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Abstract: In recent decades, precast concrete buildings have undergone significant development,
attracting considerable academic attention to their mechanical performances. Unlike cast-in-situ
buildings, precast buildings are assembled on site by connecting precast components using me-
chanical devices or on-site casted joints, which makes the connections particularly important for
overall structural performances. This study presents a comprehensive review of the mechanical
performances of precast buildings, with a specific focus on various types of connections and their
structural properties. This study reviews the mechanical performances of building connections using
dry, wet, and/or hybrid methods between pre-manufactured components, e.g., beam–column joints,
wall–panel connections, and column/wall–foundation connections. Both experimental and numeri-
cal investigations are reviewed. The paper provides a valuable reference regarding the mechanical
performances of precast concrete buildings.

Keywords: precast concrete building; mechanical performance; dry/wet/hybrid connection;
beam–column joint; wall–panel connection; column/wall–foundation connection

1. Introduction

Precast concrete buildings are constructed by assembling pre-manufactured com-
ponents, such as beams, columns, and shear walls, using connections on site. In recent
decades, precast buildings have become increasingly widely used due to their extraordinary
advantages, e.g., efficient construction, reduced labor requirements, easier quality control,
lower environmental dependency, and reduced pollution [1]. As a result, precast concrete
buildings have garnered attention from the academic community.

Precast buildings require careful consideration in structural engineering due to the
fact that their mechanical performances are different from those of cast-in-place buildings
under extreme loading conditions, e.g., earthquakes and hurricanes. It is difficult to ensure
a precast building with the same integrity as the cast-in-situ buildings, because failures may
develop along connections to components. While Architectural Design Codes such as ACI
550 and EN 13369 provide guidance for the design and construction of precast structures,
they cannot provide an assurance of the safety of precast buildings during earthquakes.
The unsatisfactory presence of connections in critical positions can lead to brittle failure or
even the progressive collapse of the precast buildings [2]. For example, during the L’Aquila
earthquake in 2009, structural failures were observed due to insufficient anchorage against
forces at connections, which was caused by the absence of mortar infilling [3], further
resulting in shed beam connections failing and elements around steel dowels losing support.
The survey conducted on the 2011 earthquake in Turkey [4] found that connections that lack
moment-resisting capacity can cause joint damage and result in the collapse of a structure.
During the Emilia earthquake in 2012, the sliding frictions at connections caused significant
damage, leading to a loss of support for the horizontal structural components [5]. Therefore,
it is essential to guarantee connections with adequate load-bearing capacities. Moreover,
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the rapid pace of technological advancements and the utilization of high-performance
materials have rendered the existing engineering codes inadequate for addressing current
scenarios, which make it necessary to conduct research on their mechanical performances.

To date, there has been a considerable amount of research on connections for precast
building. The connections can be broadly categorized into three types based on their
construction methods, i.e., dry connections, wet connections, and hybrid connections. Dry
connections utilize mechanical fasteners and connectors to join components together, which
enables fast construction. Wet connections, on the other hand, use cast-in-situ materials to
connect components, which provides superior integrity for precast buildings and can even
match the integrity of cast-in-situ buildings. Hybrid connections possess the advantages of
dry and wet connections, enabling faster construction while maintaining superior integrity.
Additionally, these connections provide enhanced long-term mechanical performances.

Furthermore, the details of the connections vary based on their particular location.
For example, when it comes to beam–column joints, construction is highly complex due to
factors such as reinforcement bending, embedding, and overlapping. As a result, stress
distribution and cracking are intricate. A well-designed joint is crucial in order to ensure
sufficient bending and shear capacities. In contrast, wall–panel connections have relatively
simple constructions, and their stress distribution and cracking are also less complex,
which makes them easier to analyze. The column/wall–foundation connections exhibit
similarities with beam–column joints, but are subject to the highest levels of stress in
structures. Reinforcing the connections between columns/walls and foundations is often
required in order to maintain the safety of a structure.

This paper summarizes the dry/wet/hybrid connections of the beam–column joints,
wall–panel connections, column/wall–foundation connections, and the structural per-
formances of precast buildings. Both experimental and numerical studies pertaining to
mechanical properties are summarized, which provides a useful reference for the study of
precast buildings.

2. Dry Connections of Beam–Column Joints

The beam–column joint is a critical component of precast buildings that has garnered
significant academic attention. This is because the joint plays a pivotal role in ensuring the
integrity of a structure during earthquakes. Additionally, its intricate construction makes it
the most demanding aspect of the building process.

Over the past decade, researchers have proposed various beam–column joints and
have aimed to enhance the mechanical performances of the structures. This section provides
a review of dry connections, which typically employ mechanical fasteners and connectors
to join different structural components. Dry connections have attractive merits, as they
enable the rapid assembly of precast components by eliminating the need for a curing
time, thus enabling fast construction. Dry connections facilitate faster modular offsite
constructions, thanks to their quick assembly and ability to be dismantled easily. In
addition, their mechanical nature enables their easy disassembly and reusability in other
structures. However, since dry connections do not establish a monolithic bond between
precast elements, the integrity of the structure may be reduced. Researchers have proposed
various design proposals to find a connection type with enhanced mechanical performances,
aiming to achieve a comparable mechanical performance to cast-in-situ joints. Each of
the proposed dry connection types was tested to evaluate their mechanical properties,
including their load-bearing capacity, stiffness, durability, seismic resistance, and other
relevant factors.

2.1. Dry Connections Using Steel Plates and Bolts

One commonly used dry connection method involves utilizing pre-embedded steel
plates and bolts to connect beams and columns. Ye et al. [6] used I-sectional steel plates,
high-strength bolts, and cladding steel plates to create beam–column joints, as shown in
Figure 1. The test results indicated that the joint could mitigate the stress concentration.
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The bearing capacity and energy dissipation were found to be dependent on the length of
the cladding plates.
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Figure 1. Joint proposed by Ye et al. (reprinted from [6]).

Nzabonimpa et al. [7] used steel connectors embedded in the beam and column
to build the joint. They tested the joint in both RC frames and steel–concrete composite
frames, as shown in Figure 2. The beam end plates and the couplers cast in the column were
connected by high-strength bolts. The construction speed of this joint remains comparable
to that of steel frames.
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Figure 2. Joints for different types of buildings proposed by Nzabonimpa et al. (reprinted from [7]).
(a) Construction of reinforced concrete buildings, (b) construction of composite steel–concrete buildings.

Furthermore, a numerical study in which the finite element method (FEM) was used
was conducted in order to analyze the proposed joint, as shown in Figure 3 [8]. All the
components were modeled using solid elements. A hardening material was designated for
steel parts, and a damaged plasticity material was designated for concrete parts. Between
the two surfaces, the frictionless assumption was employed in the tangential direction,
while a rigid contact model with a linear penalty was utilized in the normal direction.
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Figure 3. FEM model for the joints proposed by Nzabonimpa et al. (reprinted from [8]).

In the work by Aninthaneni et al. [9], rebars were used to anchor the beam and the
column together. The rebars passed through the slotted holes in the column, with one side
secured to an end plate of the beam and the other side secured to the backing plate of the
column, as shown in Figure 4. Gussets or stiffeners were welded to the end steel plates to
increase their moment capacity and rotational stiffness. Based on the test results, the joint
had a stiffness comparable to that of a monolithic concrete joint.
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Figure 4. Joint proposed by Aninthaneni et al. (reprinted from [9]).

2.2. The Use of Other Devices Together with Steel Plates and Bolts

Moreover, some other devices can also be introduced in dry connections. By incor-
porating dampers between the steel plates, the energy dissipation capacity of the joint
can be enhanced. Additionally, by connecting the steel plates for different components
using hinge pins, hinge joints can be created. Yang et al. [10] proposed a rotational friction
dissipative joint for the purpose of dissipating energy, as shown in Figure 5. A friction pad
was fixed between the column connector and beam connector using pre-tensioned bolts and
a pin. This joint provided simple details, adjustable performances, and desirable seismic
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performances. Its nonlinear behavior was determined by the frictional hinge. The material,
quantity, and geometric properties of the friction pads or the pretension load of the bolts
can adjust the frictional hinge. According to the test, the rotational load–displacement
relationship of the joint demonstrates its ability to exhibit ideal elastoplastic behavior.
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view.

Li and Qi [11] used steel connectors equipped with dampers, lugs, and high-strength
hinge pins in the joints, as illustrated in Figure 6. Perforated steel plates were used as
dampers, which were connected to steel plates. The proposed steel joint provided several
benefits, including sufficient initial stiffness and an excellent capacity for energy dissipation.
Experimental tests confirmed that this joint could ensure the plastic hinge occurring in the
beam, and exhibited a better hysteretic performance, higher energy dissipation, and greater
ductility than a monolithic joint.

2.3. Dry Connections Using Corbel and Dowels

An additional option involves the use of corbels to support beams on columns.
Zhang et al. [12] utilized a corbel, as illustrated in Figure 7. The beams were connected to
the column using connectors, dowel bars, and high-yield reinforcement bars. This joint
was easy to assemble and disassemble, allowing for efficient component upgrading and re-
placement. According to the tests, the failure modes of the joint satisfied the strong-column
weak-beam principle.

Some researchers [13–15] have tested corbel-connected beam–column joints, and used
lap-splice bars to connect the T-section beam and column, as illustrated in Figure 8. The
experimental results showed that the potential plastic hinge was formed at the beam ends
near the column faces, preventing the failures of the column and joint. Post-tension rebars
could enhance the connection strengths and stiffnesses under the cyclic inelastic loads that
simulated ground excitations during earthquakes.
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Additionally, the FEM model was also adopted to analyze the joint using a corbel.
Ding et al. [14] used solid elements to model bolts and steel plates while using linear truss
elements to model reinforcing bars. They simulated the dynamic responses of the joint in
order to analyze its mechanical performances under earthquake conditions. The model is
shown in Figure 9, as follows.
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Elsanadedy et al. [15] built a model of the specimen tested in their experiment. By
taking advantage of its symmetrical properties, the model was built in half, as shown in
Figure 10. Solid elements were used for modeling all the components, but rebars were
modeled using truss elements. The smeared crack model was designated for concrete.
The steel plates and angles at the beam–column connections were constructed using a
designated isotropic hardening material. The steel rebars were modeled using a piecewise
linear plasticity model.
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3. Wet Connections of Beam–Column Joints

This section reviews wet connections, which require the use of cast-in-situ materials
for connecting structural components. Wet connections cast concrete on site and use grout
sleeves to connect components. Sometimes, high-performance materials such as ECC
or UHPC are employed as substitutes for concrete in order to enhance the strength and
deformation capabilities of the joint. Unlike dry connections, wet connections avoid the
stress concentration phenomena caused by the presence of welding, bolts, or holes. In
addition, the use of cast-in-situ materials provides the structure with better integrity. For
wet connections, researchers are dedicated to optimizing the methods used to design mate-
rials and enhancing their properties in order to improve their mechanical and structural
performances, including their load-bearing capacity, durability, seismic resistance, and so
on. Furthermore, researchers are devoted to developing and refining simulation methods
that can be used to predict the performances of wet connections under various loading and
environmental conditions.

3.1. Wet Connections

Deng et al. [16] used cast-in-situ concrete to connect precast beams and bottom precast
columns, as shown in Figure 11. The longitudinal bars of the beam had a 90-degree hook,
which was intended to be cast in the joint. Steel sleeves were utilized to connect the
protruding steel from the joint, thereby connecting the upper column and the joint. In
different specimens, joints were cast using highly ductile fiber-reinforced concrete and
normal concrete in order to study the impact of material strength on the failure modes.
The test results showed that the utilization of highly ductile fiber-reinforced concrete
in precast concrete beam–column connections improved both their shear capacity and
damage-tolerance capacity significantly.
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Figure 11. Joint proposed by Deng et al. (reprinted from [16]).

To improve the shear capacity of the joint at the interface, Xue et al. [17] inserted shear
keys at the bottom of the upper precast columns and the top of the bottom core areas, as
shown in Figure 12. Moreover, Ultra-High Performance Concrete (UHPC) was used in the
study to enhance the integrity of the joint due to its high strength and durability, demon-
strating an effective method for improving the mechanical and structural performances of
the joint.
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Breccolotti et al. [18] used fiber-reinforced concrete to connect beams and columns
in the joint. A comparison was made between the structural behaviors of the joint and
a cast-in-situ joint, and comparable mechanical performances were found between the
two types of joints. Yan et al. [19] studied a joint with beams installed in two directions.
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Specifically, one beam was installed on the bottom column continuously, where the pro-
truding reinforcement from the bottom column passed through the pre-reserved holes of
the beam, as shown in Figure 13. High-performance grout was poured into the holes. In the
orthogonal direction, concrete was cast on site to connect the beams and column, where the
reinforcement bars were connected by sleeves. The upper precast column was connected to
the joint by using grouted sleeves. The test results showed that the joint exhibited good
seismic performance on par with that of cast-in-situ connections. Furthermore, the grout
sleeve, cast-in-situ region, and rebar holes were found to significantly impact both the
plastic hinge and the core regions’ seismic behaviors.
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Lv et al. [20] employed U-shaped beam shells at the end of precast beams to facilitate
construction, as shown in Figure 14. Additionally, the mechanical behavior of the joint
was investigated and compared to joints without U-shaped beam shells. They conducted
quasi-static cyclic experiments to evaluate its load-bearing capacities, such as its strength,
stiffness, ductility, capacity for energy dissipation, and cracking propagation. Their study
indicated that the mechanical and structural performances of the joints with and without
U-shaped beam shells were similar.
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Gou et al. [21] conducted further research on the use of U-shaped beam shells by
utilizing ultra-ductile, low-shrinkage Engineered Cementitious Composite (ECC), as shown
in Figure 15. The use of ECC effectively controlled the drying shrinkage while preserving
the high ductility and multi-cracking characteristics. Partially substituting concrete with
low shrinkage ECC can notably enhance the seismic performance and damage tolerance of
beam–column joints, while also simplifying reinforcement details in the joint zone.
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Figure 15. Joint proposed by Gou et al. (reprinted from [21]). (a) precast LSECC/RC composite beam
and (b) beam-column assemblage.

For the wet connections, researchers have also developed some numerical methods
to predict their mechanical performance. However, because the integrity of the joint is
compatible with the monolithic joint, their numerical simulation method is also similar.
Feng et al. [22] utilized FEM to analyze the specimens in their experiment. The beams were
manufactured using a U-shaped beam shell, as illustrated in Figure 16. The numerical
models were divided into four parts, i.e., precast beams, precast columns, cast-in-situ
concrete, and an interface layer. Solid elements were used to model the components, except
for reinforcement bars, which were modeled using truss elements.
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By using FEM in a parametric study, Xu et al. [23] studied the mechanical properties
of the joint, including the load-carrying capacity, deformation capacity, plastic hinge length,
and rotation caused by bond slip. Li et al. [24,25] used constant-stress solid elements to
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model the concrete and interface layer and used beam elements called Hughes–Liu elements
to model the sleeves and rebars. They compared the dynamic responses of monolithic
and precast concrete joints under impact loads. In addition, parametric analyses were
performed, in which factors such as the impact energy, the inclination angle of the drop
weight, and concrete strength were considered.

3.2. Study of Grouted Sleeves

In wet connections, the grouted sleeve is the most commonly used device to splice
steel bars. The mechanical performance of grouted sleeves is of significant importance in
ensuring the quality of the joint. Many researchers have conducted in-depth research on
this device via experiments or numerical simulations. In general, grouted sleeves can be
divided into half-grouted sleeves and full-grouted sleeves.

Firstly, the research is summarized on half-grouted sleeves. Half-grouted sleeve
connections are designed using a half-threaded end to facilitate the connection of threaded
rebars. Meanwhile, the other rebar extends into the sleeve and is fixed by filling the
remaining space with grouted material. Yuan et al. [26] conducted a study on the tensile
properties of half-grouted sleeve connections, as shown in Figure 17. Additionally, they
proposed a simple analytical model to predict the load-carrying capacity of specimens for
the structure. The test showed that three distinct failure modes occurred in the experiment,
namely rebar fracture, bond failure, and thread failure. The ultimate tensile capacity was
determined as the mode with the lowest load-carrying capacity among the three failure
modes observed.
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Figure 17. Half-grouted sleeve (reprinted from [26]).

Ma et al. [27] investigated the mechanical properties of semi-grouting sleeves via
pull-out tests. Varying parameters were studied, which included the steel bar diameter,
anchorage length, and grouting material strength. The results showed that increasing
the steel bar diameter led to an increase in the ultimate bearing capacity. Xu et al. [28]
tested 126 half-grouted sleeve connection specimens to examine the influence of various
defects on the bond behaviors, e.g., grouting, longitudinal, circumferential, and inclined
defects, based on which a bond stress–slip constitutive relationship was proposed. The
study indicated that the defect level of insufficient grouting impacts the bond properties
and failure modes, while the grouting configuration has little effect. A 30% volume ratio
was crucial for determining the bonding properties, with different failure modes occurring
below and above this threshold. As the volume ratio increased, the peak bond stress
decreased. Zhang et al. [29] studied the mechanical properties of half-grouted sleeves
under varying temperatures. The experiment was conducted using a static testing method.
The results showed that the bond strength between the grout and rebar decreased with
higher temperatures.

On the other hand, the literature on full-grouted sleeves is reviewed. In the case of
full-grouted sleeves, the rebars of two components are effectively connected to the sleeve
by filling it with grouted material. Guo et al. [30] studied the mechanical performances
of fully-grouted sleeve connectors with grouting defects by testing 42 specimens. The
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configuration of the specimen is shown in Figure 18. The results presented two failure
modes, i.e., the fracture of the reinforcing bar and the anchor failure of reinforcing bars.
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Yin et al. [31] tested a series of fully-grouted specimens to investigate the dynamic
behaviors of joints under varying rates of dynamic loading. The results showed that an
increase in the loading rate increased both the bearing capacity and maximum strain.
Lu et al. [32] investigated the mechanical properties of grouted sleeves with wedges and
grouted sleeves with wedges and threads under uniaxial tension. The results revealed that
the tensile capacity of the splice increased with the increasing diameter of the anchorage
segment of the spliced bar, as well as the length and slope of the wedge at both ends of the
sleeve. The addition of threads to the sleeve did not significantly improve its tensile capacity.
Qiu et al. [33] investigated the use of UHPC grout for the sleeve connection of assembled
precast elements. The study involved testing precast specimens with UHPC-grouted sleeve
connections under flexural loading. The results indicated that the failure modes of the
specimens with the UHPC-grouted sleeve connections were comparable to those observed
in cast-in-situ specimens. Additionally, Liu et al. [34] investigated fully-grouted sleeves by
using both experimental and numerical methods. In their study, only rebar fracture failure
was observed, with significant grout fracture appearing at the end of the grouted sleeve.
The grouted sleeve demonstrated perfect elastic behavior and good splice performance
under uniaxial tension.

4. Hybrid Connections of Beam–Column Joints

The following section reviews hybrid connections, which are a type of structural
connection that combines the features of wet and dry connections. Hybrid connections
have superior long-term mechanical performances compared to dry and wet connections,
because the presence of the grout or concrete material used in wet connections can help
to reduce the stress concentrations that appear in dry connections, while using a limited
amount of this material can reduce the effects of shrinkage and creep. In addition, hybrid
connections can provide overall structural integrity compared with dry connections. The
combination of mechanical fasteners and cast-in-situ materials enables the connections
to achieve high-load-carrying capacities, while also allowing structures to absorb and
dissipate more seismic energy during earthquakes. On the other hand, hybrid connections
have a higher construction speed compared with wet connections. Since the use of me-
chanical fasteners and connectors helps to provide immediate stability and strength to the
connection, construction can proceed before the cast-in-situ concrete has been fully cured.
Hybrid connections can also provide improved control over tolerances and alignments
compared to wet connections.

A study by Lacerda et al. [35] investigated a hybrid joint in which the precast beams
were supported by corbels attached to the column. The vertical gap between the corbel
and beam was filled with a layer of grout, aiming to provide cushioning, as depicted in
Figure 19. The continuity reinforcement bars of the beam were designed to enhance the
integrity of the joint. According to the test results, the joint demonstrated satisfactory load
capacities, surpassing the ultimate load predicted by conventional designs for reinforced
concrete rectangular sections.
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Yuksel et al. [36] conducted a study on a hybrid connection in industrial buildings.
In this connection, beams were welded to steel plates that were set on the corbel of the
column. The joint and the topping of the beam were filled with concrete on site, as shown
in Figure 20.
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Figure 20. Joint proposed by Yuksel et al. (reprinted from [36]).

Breccolotti et al. [37] proposed a hybrid joint, in which the beam ends were gradually
widened and two rectangular prismatic elements called “shoulders” were created. The
shoulders were positioned on the brackets of the column, and then fixed by pouring fiber-
reinforced concrete into the space between the shoulders, as shown in Figure 21. The use
of loop splices and cast-in-situ concrete with steel fibers improved the ductility of the wet
joint, while also ensuring high strength and simplicity in construction. Moreover, FEM was
adopted for the numerical study. Solid elements were used to model concrete, and truss
elements were used to model reinforcement bars. Since the joint exhibits excellent integrity,
no specific constraints were introduced in order to model the contact between the various
components.
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Fan et al. [38] proposed a similar hybrid joint using a U-shaped beam shell at the end
of the beam, supported on the corbels of the precast column, as shown in Figure 22.
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Certain hybrid connections have utilized more intricate construction techniques.
Ghayeb et al. [39] proposed a hybrid joint using steel couplers. According to the pro-
truding steel tubes and plates, the columns and beams were assembled and then cast
together. The lower column was connected to the beam using gusset plates and steel bolts,
while the upper column was connected using a steel tube and grouted steel couplers. Shear
links were also installed in the connection area. The remaining uncast areas of the joint
were filled using cast-in-situ concrete. The connection exhibited a good performance with
regard to strength, ductility, energy dissipation, and stiffness, as shown in Figure 23.

Esmaeili and Ahooghalandary [40] proposed a hybrid connection comprising a dry
type for the lower part and a semi-monolithic type for the upper part, as shown in Figure 24.
A steel box with a stiffener was utilized in the precast column to prevent out-of-plane
buckling. The beam comprised two segments, i.e., the lower precast segments and the
upper in situ segments. The precast portions were anchored to the concrete of the beam end
using headed studs. After installation, the upper part of the beam was cast. Its dimensions
were suitable for transportation and installation, making it practical for on-site assembly.
For this joint, seat plates were easy to assemble, without the need for tight tolerances to
achieve precise results in construction.

Zhang et al. [41] used connection steel plates, I-shaped steel connectors, and steel fiber
concrete to create the hybrid joint, as shown in Figure 25. The steel skeleton was embedded
in the precast column and fastened by high-strength bolts. Then, the concrete was cast
into the region. The joint displayed high strength, cumulative energy dissipation, and
minimized damage and stiffness deterioration, achieved via the deformation of weakened
flange cover plates to enhance energy dissipation and transfer failure to the connection
region.



Buildings 2023, 13, 1575 16 of 32

Buildings 2023, 13, x FOR PEER REVIEW 16 of 33 
 

Figure 22. Joint proposed by Fan et al. (reprinted from [38]). 

Certain hybrid connections have utilized more intricate construction techniques. 

Ghayeb et al. [39] proposed a hybrid joint using steel couplers. According to the 

protruding steel tubes and plates, the columns and beams were assembled and then cast 

together. The lower column was connected to the beam using gusset plates and steel bolts, 

while the upper column was connected using a steel tube and grouted steel couplers. 

Shear links were also installed in the connection area. The remaining uncast areas of the 

joint were filled using cast-in-situ concrete. The connection exhibited a good performance 

with regard to strength, ductility, energy dissipation, and stiffness, as shown in Figure 23. 

 

 

Figure 23. Joint proposed by Ghayeb et al. (reprinted from [39]). 

Esmaeili and Ahooghalandary [40] proposed a hybrid connection comprising a dry 

type for the lower part and a semi-monolithic type for the upper part, as shown in Figure 

24. A steel box with a stiffener was utilized in the precast column to prevent out-of-plane 

buckling. The beam comprised two segments, i.e., the lower precast segments and the 

upper in situ segments. The precast portions were anchored to the concrete of the beam 

end using headed studs. After installation, the upper part of the beam was cast. Its 

dimensions were suitable for transportation and installation, making it practical for on-

site assembly. For this joint, seat plates were easy to assemble, without the need for tight 

tolerances to achieve precise results in construction. 

Figure 23. Joint proposed by Ghayeb et al. (reprinted from [39]).
Buildings 2023, 13, x FOR PEER REVIEW 17 of 33 
 

 

Figure 24. Joint proposed by Esmaeili and Ahooghalandary (reprinted from [40]). 

Zhang et al. [41] used connection steel plates, I-shaped steel connectors, and steel 

fiber concrete to create the hybrid joint, as shown in Figure 25. The steel skeleton was 

embedded in the precast column and fastened by high-strength bolts. Then, the concrete 

was cast into the region. The joint displayed high strength, cumulative energy dissipation, 

and minimized damage and stiffness deterioration, achieved via the deformation of 

weakened flange cover plates to enhance energy dissipation and transfer failure to the 

connection region. 

 

Figure 25. Joint proposed by Zhang et al. (reprinted from [41]). 

Ketiyot and Hansapinyo [42] incorporated a T-section steel insert into a beam 

embedded in precast beam ends. The protruding part of the T-section steel could be seated 

on the edge of the column, and the depth of the top beam was reduced to enable lap-splice 

bars to connect both beams via the beam–column joint. Finally, concrete was poured into 

the joint to complete the assembly. One advantage of incorporating T-section steel inserts 

into precast beam–column joints is the enhanced seismic performance it provides. 

Furthermore, researchers have investigated the use of dampers in precast buildings 

and examined the energy dissipation characteristics of buildings equipped with such 

devices during seismic events. For instance, Morgen and Kurama [43] examined the use 

of friction dampers in unbonded post-tensioned precast concrete buildings. These 

Figure 24. Joint proposed by Esmaeili and Ahooghalandary (reprinted from [40]).



Buildings 2023, 13, 1575 17 of 32

Buildings 2023, 13, x FOR PEER REVIEW 17 of 33 
 

 

Figure 24. Joint proposed by Esmaeili and Ahooghalandary (reprinted from [40]). 

Zhang et al. [41] used connection steel plates, I-shaped steel connectors, and steel 

fiber concrete to create the hybrid joint, as shown in Figure 25. The steel skeleton was 

embedded in the precast column and fastened by high-strength bolts. Then, the concrete 

was cast into the region. The joint displayed high strength, cumulative energy dissipation, 

and minimized damage and stiffness deterioration, achieved via the deformation of 

weakened flange cover plates to enhance energy dissipation and transfer failure to the 

connection region. 

 

Figure 25. Joint proposed by Zhang et al. (reprinted from [41]). 

Ketiyot and Hansapinyo [42] incorporated a T-section steel insert into a beam 

embedded in precast beam ends. The protruding part of the T-section steel could be seated 

on the edge of the column, and the depth of the top beam was reduced to enable lap-splice 

bars to connect both beams via the beam–column joint. Finally, concrete was poured into 

the joint to complete the assembly. One advantage of incorporating T-section steel inserts 

into precast beam–column joints is the enhanced seismic performance it provides. 

Furthermore, researchers have investigated the use of dampers in precast buildings 

and examined the energy dissipation characteristics of buildings equipped with such 

devices during seismic events. For instance, Morgen and Kurama [43] examined the use 

of friction dampers in unbonded post-tensioned precast concrete buildings. These 

Figure 25. Joint proposed by Zhang et al. (reprinted from [41]).

Ketiyot and Hansapinyo [42] incorporated a T-section steel insert into a beam embed-
ded in precast beam ends. The protruding part of the T-section steel could be seated on the
edge of the column, and the depth of the top beam was reduced to enable lap-splice bars
to connect both beams via the beam–column joint. Finally, concrete was poured into the
joint to complete the assembly. One advantage of incorporating T-section steel inserts into
precast beam–column joints is the enhanced seismic performance it provides.

Furthermore, researchers have investigated the use of dampers in precast buildings
and examined the energy dissipation characteristics of buildings equipped with such
devices during seismic events. For instance, Morgen and Kurama [43] examined the use of
friction dampers in unbonded post-tensioned precast concrete buildings. These dampers
enabled large nonlinear lateral displacements while minimizing damage to the structure,
but they may also result in unacceptable levels of displacement. However, since damper
devices are not the main object of this work, only a brief description is provided.

5. Wall–Panel Connections

This section reviews the literature on wall–panel connections. Shear walls are signifi-
cant structural elements in high-rise buildings that require reliable connections between
wall panels. Sufficient connection strength and stiffness are necessary to ensure the safety of
the overall structure. As shear walls have unique characteristics, wall–panel constructions
also differ from beam–column joints. Wall–panel connections can also be roughly divided
into dry, wet and hybrid connections.

For dry connections, Malla et al. [44] conducted experiments to test the mechanical
performances of wall panels connected by bolts for dry connections. Their specimens
were assembled using steel components such as blocks, gusset plates, steel bolts, and
nuts, as shown in Figure 26. In addition, their study utilized the FEM method to analyze
the specimens, predominantly relying on tetrahedral meshing for the model while im-
plementing hexahedral meshing for the areas situated near the joints. In the FEM model,
concrete was designated using a cracking model and steel was designated using an isotropic
hardening model.
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Sun et al. [45] utilized H-shaped steel connectors and high-strength bolts to connect
adjacent wall panels, as shown in Figure 27. The system comprised top and bottom steel
units that were cast onto the wall, with the vertical steel bars welded to the inner side
of the steel units before casting. Precision bolt holes were positioned on the side plates
of these units. Through these bolt holes, pre-tensioned bolts were installed in order to
attach the walls to the H-shaped steel connector. This system offered the benefits of
maximizing the structural integrity against seismic loads and maintaining a favorable
assembly efficiency. Bolted connection installations and mounting tolerances should adhere
to technical specifications for high-strength bolt connections in steel structures.
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Naserpour et al. [46] employed steel plates and bolts in order to connect precast wall
panels, as shown in Figure 28. Frames were incorporated into the system to improve its
mechanical strength and durability. In addition, the FEM method was utilized in order
to analyze the system, implementing solid elements with a damaged plastic model for
concrete and an isotropic and kinematic hardening elasto-plastic material model for steel
members. The demountable shear walls with a rocking column system utilized a jointed
rocking base connection in order to protect the columns at their bases. Additionally, a
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set of slit steel dampers attached via bolting enhanced the lateral resistance and energy
dissipation capacity of the column system by absorbing energy through flexural–shear
deformation resulting from the column’s rocking movement.
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Figure 28. Connections proposed by Naserpour et al. (reprinted from [46]).

Similarly, Naserpour et al. [47] examined a rocking wall–frame system. The wall panels
at both ends were connected to the surrounding frame using unbonded pre-tensioned
tendons, while O-shaped steel dampers were applied to the corners of these walls. The
frame was adopted to improve the mechanical performances of the system. Steel angles
were used to connect the beams and columns, as well as the columns and foundation.
Meanwhile, FEM was used to conduct numerical analysis. The models utilized solid
elements to model the components. Surface-to-surface contact constraints were assigned
between the wall and beam, as well as the wall and foundation. The constraints allowed for
gap opening while providing hard contact during compression along the normal direction,
with a designated friction mechanism in the tangential direction.

Wet connections are also commonly used for connecting wall panels. For instance,
Peng et al. [48] used grouted sleeves to connect wall panels, as shown in Figure 29. The
system comprised a cylindrical steel sleeve with an infusion pipe and a checking pipe,
embedded in the bottom zone of the shear wall. After erecting and fixing the precast
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wall in the field, all longitudinal steel bars in the lower shear wall were inserted into their
respective steel sleeves in the upper shear wall. Finally, the mortar was poured into the steel
sleeve through the infusion pipe until it overflowed from the checking pipe. To achieve
rapid construction, longitudinal steel bars in the precast shear walls could be connected
using a steel sleeve embedded with mortar.
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Figure 29. Connection proposed by Peng et al. (reprinted from [48]).

In addition, Ling et al. [49] took an additional step to enhance the bond performance
of the sleeve by welding four steel bars onto the inner surface of the pipe at each end. This
provided an interlocking mechanism that enabled the grout to effectively bond with the
spliced bars. Meanwhile, Solak [50] employed epoxy to anchor the connections. According
to the results, the ductility of the specimens with the connections was significantly lower
than the monolithic specimens. Lu et al. [51] proposed a joint-connected beam that utilized
cast-in-situ concrete to create connections, enabling continuous reinforcement splicing, as
shown in Figure 30. The reinforcing bars in the restrained edge members extended from the
walls and were bent to form closed rectangular steel rings. Closed rectangular stirrups were
inserted into the spacings of the steel rings where the top and bottom walls overlapped.
Longitudinal bars were utilized to create the framework of the boundary beam. After
setting up support templates, concrete could be poured into the joint connected beam to
connect the top and bottom walls.
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6. Column/Wall–Foundation Connections

Structures are subjected to significant forces at their foundations, making the perfor-
mances of connections at this location crucial. The connections between columns/walls and
foundations are especially important for preventing collapse. Poor connections between
columns and foundations can compromise the lateral stability of a structure, increasing its
vulnerability to damage from lateral forces such as wind or seismic events. Therefore, the
connections to the foundation are usually strengthened to ensure the safety and stability
of the structure. This section provides a review of the study on the connections to the
foundation.
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Nascimbene and Bianco [52] proposed hybrid bolted connections, in which a connector
called column shoe was used. The device is shown in Figure 31. According to the column
shoes, the load could be transformed between the column and foundation. The use of nuts
and washers to fasten anchor bolts provides a means of regulating the vertical position,
height level, and connection fixity of the column. The column–foundation connections
used in this system exhibited a reliable stiffness and bearing capacity, as well as the strong
capacity for energy compared to conventional systems.
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Figure 31. Connections proposed by Nascimbene and Bianco (reprinted from [52]).

Metelli et al. [53] used the grouted sleeve to connect the column and foundation. The
steel bars were extended from the column and anchored in the foundation. Steel plates and
studs were designed to locate the column steel bars. During the assembling phase, threaded
bars were tightened to the bushes of the column, and leveling steel plates were fixed to the
longitudinal bars. The bars were then connected to the studs embedded in the foundation
using leveling plates for stability during grout injection and curing. Once installed, steel
formwork was added at the column base and high-strength grout was cast to fill the gaps
at the column–footing interface. The connection utilizing threaded high-strength steel bars
in the grouted sleeves exhibited favorable behaviors, including strength, ductility, cyclic
stability, and energy dissipation.

On the other hand, wet connections are more commonly used for column/wall–
foundation connections. Liu et al. [54] investigated the use of grouted sleeves for the
column–foundation connection. The study involved testing two cast-in-situ specimens
and four precast specimens. The results indicated that the sleeve connections provided a
satisfactory lateral deformation capacity and ductility for the precast specimens. However,
the strengths of the sleeve connections were found to be lower than those of their cast-in-situ
counterparts. Xu et al. [55] utilized ECC to improve the strengths of the column–foundation
connections. The grouted sleeves were embedded in ECC to connect the protruding steel
bars of the foundation. In addition, there was a 20 mm in height grouting layer on the
footing of the column, as shown in Figure 32.
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Figure 32. Connection proposed by Xu et al. (reprinted from [55]).

Aragon et al. [56] used a connection that comprised a single bar embedded in ei-
ther a tapered or straight steel sleeve, with optional surface corrugations. In addition,
they used a finite element model to simulate a wall–foundation connection, as shown in
Figure 33. In the model, the energy-dissipating bar in each connection was modeled using
a discrete uniaxial truss element, with a multi-linear stress–strain relationship for steel
defined for each energy-dissipating bar based on the data from the experimental program.
The grout inside the connector sleeve was modeled using three-dimensional four-node
stress/displacement solid elements and the fracture–plastic concrete constitutive material
mode. The model utilized the bond stress versus slip relationship to investigate the slip of
the energy-dissipating bar from the grout.
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Figure 33. Connections proposed by Aragon et al.: (a) rendering; (b) grout; (c) grout–sleeve interface;
(d) foundation (reprinted from [56]).

Similarly, Ding et al. [57] used three-dimensional finite element models to validate
the failure modes and mechanical behaviors of specimens under cyclic loading, as shown
in Figure 34. Solid elements were used to model the concrete, while truss elements were
used to model the reinforcement bars. The grouted sleeves were simplified as cylindrical
steel shells and modeled using four-node quadrilateral surface shell elements with reduced
integration. Four-node bond–slip elements were also adopted to consider the influence
of bond-slips between rebars and concrete. Additionally, the damage plastic model was
used to model concrete. The recovery factor was used to describe the changes in stiffness
and strength that occur when the stress state shifts between tension and compression. The
grouted sleeve was assigned elastic material, which was embedded in concrete. Surface-
to-surface contacts were used to simulate the contact behaviors of the precast column and
precast footing.
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Torra-Bilal et al. [58] used solid elements with a damage plastic model to simulate
concrete. For steel angle–column and steel rods–angles interactions, surface-to-surface
interaction was used with hard contact for normal behavior and penalty friction for tan-
gential behavior. Tie constraint was adopted for the interaction between the steel angle
and the beam, as well as some connections between the steel angle and the embedded steel
plates in the beam. Each reference point was connected to equivalent point nodes using a
tie connection. The embedded region command was used to simulate the interactions of all
reinforcement bars with the beam and column while adding a bond–slip effect to all defined
embedded regions of reinforcement. Sookree et al. [59] devised an embedded horizontal
dry connection that utilizes a square-shaped ring connector, high-strength hex nuts, flat
washers, and grout for assembling precast concrete shear walls. They also simulated the
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wall–column joint using FEM, with a contact constraint to connect the wall and foundation.
Furthermore, a parametric study was conducted on the thickness and grade of the ring
connector, the grade of the vertical steel bars, the number of ring connectors, and the
diameter of the vertical steel bars at the connection joints. This simulation method was also
used by Du et al. [60]. They introduced a novel self-centering concrete shear wall system
that incorporates slip–friction energy-dissipating devices at the wall base, as shown in
Figure 35. During earthquakes, the corner joints of the walls are open and close, causing the
slip–friction connectors to generate frictional energy dissipation. Moreover, they created a
precise numerical model to evaluate the seismic performance of the self-centering concrete
wall and also analyzed the impact of different design parameters on the performance of the
wall based on the numerical model.
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7. Study on Performances of Structural Connections

After presenting various connections between the components, this section provides
a comprehensive overview of the research on entire precast buildings, focusing on the
dynamic responses of the entire structures during earthquakes. Researchers have conducted
numerous experimental tests to explore the propagation of localized damage throughout
the entire structure. Additionally, these studies also examined the effects of redistributing
resisting forces on the structural dynamic responses. While research on a structural level is
less common compared to the component level, some researchers have achieved promising
outcomes.
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Priestley et al. [61] tested a frame–shear wall building to simulate a five-story precast
concrete building at a 60% scale. The shear wall was arranged in one direction. Damage
in the wall direction was minimal, with only minor spalling and fine cracking observed,
whereas damage in the frame direction was less than expected for an equivalent reinforced
concrete structure subjected to the same drift levels. The prestressed frame performed
particularly well, with only minor damage to the covering concrete and fiber grout pads.
In contrast, the non-prestressed frame showed more damage in gap connections, and beam
rotation about the longitudinal axis was noted at high levels of response displacements.
The low residual drift was a characteristic of the unbonded prestressing system used to
provide strength in the wall direction, which was also apparent in the prestressed frame.
Simple analytical models provided accurate predictions of the responses of the building.
Dal Lago et al. [62] tested a three-story full-scale precast building, where floor-to-beam
connections were connected by a large diameter dowel (see Figure 36). The roof utilized
dowels for diaphragm actions, while the lower stories used welded connections to increase
the stiffness. The columns had corbels for beam connections. The structure remained
elastic under a PGA of 0.15 g, but severe damage and failure occurred at the frame–wall
connection when subjected to a PGA of 0.3 g.
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Zhang and Li [63] proposed the rapid installation of dry energy-dissipating connec-
tions in their study, as shown in Figure 37. This type of connection used inclined soft
steel strips and steel plates pulled by high-strength bolts. To facilitate energy dissipa-
tion, aluminum plates were placed between the soft steel strips and the shear wall. The
horizontal connections employed steel plates anchored on the concealed columns and
tensioned by high-strength bolts. Aluminum plates were used here to achieve friction
energy dissipation. Additionally, four inclined braces were installed perpendicularly to
the shear wall to ensure out-of-plane stiffness. A bolted connection was utilized between
the precast wall and the slab. They tested two 2/3-scale precast shear wall structures, i.e.,
one with the proposed dry energy-dissipating connection and the other with a cast-in-situ
concrete connection, to compare their seismic capacity. The results validated the proposed
dry energy-dissipating connection, which had a similar structural performance to the
traditional cast-in-situ concrete connection.
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Figure 37. Experiment conducted by Zhang and Li (reprinted from [63]).

He et al. [64] proposed a dry bolt connection using an enclosed angle steel frame to
prevent local concrete damage caused by high stresses, as shown in Figure 38. A full-scale
two-story precast concrete structure model was tested, consisting of four floor slabs, two
roof slabs, and eight wall panels connected via the method they proposed using steel plates
and high-strength bolts. The results demonstrated that the precast concrete sandwich
wall–panel structure exhibited high lateral stiffness, large safety margins, and high strength
reserves.
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Guo et al. [65] proposed a low-rise precast wall–panel structure using bolts, as shown
in Figure 39. The system utilized dry connections between concrete walls to create a box
structure that transferred both gravity and lateral loads. A 1/2-scaled three-story model
was constructed for the shaking table test. The findings indicated that high-strength bolt
connections are crucial for initial stiffness and dynamic responses. The structure exhibited
minimal damage, with most components remaining elastic. The sliding of the floor slab
was significant, while precast walls showed minimal lateral deformations. Fragility curves
were derived for different damage limit states, indicating a low probability of structure
collapse. It is recommended bolt connections are improved and the structural system is
optimized in order to reduce acceleration responses and potential economic losses.
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When it comes to numerical simulations on the structural level, the methods used to
simulate column–foundation and wall–panel connections are quite similar. In structural
analysis, refined models are often difficult to work with due to their high computational
requirements. Structural elements, such as shell and beam–column elements, are commonly
used in the modeling. Structures assembled using wet connections, which behave similarly
to cast-in-situ structures, do not require the special treatment of connections and can be
simulated using conventional techniques for cast-in-situ structures. However, structures
assembled using dry connections behave differently. In the following section, some simple
structural elements for dry connections are presented. El-Sheikh et al. [66] proposed two
models, i.e., a fiber model and a spring model, to simulate the dry connections, as shown in
Figure 40. In the fiber model, rigid end zones are employed to model the joint panel zone
that is connected to the beam–column elements. A zero-length spring element is introduced
to capture the panel zone shear deformations. Furthermore, truss elements and two rigid
links are utilized to simulate unbonded post-tensioning steel. The spring model utilizes a
zero-length rotational spring element to simulate the nonlinear behaviors of the unbonded
post-tensioned precast beam–column connection, replacing the fiber and truss elements
used in the fiber model.
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Kim et al. [67] proposed two types of nodes to simulate the “beam growth” in precast
buildings, as shown in Figure 41. In the first model, the joint is modeled using seven
nodes, while the connecting section of the beam is modeled using four nodes. Six nodes
are rigidly linked to the central node C4 for the joint. The model does not account for joint
deformations. To transfer the moment using axial forces, a tri-linear model was used to link
the beam and column at the interface. Node B2 and Node C2 are linked with horizontal
springs, as well as Node B3 and Node C3. Additionally, very stiff vertical springs at Nodes
B1–C1 are utilized to transfer the shear force across the interface in the vertical direction.
The second model simplifies the first model by replacing three nodes and elements with a
rotational spring at the interface. Similarly, Ozden and Ertas [68] also utilized a tri-linear
idealization to model the interface of the beam–column connection.
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For the wall–panel connections, Xu et al. [69] utilized structural elements in their
simulations, as shown in Figure 42. The shear wall specimens were numerically simulated
using a multi-layer shell element model. Truss elements were used at the boundaries to
simulate grout-filled sleeve connections.

Buildings 2023, 13, x FOR PEER REVIEW 29 of 33 
 

Kim et al. [67] proposed two types of nodes to simulate the “beam growth” in precast 

buildings, as shown in Figure 41. In the first model, the joint is modeled using seven 

nodes, while the connecting section of the beam is modeled using four nodes. Six nodes 

are rigidly linked to the central node C4 for the joint. The model does not account for joint 

deformations. To transfer the moment using axial forces, a tri-linear model was used to 

link the beam and column at the interface. Node B2 and Node C2 are linked with 

horizontal springs, as well as Node B3 and Node C3. Additionally, very stiff vertical 

springs at Nodes B1–C1 are utilized to transfer the shear force across the interface in the 

vertical direction. The second model simplifies the first model by replacing three nodes 

and elements with a rotational spring at the interface. Similarly, Ozden and Ertas [68] also 

utilized a tri-linear idealization to model the interface of the beam–column connection. 

 

 

Figure 41. Joint element proposed by Kim et al. 

For the wall–panel connections, Xu et al. [69] utilized structural elements in their 

simulations, as shown in Figure 42. The shear wall specimens were numerically simulated 

using a multi-layer shell element model. Truss elements were used at the boundaries to 

simulate grout-filled sleeve connections. 

 

Figure 42. FEM model proposed by Xu et al. (reprinted from [69]). Figure 42. FEM model proposed by Xu et al. (reprinted from [69]).



Buildings 2023, 13, 1575 29 of 32

Cao et al. [70,71] examined the dynamic and probabilistic seismic performances of
precast prestressed-reinforced concrete frames with a particular emphasis on the influence
of slabs. They employed the FEM method to analyze the structural behaviors under seismic
conditions, evaluated the dynamic responses, and conducted probabilistic analyses. The
results indicated that slabs significantly affect seismic performances, with better perfor-
mances in moderate damage states but worse performances in severe states. In addition,
Zhang et al. [72] proposed a multiscale modeling strategy for wet connection joints in the
Finite Element Method (FEM). The model incorporated wet-type features such as grouted
splice sleeves, bond–slips, and concrete interfaces. The implementation of the approach
was realized in OpenSees. Tests were conducted at both the member and structural levels
to compare and verify the effectiveness of their method in predicting the seismic behaviors
of precast RC beam–column connections. According to the results neglecting the joint panel
effect in higher stories, the computational efficiency improved by approximately 50% for
ground motions.

8. Conclusions

This study presents a review of the mechanical and structural performances of pre-
cast buildings, with a particular focus on connections due to their significant impact on
the precast building system. Various types of connections used in precast buildings are
introduced, including dry/wet/hybrid connections for beam–column joints, wall–panel
connections, and column/wall–foundation connections. Both experimental and numerical
methods are discussed regarding the assessment of their structural performances. Dry
connections can enable rapid construction but cannot provide integrity as monolithic build-
ings can, prompting the development of new connecting methods to improve the integrity.
Wet connections, on the other hand, offer better structural integrity by using cast-in-situ
materials to connect components. Hybrid connections combine the features of dry and wet
connections, providing both improved mechanical performances and a faster construction
speed. Moreover, the paper also reviews the structural-level performances of precast build-
ings, which exhibit excellent seismic performances when possessing reliable connections.
The paper serves as a valuable resource for quickly referencing precast concrete buildings.
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