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Abstract: In urban public transportation and highly diversified air environments, air pollutant
exposure is becoming an increasing concern in terms of public health and personal safety. Herein,
the scientific literature on air quality and virus transmission in densely crowded environments is
reviewed to determine effective control methods. The research results are classified on the basis of
different crowded environments. Much research has been conducted on pollutants in subways and
buses. High particulate matter concentrations in public transportation are still a serious problem, but
few studies on the spread of viruses exist. With existing types of ventilation systems, increasing local
exhaust may be an efficient way to remove pollutants. Air quality sensors should be distributed in
densely crowded spaces to achieve real-time display of pollutant concentration data. When pollution
levels exceed the safe values, scientifically designed ventilation and filtration schemes should be
implemented to reduce the pollution levels. Occupant activities are among the important factors that
make pollutant transmission more complex. The analysis results herein contribute to the assessment
of indoor pollutant concentrations and the protection of occupants from cross-infection.
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1. Introduction

With economic development and urban expansion, people’s commuting distances are
increasing, so the time spent on public transportation is increasing. The expansion of global
air travel has overcome geographic barriers to disease vectors [1]. Passenger health is
influenced by the cabin environment [2]. Airplane cabins provide a conducive environment
for the transmission of COVID-19 [3]. Crowded economy-class cabin seats increase the risk
of airborne disease transmission between sick and healthy passengers [4]. Of particular
note is the emergence of COVID-19, which is transmitted mainly through droplets and
aerosols [5,6]. Due to the high occupant density in an airplane cabin, the required total air
exchange ratio is much higher than that in a building.

In typical offices, outdoor particulate matter <2.5 µm (PM 2.5) is the main source
of indoor PM 2.5 [7]. Sangiorgi et al. reported that more than 80% of indoor PM 2.5 in
office buildings comes from outdoors [8]. Mechanical ventilation filtration systems in office
buildings are used to reduce indoor particulate matter exposure [9]. In the United States
and Singapore, 90% of the indoor air in office buildings is recycled and filtered [10]. In
China, a small number of office buildings directly use fresh air systems to provide filtered
fresh air [11]. Previous research has found that crowded classrooms, apart from PM 2.5, are
also associated with high levels of several chemicals, such as methanol and benzene [12,13].
Moreover, poor ventilation rates may lead to high levels of fungal particles in overcrowded
places. Researchers have found that CO and PM levels were positively associated with
students’ absence rates [14,15]. Indoor pollutants, including particulate pollutants, can
affect student attendance and learning efficiency [16,17]. Many research teams have mea-
sured the concentration of pollutants in the classroom, and natural ventilation by opening
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windows is the main method [18,19]. A significant decrease in CO was found, which led
to a reduction in respiratory illnesses in students [20]. But that would only be correct if
the windows were actually opened and not left closed (to conserve heat). In addition to
CO, NO2 emitted by motor vehicles in inner cities may cause excess morbidity, especially
related to asthma symptoms [21]. The levels of various pollutants were found to be higher
indoors than outdoors [22]. Additionally, suggestive evidence links the classroom-level
ventilation rate with students’ test results in math [17,23]. Therefore, the health of occupants
is extremely susceptible to the influence of outdoor pollutants, and due to the crowded
nature of classrooms, the contaminants cause higher levels of exposure for occupants.

The effectiveness of filtration systems for PM 2.5 purification in the area of human
activity and therefore respiration has received widespread attention. The PM produced
by commercial aircraft not only has a significant impact on the outdoor environment
of terminal buildings [24], but also easily transfers from outdoors to indoors through
mechanical ventilation systems [25].

The literature on airborne transmission for different modes of transportation and
transportation hubs is relatively limited. Due to their unique physical structure and high
passenger flow within the transportation infrastructure, subway lines have a high risk
of epidemic transmission [26,27]. The CO2 level was found to be linearly related to the
number of passengers according to a correlation analysis [28]. It is important to consider
commuter route choice in exposure assessment studies. The external environment has
the strongest influence on air quality in subway cabins. The piston wind from the tunnel
makes it easier to transport particulate matter into a subway station for a subway without
platform screen doors.

The purpose of this study is to evaluate the health risks of crowded spaces. The list of
acronyms is shown in Table 1. This study reviewed the air quality and virus and pollutant
transmission risks in three types of highly occupied public environments: (i) transportation
hubs, (ii) public transportation, and (iii) crowded spaces (classrooms and offices). However,
there have been few studies on controlling virus and pollutant transmission in areas such
as buses, subways, and subway stations, so this issue needs further analysis.

Table 1. List of acronyms.

Particulate
Matter

Ultrafine
Particles

Volatile
Organic
Com-
pounds

Polycyclic
Aromatic
Hydrocar-
bons

Black
Carbon

Culturable
Airborne
Bacteria

Air Con-
ditioning

Mechanical
Ventila-
tion

Natural
Ventila-
tion

Displacement
Ventilation

Personalized
Ventilation

Platform
Screen
Doors

PM UFPs VOCs PAHs BC CAB AC MV NV DV PV PSDs

2. Overview of Highly Occupied Public Environments

A minimum of 30 m3/h per person is required in common environments. Highly
occupied public environments gather a large number of people in some time periods, and
an air supply of 20–30 m3/h per person is needed. In addition, the highly occupied public
environments have larger spaces, the personnel activities are more complex, and the social
distance is shorter. Personnel activities may increase the pollutant transmission distance.
During the COVID-19 pandemic, public safety in crowded places became a great concern.

People’s work and studies are closely related to densely crowded environments,
as shown in Figure 1. Means of transportation are usually boarded in transportation
hubs, which contain dense and highly mobile populations. This complex environment
increases the risk of personal exposure. Commuters can easily carry viruses and bacteria
from transportation hubs to public transportation, where crowds are dense and the social
distance is short, which increases the risk of cross-infection. Finally, controlling the level of
pollutants and reducing the risk of personal exposure in the air environment of densely
crowded spaces such as classrooms and offices is urgently needed.

The relevant review articles on pollutant exposure in highly occupied public environ-
ments are shown in Table 2. Droplets are large heavy particles that transfer from person
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to person in close proximity and are the main reason for the need to socially distance (say
1–2 m). They usually fall to the ground. The other main and more insidious mode of
transfer of virus particles is small and lighter-weight aerosols that can drift within enclosed
interior spaces of airflow and cause infection to others.

Table 2. Summary of review articles about pollutant exposure in highly occupied public environments.

Classification Highly Occupied Public
Environments Research Object Main Conclusions

Crowded
places

Classroom NO2, O3, PM, VOCs, bacteria
Occupancy activities caused a large fraction of virus
transmission due to the resuspension of previously

deposited matter [29].

Hospitals, Schools, Offices Infectious diseases Ventilation is positively associated with airflow
direction control in buildings [30].

Homes, Schools, and Hospitals Humidity, influenza virus, VOCs Humidity and temperature can be adjusted to
achieve a satisfactory work environment [31].

Public Spaces Aerosol
The range of typical indoor aerosols can be used as

a reference for biosensors designed to improve
public safety [32].

Public
transport

Pedestrians, Car, Bus, Massive
Motorized Transport

Black carbon, carbon monoxide,
coarse particles, fine particles,

NO2

Pedestrians have higher levels of inhaled pollutants
than commuters using motor cabins [33].

Taxi, Bus, Subway, Busy Street
PM, CO, NO2, volatile organic
compounds (VOCs), polycyclic
aromatic hydrocarbons (PAHs)

There are differences in measurement methods and
a lack of uniform measurement standards [34].

Walk, Cycle, Car, and Bus PM 2.5, ultrafine particles (UFPs),
and black carbon

The concentrations of PM 2.5, ultrafine particles
(UFPs), and black carbon (BC) in Asian cities are

higher than those in the USA and Europe [35].

Cycle, Car, Subway, and Bus PM, BC The levels of a bus passenger’s exposure to PM and
BC largely depend on the bus route chosen [36].

Walk, Bicycle, Car, Bus PM 2.5, BC, UFPs, CO Car drivers are exposed more than pedestrians [37].

Walking, Cycling, Bus, Car, and
Taxi PM 2.5, BC, UFPs, CO Pedestrians are exposed to lower levels of UFPs and

CO than people inside vehicles [38].

Bicycle, Bus, Automobile, Rail,
Walking, and Ferry Modes UFPs Exposure to UFPs can have acute effects on

health-compromised individuals [39].

Subway PM Underground PM is more toxic than urban PM [40].

Subway PM The dust in a subway system is more toxic than
ambient airborne particulates [41].

Subway CO, PMs, VOCs

The ventilation mode, passenger numbers, and
surrounding pollution level outside of a metro

station could have important effects on the metro air
quality [42].

Aircraft Airborne expiratory contaminants Most researchers have applied Lagrangian models to
analyze transient phenomena [43].

Aircraft Droplets, SARS Most diseases have an incubation period that is
longer than the period of air travel [44].

Transport hub

Transportation and
Transportation Hubs Respiratory viruses Air transportation appears to be important for

accelerating influenza propagation [45].

Subway Stations High temperature, high humidity,
PM, VOCs

Ventilation can spread air pollutants through
a complex airflow [46].

This study
Classroom, Office, Subway

station, Airport, Bus, Subway,
Aircraft

CO, PM, droplets

The pollutant concentration detection system should
be combined with the air-conditioning system in

crowded places.
Passenger flow had a great influence on pollutant

transport in transport hubs.
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Figure 1. Structure of highly occupied public environment.

The average concentrations of PM 2.5 and total suspended PM that people taking
subways are exposed to are 8 and 12 times those to which taxi drivers are exposed, respec-
tively [41]. Moreover, uniform measurement standards are rarely applied to Asia [34,35].
Future work should place an emphasis on confirming the contribution of ultrafine particle
(UFP) exposure to total PM exposure during transportation [39]. Exhaled droplets are trans-
mitted in indoor environments, either directly or through air distribution [47]. PM, black
carbon (BC), CO, fungal particles, bacteria, and viruses are frequently the main pollutants
identified in subways.

Occupant density and occupant activities have a high impact on indoor air quality.
The level of indoor aerosols is mainly affected by indoor population density, outdoor
air level, and ventilation type [48]. Considering the coupled relationship between the
indoor environment and ventilation, internal ventilation strategies should be determined
according to outdoor conditions [46]. Currently, there are insufficient data to assess the
relationship between the ventilation rates of highly occupied public environments and
airborne infectious diseases, and there is a lack of quantitative research on the impact of
occupant activities on pollutant transmission. Therefore, future work should focus on
investigating the health risks posed by air pollutants and further developing advanced
ventilation strategies to improve air quality in crowded places. The main indoor air
pollutants in classrooms include viruses, PM, and volatile organic compounds (VOCs).

Poor ventilation and crowding are environmental factors that affect the risk of airborne
infection in ground public transportation [49,50]. In the absence of sufficient air renewal,
high transmission of influenza may occur in confined spaces. Therefore, the concentration
in underground or closed stations may be several times higher than the concentration in
the surrounding air [51–53]. Due to the metal wear of wheels and brake shoes in subway
tunnels, the level of Fe-containing particles and black carbon level (PM, BC) are high in
subway stations [54–57]. In this paper, PM, BC, and viruses are studied as major pollutants
in transportation hubs.

3. Classrooms and Offices
3.1. Classrooms

As students spend spending almost one-third of each day studying in the classroom,
their activities including sweating, breathing, and movement have a great impact on
indoor air quality and lead to a high concentration of bacteria and a high level of CO2.
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In addition, serious respiratory symptomatology is closely associated with a high level
of CO2 [58]. Results have shown that some painting and collage materials in classrooms
emit high concentrations of VOCs. Moreover, previous research has found that crowded
classrooms are associated with high levels of several chemicals [12,13]. Viruses are also
common pollutants found in classrooms. A previous study found that the students in
classrooms without daily cleaning were more than twice as likely to be infected with
a virus compared to students in classrooms with daily cleaning [59]. Therefore, cleaning
classrooms every day is important for decreasing virus levels. An earlier intervention is
having hand sanitizer freely available. Additionally, maintaining an indoor temperature
above 20 ◦C with 50% or 80% relative humidity may be a way to mitigate the transmission
of the influenza virus. The possibility of a relationship between temperature and relative
humidity for viruses was revealed in 2020 in terms of specific enthalpy; today, this approach
is widely recognized [60–62]. The resuspension of floor dust is an important contributor to
the quantity of bacterial aerosols during occupancy.

Table 3 summarizes the various concentrations of indoor air pollutants detected in
classrooms with different HVAC types and different occupant densities. Ventilation control
strategies are thought to be a feasible way to control the levels of indoor air pollutants. In
addition, in regard to ventilation, mechanical ventilation (MV) with automatically operable
windows is assumed to play an essential role in reducing CO2 levels. However, if windows
cannot be opened, a suitable outdoor fresh air supply rate should be guaranteed to maintain
good indoor air quality.

Table 3. Reviews on pollutants in classrooms.

Classification HVAC Type Pollutants Concentrations
Occupant
Density
(m2/per)

Main Conclusions

Air Conditioning
(AC)

Fan coil + OA

VAV + OA

CO2 (ppm)
PM 2.5 (µg/m3)

CO2 (ppm)
PM 2.5 (µg/m3)

729.75 ± 71.29
85.83 ± 24.44

716.41
52.06

4.15 ± 0.26

4.23

Inadequate filtration efficiency as
well as redundant outdoor air
supply rates [63].

AC CO2 (ppm) 1596 2.24

Lack of outside fresh air in
air-conditioned classrooms may
be the reason for high CO2
concentrations [64].

AC

CO2 (ppm)
Airborne dust
(µg/m3)
Viable fungi (cfu/m3)

1433.62 ± 252.80
659.22 ± 102.80

367.00 ± 88.13
NA

Poor air renovation causes a high
level of CO2 in AC
classrooms [65].

AC (split-type AC
units or fully
mechanical central
AC system)

SO2 (ppb)
NO2 (ppb)
H2S (ppb)
Formaldehyde (ppb)
Acetaldehyde (ppb)

0.823
15.81
4.99
58.58

2.69

NA
A high level of formaldehyde in
classrooms indicates there are
indoor sources [66].

AC (window-type
AC)

PM10 (µg/m3)
CO2 (ppm)

97.93
1266.65 1.45 Air-conditioning systems can

control indoor PM10 levels [67].

AC

CO2 (ppm)
CO (ppm)
Total volatile organic
compounds (TVOCs)
(ppb)
CH2O (ppm)
PM10 (µg/m3)

1372.05 ± 264.26
0.605 ± 0.16
158.46 ± 44.48

0
56.68 ± 17.24

NA

Outside particles infiltrate the
classroom and cause a high level
of PM10. High occupant density
in air-conditioned classrooms
causes a high level of CO2 [68].
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Table 3. Cont.

Classification HVAC Type Pollutants Concentrations
Occupant
Density
(m2/per)

Main Conclusions

AC (water cooling
tower)

PM10 (µg/m3)
CO2 (ppm)

94.26
1870.83 1.17

Air-conditioning systems can
cause high levels of carbon
dioxide [67].

Mechanical
Ventilation (MV)

MV

O3 (ppb)
NO (ppb)
NO2 (ppb)
PM0.3–0.4 (µg/m3)
PM1.6–2.0 (µg/m3)

30.25 ± 6.7
9.33 ± 14.25
11.75 ± 6.89
53,598 ± 31,637.12
324.18 ± 137.62

NA

The high levels of pollutants
suggest the building’s airtightness
is so poor that is not able to
provide protection against
outdoor pollutants [69].

MV PM10 (µg/m3)
CO2 (µL/L)

169.72 ± 66.22
748.9 ± 249.54 1.59 ± 0.54

Crowded classrooms and
insufficient ventilation are
important factors affecting indoor
air quality [67].

MV (automatically
operable windows
with exhaust fans)

CO2 (ppm) 662 ± 96 1.98

Using chalk and marker boards
increases indoor air pollutants.
CO2 was effectively reduced in
classrooms with automatically
operable windows [70].

MV (two
ceiling-based
supplies and one
extract)
MV (variable-speed
fan)
MV (variable-speed
fan+ automatic
windows)

CO2 (ppm)

CO2 (ppm)

CO2 (ppm)

761 ± 39.60

1100 ± 320

853 ± 268

The mechanical ventilation
system provides a more effective
way of reducing CO2 levels but
does so at the expense of
occupant control [71].

Natural
Ventilation (NV)

NV (with ceiling fan
and windows open)

CO2 (ppm)
CO (ppm)
TVOC (ppb)
CH2O (ppm)
PM10 (µg/m3)

661.86 ± 84.59
0.36 ± 0.11
55.12 ± 36.81
0.015 ± 0.01
252.70 ± 81.49

NA

Outside particles infiltrate the
classroom and cause a high level
of PM10. High occupant density
in air-conditioned classrooms
causes a high level of CO2 [68].

NV (window
opening)

O3 (ppb)
NO (ppb)
NO2 (ppb)
PM0.3–0.4

PM1.6–2.0

30.75 ± 11.09
2 ± 1.63
3.75 ± 4.19
49,742.5 ± 35,536.61
171 ± 50.94

NA

The high levels of pollutants
suggest the building’s airtightness
is so poor that is not able to
provide protection against
outdoor pollutants [69].

NV (single-sided
ventilation) CO2 (ppm) 1219 ± 360.90

NA

The mechanical ventilation
system provides a more effective
way of reducing CO2 levels but
does so at the expense of
occupant control [71].

NV (single-sided
double opening) 1447 ± 350.72

NV (cross-ventilated) 1255 ± 588

NV (cross-ventilated
stack effect) 1581.5 ± 358.05

NV
PM 2.5 (µg/m3)
PM 10 (µg/m3)
CO2 (ppm)

178.25 ± 21.87
165.75 ± 31.38
1507.25 ± 302.41

1.73 ± 0.08

Building defects as well as
occupants’ activities are
associated with indoor air quality
[72].

NV
PM 10 (µg/m3)
PM 2.5 (µg/m3)
PM 1.0 (µg/m3)

566.82 ± 373.33
212.90 ± 181.55
177.23 ± 163.32

NA
Occupants’ activities lead to
resuspending of PM10 and PM 2.5
and delay their settling [73].

NV
NV (free-running
ventilation)
NV (manual airing)

CO2 (ppm)
CO2 (ppm)

CO2 (ppm)

2783
2006 ± 194.57

1292.33 ± 199.09

2.2
2.2

2.2

A ventilation system with a heat
recovery device may be a suitable
method to guarantee the CO2
levels and energy consumption
below the guidance [74].
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Table 3. Cont.

Classification HVAC Type Pollutants Concentrations
Occupant
Density
(m2/per)

Main Conclusions

NV CO2 (ppm) 2717 ± 792.6 NA

The ventilation efficiency in these
classrooms is very poor, and
opening doors has a significant
effect on reducing the CO2 levels
indoors on a short-term basis [75].

NV CO2 (ppm) 1195 ± 311.27 3.04 ± 0.50

A large number of students and
a long class duration (more than
60 min without break) may be the
reason why the CO2 levels are
high [76].

NV (manually
operable windows) CO2 (ppm) 803 ± 184 2.25

Using chalk and marker boards
increases indoor air pollutants
[70].

NV (automatically
operable windows) CO2 (ppm) 732 ± 131 2.06

The classrooms with
automatically operable windows
had lower CO2 concentrations
[70].
CO2 was effectively reduced in
classrooms with automatically
operable windows [70].

NV

CO (ppm)
CO2 (ppm)
PM 10 (µg/m3)
TBC (CFU/m3)
TVOCs (µg/m3)
HCHO (ppm)

1.32 ± 1.51
1228.81 ± 798.65
106.67 ± 90.62
1463.39 ± 1269.92
374.06 ± 337.03
0.10 ± 0.15

NA

Building materials and
furnishings may emit chemicals
that lead to high levels of indoor
air pollutants [77].

NV

CO2 (ppm)
Airborne dust
(µg/m3)
Viable fungi (cfu/m3)

520.12 ± 37.25
215.12 ± 68.20

1001.30 ± 125.16

NA
Outdoor fungi infiltration led to
a high concentration of viable
fungi in the NV classrooms [65].

NV CO2 (ppm) 708 2.24

Lack of outside fresh air in
air-conditioned classrooms may
be the reason for high CO2
concentrations [64].

Mixed
NV
NV + MV
NVAC

CO2 (ppm)
1905
1052
1464

NA

Adding mechanical ventilation to
the ventilation system is a good
solution to ensure indoor air
quality [78].

In many cases, the fresh air supplied by HVAC systems is inadequate [79]. It is
assumed that CO, SO2, NO, and NO2 from heavy traffic infiltrate indoor rooms due
to poor building airtightness. In addition, there is a close correlation between particle
concentration and occupant density, which is mainly due to the delayed settling and
recovery of suspended particles caused by occupant activity and movement.

A summary of the levels of CO2 and PM10 exposure under different ventilation
strategies is shown in Figure 2. The CO2 concentration is always above 1000 ppm in rooms
with natural ventilation (NV) or air conditioning (AC), which indicates that ventilation
is still very poor in these classrooms. Rooms with NV have the highest levels of CO2,
followed by rooms with AC and MV, while rooms with MV have the lowest levels of CO2.
The high concentration of CO2 in rooms with NV indicates that NV cannot fully meet the
ventilation requirements for crowded spaces. The CO2 concentration in air-conditioned
rooms is also high, indicating that the outdoor fresh air supply in air-conditioned rooms
is insufficient. High concentrations of PM10 occur in rooms with NV, followed by rooms
with MV and AC, showing that outdoor pollution is the main source of high concentrations
of indoor pollutants and that AC helps control the concentration of PM10. Insufficient
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outdoor air filtration efficiency and building defects are also responsible for high levels of
indoor PM.
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classrooms (data from Table 2).

Opening windows can effectively remove UFPs from a classroom. In addition, an ac-
cessory exhaust outlet below the breathing zone helps lessen the levels of particles in the
breathing zone [80]. Replacing a traditional AC system with a central AC system enables
CO2 levels to be maintained at standard levels and provides adequate fresh air [64]. In
contrast, a variable-speed mechanical fan controlled by indoor CO2 levels may be more
environmentally friendly than a central AC [81]. Therefore, by controlling the temperature
and the amount of outdoor fresh air supply through a real-time temperature sensor and
a CO2 sensor, a special MV system with a constant-flow fan outdoors can significantly
reduce the levels of CO2 in classrooms without compromising thermal comfort.

3.2. Offices

Table 4 shows the effects of various ventilation strategies on indoor air pollutants in
offices. An increasing number of advanced air supply systems are being used for office
air quality control. In large office buildings, different ventilation strategies are adopted in
different seasons. Sometimes NV is more effective than AC, depending on the concentration
of outdoor pollutants.

Table 4. Overview of ventilation strategy effects on indoor air pollutants in offices.

Ventilation Strategies Methods Ventilation
Rate/Person Results

Displacement ventilation (DV) Experiment NA Almost a quarter of the occupants were uncomfortable when a vertical
temperature difference was present [82].

MV Investigation From 7 to 70 There was no correlation between MV and sick building syndrome [83].

NV Experiment NA A new type of NV—diffuse ceiling ventilation—achieved ventilation and
cooling requirements with minimum ventilation [84].

Personalized ventilation (PV) CFD simulations 7.5 Transient parameters be changed by variable-frequency air supply, which
can improve air quality [85].

Combined ventilation system
(DV + PV) Experiment 82 Precise control of the temperature of air supplied by DV and PV is very

important [86].

Underfloor air distribution Experiment NA For open-plan offices, underfloor air distribution is more suitable than
mixing systems [87].

Confluent jet ventilation Experiment 15–30 Confluent jet ventilation produced better results than mixing and
displacement ventilation [88].
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By investigating the average I/O ratio of PM 2.5, Zhu et al. [89] found that indoor
PM 2.5 mainly comes from outdoor sources. Traffic conditions are the main source of
outdoor pollution that affects the level of indoor PM [90]. Cheng [91] found that the coarse
particles in office buildings originate from indoor activities. The clean air delivery rates of
the air purifiers are determined by the air volume, the efficiency of the air purifier, and air
distribution in the room [92]. Ren et al. proposed that the clean air delivery rate (CADR) in
Chinese office buildings should be in the range of 10–33 (m3/h)/m2 to effectively control
indoor PM 2.5 [11]. The presence of people is also the main factor influencing the indoor
environment, while resuspension activities are the most significant source of particles with
a size larger than 1 µm [93].

3.3. Discussion

Students’ walking has a great influence on the concentration of coarse particles in
the classroom [94]. Occupants’ indoor activities not only resuspend these particulates but
also delay their deposition/settling, resulting in higher ambient indoor concentrations [95].
Taking shoes off when entering a building can reduce particle mass concentrations [96]. For
aerosol particles, the concentration of coarse particles increases with occupant activity [97].

PM mainly comes from outdoors, but indoor suspended PM is greatly affected by
students’ activities. Although the research on classroom indoor air quality is becoming
increasingly advanced, a quantitative study of crowd behavior factors influencing the
environment has not been performed. With intelligent buildings becoming a trend in archi-
tectural development, systems allowing real-time monitoring of pollutant concentrations
are being installed in intelligent buildings to provide timely feedback. A complete pollutant
concentration monitoring–feedback–exclusion system should be established to ensure the
safety and comfort of the indoor environment.

4. Transport Hubs
4.1. Subway Stations

The PM concentration of the ground-level indoor environment in a subway station
is affected by the piston wind of the tunnel. The use of platform screen doors (PSDs)
reduces PM levels and metal concentrations [98–101]. In some indoor environments, the
concentration of PM underground is higher than that at ground level [102,103]. Due
to the small amount of air infiltration and the weak effect of exhaust, the deeper the
subway platform is, the higher the PM 2.5 concentration [104]. Therefore, forced MV in
tunnels can also maintain the air quality in subway stations [105,106]. The concentration
of PM 2.5 in subway systems varies greatly in different seasons, due to the concentration
variations of outdoor PM [107]. The concentration of culturable airborne fungi (CAF) in
the air is positively correlated with the depth of subway stations [108,109]. However, the
density of fungal spores in subway stations is within acceptable sanitation levels for public
buildings [110].

A ventilation control system equipped with a PM10 feedback device can increase the
concentration of PM10 on a platform from an unhealthy level for sensitive people to a mod-
erate level [111]. Biological aerosols account for only a small part of total aerosols (typically
<1%) [112]. Due to the variation in the number of passengers in transit, culturable airborne
bacteria (CAB) concentrations appear to vary over time [113]. Anthropogenic sources are
the major source of bacteria in subway stations, and airborne bacterial communities may
be toxic [114]. However, considering the crowded conditions during peak hours, there is
a risk of mold allergic reactions for some categories of underground passengers. With the
proliferation of advanced methodologies for short-term traffic flow prediction, intelligent
transportation systems have been maturing [115,116]. However, high passenger flow has
a great effect on air quality, and there is a lack of quantitative research.
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4.2. Railway Stations

Bacteria in train stations change with the seasons; from spring to winter, the number
of bacteria rises, and the number of fungi peaks in autumn [117]. Enclosed railway stations
that serve diesel trains have poor air quality, and the resulting exhaust emissions harm
passengers [118,119]. Many workers spend a few hours in the subway station every day.
They are exposed to large amounts of steel dust, so they may face more health risks than
other members of the commuting public. Using green energy could eliminate diesel trains.
In this way, the health of passengers is less likely to be adversely affected.

4.3. Terminal Buildings

The air quality satisfaction levels of travelers are highly correlated with the CO2 con-
centration in airport terminals [120]. There are limited data on the exposure of passengers
to particulate pollutants in terminal buildings. In one study, the PM 2.5 levels in an airport
were much higher than the regulatory limits set by the WHO during all of the tested seasons
and were exceedingly influenced by the outdoor air [121]. In addition, a simulation study
of the spread of influenza in an airport terminal revealed the possibility of spread among
a large number of passengers [122]. The SARS-CoV-2 virus spreads very quickly between
cities, and the transmission rate is proportional to the closeness of the city air transport
networks [123]. Thermal scanning, which can identify passengers with fever, allows for
passengers exhibiting symptoms of COVID-19 infection to be tested before they board
a plane. This method is very effective. However, queuing for scanning could be a major
source of contagion. In addition, the influenza virus is suspected to spread on the way
to the airport and during the stay in the airport terminal; the 14-day incubation period
of the influenza virus shows that it is difficult to determine the exact time and place of
transmission. This increases the risk of infection in crowded public spaces.

4.4. Discussion

There is little research on the indoor air quality of transportation hubs. Compared with
classroom and office environments, the indoor environment of public transportation hubs
is not only affected by disturbances created by passenger flow but also strongly influenced
by the dispatch frequency of public transportation. Higher passenger flow easily leads to
contaminant transmission and increases the risk of cross-infection.

There is almost no research on the characteristics of pollutant transmission caused by
crowed flow in transportation hubs. It is difficult to quantify the concentrations of pollutants
due to the dynamic changes in passenger flow, which increases the difficulty of studying
the characteristics of pollutant transmission. It is recommended that transportation big
data be used to forecast passenger flow and control indoor air quality.

5. Public Transport
5.1. Subways

The aerosols in a subway tunnel are the source of particles on the platform and in
the train, which reveals that coarse particle transportation mainly occurs through the
door [124]. Therefore, the average concentration close to the door is higher than that in
the seating area. However, there is no consistent conclusion on the relationship between
passenger density and PM concentration. Gao et al. [125] found that the concentration
of PM 2.5 decreases as the number of passengers increases, possibly because passengers
inhale PM 2.5. The chemical and toxicological features of PM 2.5 and coarse PM vary by
method of public transportation. When assessing public exposure, the dose and toxicity
of pollutants may be better indicators than the PM mass level [126,127]. Gong et al. [128]
found that the number of passengers also affects the concentrations of VOCs and PM 2.5 in
a subway. Subway microbial communities mainly originate from oral commensal microbes
and human skin [129]. The bacterial communities in the air were similar in the train, on the
platform, and in the lobby [130]. Therefore, enhancing the ventilation system during rush
hours may help control exposure.
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5.2. Buses

The level of indoor pollutants in a school bus is much higher than that outdoors [131,132].
Opening doors and windows leads to high PM 2.5 and PM10 mass concentration
changes [133–135]. The doses of inhaled contaminants were lower for electric bus passen-
gers than for passengers of other transportation modes. A regression model revealed
a positive correlation between exposure to PM10 and the number of bus passengers
(r = 0.05, p < 0.01) [136]. Due to the exhaust from the bus itself, the carbon monoxide
content in the cabin is higher than the carbon monoxide content in the surrounding envi-
ronment/roadside, but they are significantly correlated [137].

The concentration of outdoor contaminants strongly affects the concentration of indoor
contaminants [138,139]. Therefore, the airtightness design of a vehicle cabin should be
improved to reduce the intrusion of vehicle exhaust gas [140]. The most effective ventilation
strategy is to use AC and close windows while driving, which can minimize exhaust gas
exposure [141,142]. When a filter is used, the concentration of contaminants in a cabin is
significantly reduced compared to that when a filter is not used [143]. Minimizing commute
times and periodically replacing filters for a bus can significantly reduce personal exposure
to pollutants [131]. Air filtration can significantly reduce the risk of personnel exposure.
Therefore, we strongly recommend that schools and governments adopt these policies to
protect the health of all those using school buses. But that would also apply to any other
bus service.

This study compared the exposure determined in some studies for different modes of
commuting (bus and subway). The pollutant concentrations in a bus and subway on the
same route are shown in Figure 3. On the basis of the comparison of PM 2.5 concentrations,
the same pollutant concentration varied greatly on different routes. The concentration of
PM 2.5 is lower than the WHO standard in only a few cities. The subway is a travel mode
with a low pollutant concentration.
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Due to the roadside sources contributing to high PM concentrations in roadway
transportation environments, the PM 2.5 concentrations of Beijing and Singapore are higher.
The concentrations were not considerably different between subway and bus journeys in
Barcelona. However, the average exposure concentrations of the London underground
system are 3–8 times those of other surface transport modes [160]. This difference may
be due to the level of ventilation and the spatial design of the subway station but was
not true for certain elements (such as Fe and Mn) [41]. Similar results were obtained
in Correia et al.’s [159] research (metro, 37.8 ± 20.8 µg/m3, and bus, 28.4 ± 5.3 µg/m3).
To reduce the exposure to air pollutants in subway systems, screen door platforms, air
purifier units, and high-efficiency air filters are effective measures [161–163]. However,
because outdoor subway environments greatly differ, more research should be conducted
to determine the optimal purification strategy.

Pollutant concentrations in buses and subways on the same route are shown in
Figure 4. A comparison of the CO concentrations indicates that the levels in most cities
are below WHO standards. The CO concentrations in Mexico City’s buses are higher than
the WHO standard because of the high concentration of CO in the public transportation
system of Mexico City and the serious exhaust emissions from motor vehicles on the bus
routes. The use of high-efficiency h10 filters to replace common filters can improve the air
quality in a cabin and reduce the passenger inhalation dose [164]. Future research should
further distinguish the relative influences of weather, traffic, route, and vehicle ventilation
parameters to properly inform policies and mitigation measures on the most significant
determinants of commuter exposure to PM.
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5.3. High-Speed Trains (HSTs)

There is little research on the indoor air quality of HSTs. The diffuser type significantly
affects the airflow distribution in a train cabin [166]. Because the passenger thermal plume
is coupled with the supplied airflow, a few contaminants may be confined to the area
around a passenger [167,168]. A multi-objective optimization platform has been developed
to optimize indoor air quality in HST cabins [169]. When a passenger coughs in the cabin,
the droplets spread quickly in the longitudinal direction. The larger droplets usually fall
to the ground within 1–2 m, hence the need for social distancing. The smaller and lighter
aerosols spread out into the indoor space and disperse via airflow.
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5.4. Aircraft

On aircraft, the main gaseous pollutants are ozone, carbon oxides, and volatile or-
ganic compounds. During the boarding phase, the carbon dioxide concentration is higher
than that during the flight phase, possibly due to insufficient ground ventilation on many
flights [170]. Controlling the concentration of VOCs and CO2 and ventilation strategies
are important ways to create an acceptable cabin environment [171]. The main source of
formaldehyde in airplanes is the ozone reaction [172]. Twenty-nine percent of TVOCs may
be related to humans and service in aircraft cabins [173]. The peak values of VOCs in flight
usually occur before takeoff and during cruising [174]. The main particulate pollutants
with potentially infectious viruses and bacteria come from exhalation activities, such as
coughing and sneezing [175]. Although the PM concentration was low for most flights
investigated, peaks were measured during deboarding and boarding. An environmental
control system and a ground AC cart are necessary to reduce the concentration of pollu-
tants [176]. The distribution characteristics of PM < 3 µm are almost the same as those of
gaseous contaminants [177]. Therefore, the location and size of the pollution source have
an important impact on the transmission of pollutants in an aircraft cabin. The occupant
density is an important consideration.

By comparing DV and mixed ventilation, Zhang et al. [178,179] found that the use of
multiple air inlets is able to ameliorate the velocity distribution uniformity in the cabin. The
method of installing localized suction orifices close to the occupant exhausts contaminants
from the aircraft cabin before they become entrained in the bulk airflow [180,181]. A DV
system is more efficient at removing the smallest droplets by air extraction, but for larger
droplets, its efficiency will be reduced [182]. Wisthaler et al. [183] found that cleaner air
units effectively reduced the concentration of most organic pollutants. Therefore, the
implementation of DV in vehicles has been questioned. The smallest droplets can remain
airborne for a long time in the form of aerosols. The estimated risk of inhalation infection is
much higher than the risk of contact infection.

5.5. Comparisons

A comparison of contamination in different public transport sectors is shown in Table 5.
The PM 2.5 concentration in an aircraft is still high and is caused by passenger activities.
Subways have the highest fungal concentration, followed by buses and then airplanes,
because a subway, as a special underground environment, has a high dampness level and
carries the most passengers. The xylene levels found in buses and subways are higher
than those found in airplanes because gasoline is the main fuel for ground transportation
vehicles. As with aircraft, office buildings can also vary in terms of air quality depending
on various factors such as the ventilation system, maintenance practices, presence of indoor
pollutants, and outdoor air pollution levels. Some office buildings have well-maintained
ventilation systems with air filters that help remove pollutants. However, older buildings
or those with inadequate maintenance may have lower air quality.

Table 5. Contamination comparison in different public transport modes.

Pollutants Aircraft Bus Subway

CO (ppm) 2.57 [184] 2.9 [140] 0.1–2.3 [185]
PM 2.5 (µg/m3) 91 [186] 74.4 [157] 64.1 [187]
VOC (ppb) 0.227 [188] 5.9–8.63 [141] 0.14–3.89 [189]
Bacteria NA NA 2083 [190]
Fungi (CFU/m3) 60 [184] 248 [143] 483 [190]
BC (µg/m3) NA 2.5–19 [131] 4.1 [191]
PAHs (µg/m3) NA 32–400 [131] 8.7 [187]
NO2 (ppb) 11.3 [184] 44–220 [131] NA

The activity of passengers is very complex, and resuspension caused by occupant
movement is one of the main pollution sources. Passenger behavior also affects the trans-
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mission of contaminants in public transportation [192,193]. Passenger activities have
a significant impact on resuspension and deposition on the surface of passengers [194,195].
The occupants’ adjustments of the seatback angle increase the risk of longitudinal transmis-
sion of contaminants [196,197]. A passenger cough affects more passengers in an aircraft
cabin during the ascent [198]. The potential health risks caused by passenger behavior need
further assessment.

5.6. Virus Transmission

The evaluation of droplet/virus effects on public transport is shown in Table 6.
Droplets are larger particles, typically larger than 5–10 µm in diameter. These droplets
are usually generated when an infected person coughs, sneezes, talks loudly, or exhales
forcefully. They are relatively heavy and tend to fall to the ground or surfaces within a short
distance (typically within 1–2 m from the source) due to gravity. They are the reason for
the need to socially distance. The overall airflow plays the most important role in droplet
transport in public transportation areas. A cough jet will bring the aerosol to the seat in
front of the cougher. Transmission occurs when a person comes into direct contact with
the respiratory droplets containing the virus and inhales them or touches contaminated
surfaces and then touches their face (eyes, nose, or mouth). This mode of transmission is
considered short-range and requires close proximity to the infected individual. An increase
in the ventilation rate can reduce the exposure of passengers near the source of pollu-
tion but increases the aerosol diffusion distance and the exposure of passengers farther
away [199–201]. Therefore, contact tracing includes close contacts and passengers seated
two seats away. However, contact tracing to four rows on either side of the index case is
a reasonable compromise. Aerosols are generated when an infected person breathes, talks,
sings, or exhales even without forceful actions. These particles are lightweight and can
remain suspended in the air for an extended period, potentially traveling longer distances
and spreading throughout an enclosed space. The longer the flight is, the more people are
expected to be infected, especially in the economy class.

Table 6. Evaluation of droplet/virus effects on public transport.

Space Contaminant Method Transmission Range/Results Ref.

Aircraft

Influenza Investigation Two rows [202]
Droplets CFD simulations Four rows [203]

Aerosols Experimental
study Two rows [204]

Droplets Investigation Five rows [205]
Influenza Investigation Two rows (42%) [199]

HST
Droplets CFD simulations Seven rows [167]
Droplets CFD simulations Five rows [168]

Tuberculosis Wells–Riley
model

Well—Riley model should
integrate quantum generation rate [206]

Minibuses,
Buses, and
Trains

Tuberculosis Wells–Riley
model

The highest risk of infection was on
the train [207]

Close contact and long hours on a train may have been one of the reasons for the
transmission of the influenza virus. The spatial relationship between the occupant and
the flow field greatly affects the spread of droplets generated by coughing [208]. When
there is longitudinal airflow in the cabin, the droplets will disperse farther, and more
passengers increase the chance of infection [167,168]. Improving the ventilation of public
trains appears to be a useful way of mitigating the chances of influenza infection [209]. If
infected persons wear masks, the ventilation rate could be reduced to 25%, which leads
to less than 1% infection probability [210]. The literature concerning airborne infections
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in various transportation infrastructures is relatively limited and is mainly related to
commercial air travel.

5.7. Discussion

In buses and subways, doors are opened frequently, and outdoor pollutants are high,
resulting in relatively high internal pollutant concentrations. The issue of effectively re-
ducing the concentration of indoor PM has not yet been resolved. A high-speed train has
fewer openings, reducing the impact of outdoor pollutants. An airplane is also a closed
environment, and pollutants mainly come from the indoor environment. Public trans-
portation is a crowded place, and the risk of virus transmission is extremely high. For
the success of airborne infection control interventions, it is critical to interrupt the chain
of infection transmission. Therefore, using a filter mask could help protect others from
virus transmission.

6. Summary of Ventilation Strategy

A reasonable air change rate in a highly occupied public environment may be a good
evaluation index, as shown in Table 7. However, increasing the air change rate of the large
space will inevitably increase the cost. Therefore, it is a more appropriate method to control
pollutants through a reasonable ventilation strategy. The ventilation efficiency in classrooms
and offices is NV < MV < AC, but the indoor pollutant level is still high. Therefore, air
purifiers are a more effective ventilation strategy. In transportation hubs, indoor pollutants
come from the outdoors. Therefore, reducing outdoor pollutant infiltration and increasing
filters are more effective ventilation methods. In buses and subways, due to the frequent
opening of doors, pollutants also mainly come from outdoors. Reasonable control of the
time of opening the door is an effective control strategy. Forms of public transportation,
such as HSTs and aircraft, have small spaces and high air change rates. Therefore, their
indoor air quality is higher than that of other highly occupied public environments.

Table 7. Evaluation of ventilation characteristics of highly occupied public environments.

Classroom Office Terminal
Buildings

Subway
Stations Subways Aircraft HSTs

Personnel density
(m2/person) 0.75–1.2 3–6 8.5–10 0.8–1.25 0.125–0.33 0.45–2 0.65–1

Air change rate (m3/h) 2.5–4.5 2–6 6–15 4–6 30 20–35 6–12

Continuous monitoring of indoor conditions is important for indoor environmental
control systems. Therefore, installing air quality sensors can help employers choose the best
ventilation strategy. Displacement or personal ventilation systems combined with mixed
ventilation are an effective way to reduce cross-contamination. Therefore, advanced air
distribution can reduce exposure to airborne infectious diseases. Research on the impact of
crowd activities in transportation hubs on pollution transmission is still lacking. Due to the
high density of passengers, the PM concentrations caused by passenger activities are high.
The activities of occupants are diversified in transportation hubs, which makes it difficult
to quantify characteristic behavior. The resuspension of particles caused by occupant
movement is an important factor affecting the transmission of pollutants in crowded places.

7. Conclusions

This study reviewed the air quality and ventilation strategies in three types of highly
occupied public environments: transportation hubs, public transportation, and crowded
spaces (classrooms and offices). As concluding remarks, the following are relevant:

1. Air quality sensors should be distributed in densely crowded spaces to obtain a real-
time display of pollutant concentration data. When the pollution level is beyond
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the safe level, scientifically designed ventilation and filtration schemes should be
implemented to avoid the inhalation of highly concentrated pollutants.

2. Crowding causes high risks of exposure. Local exhaust strategies have been validated
for improving indoor air quality in transportation vehicles and buildings.

3. Due to the use of mixed ventilation in crowded spaces, particulate pollutants with
potentially infectious viruses and bacteria are rapidly diluted and spread. It is difficult
for ventilation systems to effectively control their transmission. It is necessary to
promote the wearing of masks in public places during periods of high influenza
activity or epidemics.

4. The current research mainly focuses on the characteristics of PM in subway stations
and railway stations. There is still a lack of research on viral spread related to air
quality in transportation hubs, subways, and buses. It is recommended that indoor
air quality be preprocessed in advance.

5. The pollutant transmission characteristics caused by crowd activities in crowded
spaces have not been well studied. Occupant activities (passenger flow) have a great
influence on pollutant transport in transport hubs, which is mainly manifested in
particle resuspension.
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