustering algorithm: A new Pythagorean fuzzy

similarity measure for the analysis of functional brain networks. Expert Syst. Appl. 2022, 201, 117016. [CrossRef]
33. Ashari, I.F.; Banjarnahor, R.; Farida, D.R.; Aisyah, S.P.; Dewi, A.P.; Humaya, N. Application of Data Mining with the K-Means

Clustering Method and Davies Bouldin Index for Grouping IMDB Movies. J. Appl. Inform. Comput. 2022, 6, 7–15. [CrossRef]
34. Nie, F.; Li, Z.; Wang, R.; Li, X. An Effective and Efficient Algorithm for K-Means Clustering with New Formulation. IEEE Trans.

Knowl. Data Eng. 2022, 35, 3433–3443. [CrossRef]
35. Xia, J.; Ying, H.; Huang, Y. Application of ordered aggregation optimal partition method in pavement condition evaluation. In

Frontier Research: Road and Traffic Engineering; CRC Press: Boca Raton, FL, USA, 2022; pp. 700–706.
36. Tang, H.; Wang, Y.; Jia, K. Unsupervised domain adaptation via distilled discriminative clustering. Pattern Recognit. 2022, 127, 108638.

[CrossRef]
37. JTG E60-2008; Field Test Methods of Highway Subgrade and Pavement. Ministry of Transport of the People’s Republic of China:

Beijing, China, 2008.
38. Liu, Z.; Gu, X.; Chen, J.; Wang, D.; Chen, Y.; Wang, L. Automatic recognition of pavement cracks from combined GPR B-scan and

C-scan images using multiscale feature fusion deep neural networks. Autom. Constr. 2023, 146, 104698. [CrossRef]
39. Wang, S.; Leng, Z.; Sui, X. Detectability of concealed cracks in the asphalt pavement layer using air-coupled ground-penetrating

radar. Measurement 2023, 208, 112427. [CrossRef]
40. Liu, Z.; Gu, X. Performance evaluation of full-scale accelerated pavement using NDT and laboratory tests: A case study in Jiangsu,

China. Case Stud. Constr. Mater. 2023, 18, e02083. [CrossRef]
41. Xiong, C.; Yu, J.; Zhang, X.; Korolev, E.; Svetlana, S.; Chen, B.; Chen, F.; Yang, E. Modulus backcalculation methodology based on

full-scale testing road and its rationality and feasibility analysis. Int. J. Pavement Eng. 2022, 1–13. [CrossRef]

https://doi.org/10.1061/JPEODX.0000227
https://doi.org/10.1016/j.autcon.2021.104111
https://doi.org/10.3390/s23062935
https://www.ncbi.nlm.nih.gov/pubmed/36991652
https://doi.org/10.1007/s42947-022-00239-x
https://doi.org/10.1109/TITS.2022.3197712
https://doi.org/10.1080/10298436.2021.2011872
https://doi.org/10.3390/rs13061081
https://doi.org/10.3390/buildings12070868
https://doi.org/10.1016/j.cscm.2019.e00251
https://doi.org/10.3390/infrastructures7050061
https://doi.org/10.1007/s41062-022-00771-6
https://doi.org/10.56578/mits010107
https://doi.org/10.1080/10298436.2022.2072498
https://doi.org/10.1109/ACCESS.2021.3129979
https://doi.org/10.1016/j.conbuildmat.2021.124278
https://doi.org/10.1016/j.engappai.2022.104743
https://doi.org/10.1186/s12859-022-04675-1
https://www.ncbi.nlm.nih.gov/pubmed/35641905
https://doi.org/10.1016/j.jksuci.2022.04.010
https://doi.org/10.1016/j.eswa.2022.117016
https://doi.org/10.30871/jaic.v6i1.3485
https://doi.org/10.1109/TKDE.2022.3155450
https://doi.org/10.1016/j.patcog.2022.108638
https://doi.org/10.1016/j.autcon.2022.104698
https://doi.org/10.1016/j.measurement.2022.112427
https://doi.org/10.1016/j.cscm.2023.e02083
https://doi.org/10.1080/10298436.2022.2111424


Buildings 2023, 13, 1752 21 of 21

42. Burstyn, I. Principal component analysis is a powerful instrument in occupational hygiene inquiries. Ann. Occup. Hyg. 2004, 48, 655–661.
[CrossRef] [PubMed]

43. Vidal-Alaball, J.; Mateo, G.F.; Domingo, J.L.G.; Gomez, X.M.; Valmaña, G.S.; Ruiz-Comellas, A.; Seguí, F.L.; Cuyàs, F.G. Validation
of a Short Questionnaire to Assess Healthcare Professionals’ Perceptions of Asynchronous Telemedicine Services: The Catalan
Version of the Health Optimum Telemedicine Acceptance Questionnaire. Int. J. Environ. Res. Public Health 2020, 17, 2202.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/annhyg/meh075
https://www.ncbi.nlm.nih.gov/pubmed/15507459
https://doi.org/10.3390/ijerph17072202

	Introduction 
	Background 
	Objective and Scope 

	Methods 
	Systematic Clustering Methods 
	Dynamic Clustering Methods 
	Ordered Clustering Methods 

	Data Collection 
	Project and Materials 
	Data Collection for the Surface Technical Condition 
	Data Collection for the Pavement Internal Crack Rate 

	Results and Analysis 
	Principal Components Analysis 
	Analysis of Clustering Results 
	Applicability of Clustering Methods 

	Conclusions 
	References

