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Abstract: Fabrication of ultra-high-performance concrete (UHPC) is costly, especially when commer-
cial materials are used. Additionally, in contrast to conventional concrete, numerical procedures
to simulate the behaviour of ultra-high-performance fibre-reinforced concrete (UHPFRC) are very
limited. To contribute to the foregoing issues in this field, local materials were used in the fabri-
cation process, while accounting for environmental issues and costs. Micro steel fibres (L: 13 mm,
d: 0.16 mm, and ft : 2600 MPa; L : length, d: diameter, ft : tensile strength) were used in 2% volumetric
ratios. Compression and indirect tests were carried out on cylindrical and prismatic beams according
to international standards. To further enrich the research and contribute to the limited simulation
data on UHPFRC, and better comprehension of the parameters, numerical analyses were performed
using the ATENA software. Finally, nonlinear regression analyses were employed to capture the
deflection-flexural response of the beams. The results were promising, indicating cost-effective fabri-
cation using local materials that met the minimum requirements of UHFRC in terms of compressive
strength. Furthermore, inverse analysis proved to be an easy and efficient method for capturing the
flexural response of UHPFRC beams.

Keywords: fibre-reinforced concrete; finite element modelling; mechanical properties UHPC; UHPFRC

1. Introduction

Ultra-high-performance concrete (UHPC) with its exceptional mechanical characteris-
tics has gained much attention in the civil engineering industry. The addition of various
fibres resolves the major brittleness issue of UHPC and tailors it for specific applications
based on the type and amount of fibre used in its mix design.

Fibres can be categorized into two categories: man-made and natural fibres, which are
sub-divided into two and three categories as follows:

Man-made fibres: (1) inorganic: Basalt- Carbon- Glass- Steel, and (2) Polymeric: Nylon-
Polyethylene (PE)- Polypropylene (PP)- Polyvinyl alcohol (PVA).

Natural fibres: (1) Plant: Coir- Sisal- etc., (2) Animal: Silk- Wool, and (3) Mineral:
Asbestos- Wollastonite. Tables 1–3 show the mechanical properties of fibres, their cost, and
performance when incorporated into cementitious composites.

Discontinuous steel fibres are the most widely used ones. The main purpose of
adding steel fibres is to enhance both ductility and toughness. Straight steel fibres have
higher contact angles, which make the fibres hydrophobic and hence result in weaker
interfacial/matrix bond. For this reason, steel fibres with various geometries are used to
counter this disadvantage.
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Conflicting studies exist in the literature which, on one hand, emphasize the better
performance of smooth micro steel (MS) fibres, while others have concluded that deformed
steel fibres outperform MS fibres in almost all mechanical properties [1]. Higher aspect
ratios and volumetric contents contribute to the improvement of the mechanical properties,
except for the compressive strength, for which a minimal increase in compressive strength
has been reported.

Man-made fibres are mainly supplied in masses, while it is common to express the
performance of fibre-incorporated cementitious composites in volumetric ratios. Steel, PET
(Polyethylene terephthalate), glass, basalt, and acrylic fibres are cheaper than PVA, among
which steel and glass fibres offer satisfactory mechanical performance according to the
available literature [2]. On a volumetric basis, nonetheless, steel, and basalt fibres offer
higher densities and are therefore less favourable.

Table 1. Mechanical properties of various fibres [3].

Fibre Type Diameter
(µm)

Length
(mm)

Density
(g/cm3)

Young’s
Modulus

(GPa)

Elongation
(%)

Melting/Decomposition
Temperature (◦C)

PVA 39 8–12 1600 42.8 6 230
PBO * 13 6 5800 180–270 2.5–3.5 650

Carbon 6.8–20 3–18 525–4660 33–268 0.8–2.4 1150–1200
Steel 150–1000 13–25 350–2000 210 2–4 >1425
PE 24–38 12 1950–3000 39–100 3.1–8.0 150

Basalt 15–16 12 2230–4840 85.8–89.0 2.85–3.15 >1400
Glass 6–20 3–6 2000–4000 70–80 2.0–3.5 >1400

Aramid 12 6 3400 74 4.5 500
PET 38 12 1095 10.7 22 255
PP 12–41 6–12 850–928 2.7–9.0 7.3–30 160

Nylon 8 19 966 6 18 220

* PBO: Poly (p-phenylene-2, 6-benzobisoxazole).

Table 2. Cost and performance of different fibres [3].

Fibres Crack Width (µm) Cost Other Information

Aramid 10–30 High Structural, low ductility
Basalt - Low Structural, low ductility

Carbon - High Structural, low ductility. Self-sensing
Glass - Low Structural, low ductility
Nylon >100 Comparable to PVA Structural, high ductility
PBO 10–30 High Structural, low ductility. high strength
PE 50–150 High Structural, high ductility. High strength

PET 150–200 Low Non-structural
PP 70–260 Low Structural, high ductility. low strength

PVA <100 - General structural applications
Steel 10–30 High Structural, low ductility. High strength

Note: Cost is with reference to that of PVA.

Table 3. Performance of steel fibres incorporated in cementitious composites [3].

Ref.

Geometrical Parameters Volume
(%) Tensile Performance

Length
(mm)

Diameter
(µm) Shape Strength

(MPa)
Strain Capacity

(%)

Li et al. [4] 6–20 150 Straight 2.3 8 0.49
Wille et al. [5] 13–30 200, 300, 380 Twisted-Hooked 2.5 12.4 0.49
Naaman [6] 30 300 Twisted 2 13.6 1.25

Maalej and Li [7] 6 150 Straight 1 4 Quasi-brittle
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Table 3. Cont.

Ref.

Geometrical Parameters Volume
(%) Tensile Performance

Length
(mm)

Diameter
(µm) Shape Strength

(MPa)
Strain Capacity

(%)

El-Tawil [8] 30 300, 380 Twisted-Hooked 2 8.7 0.52
Tran and Kim [9] 30 300, 375 Twisted-Hooked 1 6 0.50

Kanakubo [10] 15 200 Straight 2 12.4 0.09
Naaman and Homrich [11] 30 500 Deformed-Hooked 12 28 1.00–2.00

Fibre-reinforced UHPC, also known as ultra-high-performance fibre-reinforced con-
crete (UHPFRC), demonstrated exceptional performance under various loadings such
as compressive [12–14], tensile [15–17], shear [18–20], flexural [21–23], torsional [24,25],
fatigue [26,27], and seismic loadings [28,29], as well as in terms of durability [30,31],
freeze-thaw [32,33], corrosive environments [34,35], cryogenic temperatures [36,37], ele-
vated temperatures [38,39], fracture parameters [40,41], etc. UHPFRC can also be used for
strengthening purposes [42,43] and repair applications [44,45]. From another perspective,
using high amounts of cementitious materials, or low water-to-cement ratios as low as 0.16,
can lead to higher autogenous shrinkage [46]. Additionally, the addition of fine products
such as quartz powder can lead to higher prices [47]. Researchers have added coarse ag-
gregates with a size between 5–19 mm to UHPC to achieve the desired properties without
using much cementitious materials or fine aggregates [48–51]. Given the afore-mentioned
favourable properties of UHPC, extensive research has been conducted to characterize its
behaviour under various loading scenarios, some of which will be briefly discussed.

Studies by Yoo et al. [52] on UHPFRC beams with various types of straight, end-
hooked, and twisted steel fibres in overall volumetric ratios of 2% showed that short straight
fibres (L : 19.5 mm length, d: 0.2 mm diameter) exhibited the highest flexural strength
equal to 50.9 MPa, making them a more cost-effective choice compared to hybrid micro
and macro fibres. In the study conducted by Meng et al. [53], normal curing conditions
led to a compressive strength of 120 MPa, and the cost per 1 m3 per flexural strength gain
was $4.1–$4.5. A life cycle assessment carried out by Dong et al. [1] on a bridge revealed
that the long-term performance of UHPFRC is much better and much more beneficial than
conventional concrete, with a reduction in CO2 emissions by 48%.

The objective of this research is to assess the flexural properties of UHPFRC beams
with 2% micro steel fibre (by volume), which is the most common reinforcing material for
UHPCs. The research aims to draw an analogy between the so-called flexural properties
under different types of loading, namely the four-point bending test (4PBT) and three-
point bending test (3PBT). Additionally, a comparative cost analysis is conducted for the
production of UHPFRC. It is also noteworthy that numerical simulation of UHPFRC beams
is limited in the literature, which enables us to carry out extensive sensitivity and parametric
analyses, which will be discussed in the subsequent sections.

2. Experimental Program
2.1. Materials

Type II Portland cement, sieved silica fume with a maximum size of 239 nm,
polycarboxylate-based (Type F) superplasticizer [54], silica sand no finer than sieve No. 200
(0.074 mm), and micro steel fibres (L: 13 mm, d: 0.16 mm, and ft : 2600 MPa; L : length,
d: diameter, ft : tensile strength) were used in 2% volumetric ratios. Figure 1 shows the
superplasticizer, silica fume, silica sand, and steel fibres used in this study. According
to ASTM C494/C494M [54], Type F superplasticizer can reduce the need for water by at
least 12% and has a yellow colour. The material constituents are given in Table 4, the mix
composition of materials is given in Table 5, and the specifications of the steel fibre are
given in Table 6.
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Figure 1. (a) Superplasticizer, (b) Silica fume, (c), Silica sand, (d) Steel fibres, and (e) Silica flour.

Table 4. Material composition of cement and silica fume.

Cement Silica Fume

CaO 61.33 0.38
Al2O3 6.40 0.25
SiO2 21.01 96

Fe2O3 3.12 0.12
MgO 3.02 0.10
SO3 2.30 -

Specific surface area (cm2/g) 3413 200,000
Density

(
g/cm3 ) 3.15 2.10

Table 5. Mix composition.

W/B
Unit Weight (kg/m3)

Water Cement Silica Fume Silica Sand Silica Flour Superplasticizer

0.2 160.3 788.5 197.1 867.4 236.6 52.6 *

* Superplasticizer includes 30% solid (15.8 kg/m3) and 70% water (36.8 kg/m3).

Table 6. Properties of steel fibre.

Type L (mm) D/W (mm) ft (MPa) E (GPa)

Straight micro steel (MS) 13 0.16 2700 200
Note: L: Length; D/W: Diameter/Width; ft (MPa): Tensile strength; E: Modulus of Elasticity.
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2.2. Mixing Procedure

Silica fume and silica sand were initially mixed for 5 min before the addition of cement
and silica flour. Thereafter, mixing continued for another 5 min before the addition of water
in a gradual manner. To improve flowability, superplasticizer was added gradually as well.
Steel fibres were added manually as the mixer mixed the composition. The process of the
experiment is presented in Figure 2. Specimens were removed from the formwork after 1
day and were cured under normal conditions in water.
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Figure 2. (a) Mixer, (b) Gradual addition of water, and (c) Gradual addition of steel fibres.

2.2.1. Compression Tests

Displacement-controlled loading with a rate of 1 mm/min was applied to
100 × 100 × 200 mm cylindrical UHPFRs according to ASTM C39/C39M [55]. A minimum
of 175 MPa value was achieved based on the average of three test specimens, which satisfies
the regulations of UHPC [56]. The cracking pattern of the cylindrical specimen is shown in
Figure 3. Due to the presence of MS fibres, the integrity of the specimen has been completely
maintained, with cracks parallel to the specimen only in regions close to the loading surface.
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2.2.2. Flexural Tests

Regulations of ASTM C1609/C1609M [57] were adopted to apply flexural loading to
eight UHPFRC beams with dimensions of 100 × 100 × 500 mm (clear span: 450 mm), as
shown in Figure 4. Linear variable displacement transducers (LVDT) were used to monitor
deflection values. The average value of the load-deflection response was presented in
this study.
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3. Numerical Analysis

The ATENA software [58], a finite element software specifically developed for concrete
structures, was used within the GID software [59] environment as a module to simulate
the UHPFRC beams. This software has been extensively used to simulate normal-strength
concrete [60,61] and fibre-reinforced concrete [62–64].

With the knowledge that testing UHPFRC specimens under direct tension is challeng-
ing, inverse analysis is a good alternative to derive the direct tensile curve from flexural
loading test. This method has been previously used by the authors [65–69]. The main
concept relies on finding the mid-span deflection values, where differences between the
numerical curve and the experimental curve are noticeable and updating the initially de-
fined tensile stress-tensile strain curve based on the user’s experience at the strain values
corresponding to the above-mentioned deflections. Correlation between fracture strain and
deflections is possible by monitoring crack mid-span crack widths using Equation (1):

ε =
w
Lt

(1)

where ε is the fracture strain; w is the crack width and Lt is the characteristic length.
For further information, the reader is referred to the ATENA documentation [58]. The
Cementitious2User material model was used to simulate concrete, while a bi-linear strain
hardening material model was used for steel supports and steel plates with a thickness of
20 mm. Newton-Raphson method was used to solve the nonlinear set of equations.

It is noteworthy that the tensile strength and modulus of elasticity of UHPFRC were
estimated based on the equation given by Wille et al. [5] and Suksawang et al. [70] as
expressed in Equations (2) and (3), where ft is the tensile strength, Vf is the volumetric
ratio of steel fibres, and E is the modulus of elasticity of UHPFRC:

ft = −
(

Vf − 4
)2

+ 14 (2)

E = 4700λ
√

f ′c λ =
(

1 + 0.7Vf
)

/2 (3)
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Tensile function and the comparison of experimental and numerical results are given
in Figure 5, which indicates favourable agreement between them.
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4. Results and Discussions
4.1. Sensitivity Analyses

Various sensitivity analyses were carried out on different parameters to recognize
the key ones, including compressive strength, mesh size, tensile strength, and modulus of
elasticity. The following sections discuss these analyses in detail.

4.1.1. Mesh Size

Four different mesh sizes, namely 16.7 mm, 12.5 mm, 10 mm, and 8.3 mm, were chosen
to investigate the effect of mesh size on the flexural response of the beam and verify mesh
convergence. The result is shown in Figure 6a,b. It is observed that a finer mesh leads to a
stiffer flexural response. By increasing the mesh size from 16.7 mm–8.3 mm, the response
became 1.49%, 6.25%, and 8.52% stiffer. This issue can be justified by the fact that according
to the documentation of ATENA [58], finer mesh means smaller characteristic length values,
which in turn result in smaller crack widths according to Equation (1). Therefore, the
response becomes stiffer.
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4.1.2. Compressive Strength

The results given in Figure 6c show that variation in compressive strength has almost
no effect on the response of the beam. This can be largely explained by the high compressive
strength of UHPCs. As shown in Figure 7, the compressive stresses are well below the
compressive capacity of the beam. Therefore, variations in this parameter practically make
no changes to the overall response.
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4.1.3. Modulus of Elasticity

Changes in the modulus of elasticity, as given in Figure 6d, lead to a stiffer response
of the beam in both the linear and nonlinear branch of the flexural load-deflection curve.
Increasing the modulus of elasticity from 1.0 E to 1.25 E led to an increase of 1.02%, 2.01%,
2.96%, 3.75%, and 4.62%, respectively. However, it is observed that the effect of the modulus
of elasticity is insignificant.

4.1.4. Tensile Strength and Crack Width

It is obvious from Figure 6e that the tensile strength has the most notable effect on the
overall response of the beam, and as expected, it contributes to higher peak load values
with its increase. Improvements to 8.19%, 15.75%, 32.25, 40.90%, and 50.25% were observed
when the tensile strength varied between 9–14 MPa. It is worth mentioning that Figure 7
further corroborates the result for the sensitivity of the compressive strength, as even higher
compressive stresses are well below the compressive strength of the concrete.

4.2. Size Effect, Fracture Energy, and Failure Pattern in 4PBTs

Two cases were considered for the size effect: variations in height (150 mm, 200 mm)
(2) and variations in the overall size of the beam (200 × 200 × 1000 mm,
300 × 300 × 1500 mm, and 400 × 400 × 2000 mm). As expected, variation in geometrical
parameters significantly affect the flexural load-deflection response of the beams. For a
given length and width, variation in the depth of the beam contributes to a 130% and
295% increase in the peak load, occurring at higher deflections (Figure 8a). Similarly, an
overall increase in size by 2, 3, and 4 times increased the peak load by 280%, 730%, and
1267%, respectively (Figure 8b). Deflection softening occurred more rapidly in beams with
larger effective depths. The underlying reason is the larger amount of energy released upon
cracking of concrete. For overall variations in geometrical dimensions, the variations were
less pronounced.

A similar but less pronounced trend was also observed for the increasing trend of
fracture energy at L/30 clear-span ratio of the beams (Figure 9). It should be highlighted
that comparing Figures 9c and 10 shows that more than 90% of the energy absorption takes
place in the post-peak branch, which denotes the ductility of UHPFRC beams. Accord-
ingly, according to Figure 11, an increase in the tensile strength of UHPFRC results in the
improvement of fracture energy, with the rate decreasing as the tensile strength increases.
Figure 12 presents the scanning electron microscopy (SEM) images of fibres in the concrete
mix; it can be seen that failure is mainly characterized by the fracture of fibres, as their
cross-section is oblique or deformed.
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Figure 10. Effect of depth variation on peak flexural load-deflection values of UHPFRC beams under
4PBT.
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4.3. Three-Point Bending

Three-point bending tests were also simulated based on the setup given in Figure 4.
They have been presented for comparative purposes with their 4PBT counterpart. Unlike
4PBT, where the maximum moment occurs within a large region, allowing for easier com-
puter simulation and uniform stress, in 3PBTs, the localization of cracks occurs under the
applied load (Figure 13). As a result, the absorbed energy is greater in 4PBT. Analogies
between flexural load-deflection response under 3PBT and 4PBT, as well as the sensitivity
analysis of tensile strength, are given in Figure 14, which is comparable to its 4PBT counter-
part, as well as its stress contour (Figure 15). Energy absorption values for 3PBT are given
in Figure 16a. Similarly, energy absorption values at different clear-span ratios, size effect,
and under 3PBT are given in Figure 16b. It can be seen that energy absorption values are
lower than those of 4PBTs, and owing to the localization of crack under 3PBT.
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4.4. Modelling of Size Effect

Three well-known size effect models given in Equations (4)–(6) [71–73] were used to
account for the size effect in test specimens, where β, d0, A, B, α are regression parameters,
and f is the tensile strength.

σN =
β f√
1 + β

β =
d
d0

(4)

σN = F
√

A + B/d (5)
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σN =
β f√
1 + β

+ α f (6)

Figure 17 clearly shows the size effect in beams (i.e., the stress reduces with an increase
in size) with higher scatter of data in 4PBT since maximum stress is scattered within a larger
area rather than a small region. Furthermore, parameter d0 in Equation (4) is a measure
of brittleness. Based on Table 7, it is observed that values of d0 for 3PBT are lower than
its 4PBT, which means under 3PBT, the specimen shows a more brittle manner, as energy
absorption values give credence to it.
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Table 7. Fitting parameters size effect theories.

Sample
ID Bazant and Chen [71] Kim and Yi [73] Carpinteri and Chiaia [72]

Parameters B d0 R2 B d0 α R2 A B R2

4PBT 2.146 772.514 0.960 2618.805 1,390,098 −2616.700 0.9753 231.460 10,326.170 0.815
3PBt 2.473 424.179 0.941 14.241 0.390 1.3648 0.981 220.435 19,266.440 0.979

4.5. Cost Analysis

The cost efficiency of UHPFRC was evaluated by analysing the respective price of its
constituents, considering that long-term performance should be the criterion rather than
the short-performance. According to Dong [1], UHPFRC is resilient and cost-effective in
the long term. The overall cost of UHPFRC is given in Table 8. For an analogy, short fibres
cost 3.554 €/kg in Korea, while ultra-short fibres utilized by Skazlic’ and Bjegović [74] and
fibres used by Walraven [75] amounted to 3.223 €/kg. Based on Table 8, the overall cost of
UHPFRC is lower in Iran.
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Table 8. Cost of each component of UHPFRC.

Material Price per kg (Rial)

Portland Cement 3500
Silica Sand 1000
Silica Fume 12,000

Quartz Powder 15,000
Superplasticizer 200,000

Steel Fibre 250,000
Water Almost free

300,000 Rials = 1 €.

5. Conclusions

This research presents experimental and numerical studies on eight UHPFRC beams
fabricated using non-propriety materials. The beams were tested under 4PBT, and their
results were compared with those obtained through numerical analysis under 3PBT. An
inverse analysis approach was employed to obtain the tensile function of the UHPFRC
beams. After validation, numerous parametric analyses were carried out to determine the
key parameters that govern the behaviour of UHPFRC beams. Based on the results, the
salient outcomes of the present study are as follows:

− UHPFRC shows satisfactory tensile strength (i.e., 10 MPa) and ductility, provided by
the inclusion of MS fibres. Failure of specimens was characterized by the rupture of
MS fibres.

− The inverse analysis approach was adopted, which successfully captured the flexural
response of the beams.

− Finer mesh sizes result in stiffer responses of the beams; however, the impact
is insignificant.

− The model was insensitive to variations in compressive strength, as the compressive
strength of the specimen is well greater than the compressive stress sustained by
them. Increasing the modulus of elasticity by 25% contributed only 4.62% to the load
capacity. On the other hand, tensile strength is the most important parameter, as
its variation led to notable changes of up to 50.25% when changed from 10 MPa to
14 MPa in the flexural load-deflection response of the beams.

− Size variations led to significant changes in the response of the beams, with the energy
absorption being the most sensitive to the changes. Doubling the effective depth led to
an improvement of 295% in the load capacity, while doubling the overall dimensions
led to an increase of 280%.

− Linear relationships (with R2 over 0.96) exist between the energy absorption parameter
and variations of tensile strength, depth, and overall size of the beam.

Size effect was observed with depth variations as the stress value showed a declining
trend. Additionally, it was observed that specimens show a more brittle manner under
3PBT compared to 4PBT.

Recommendation for Future Works

The authors recommend conducting further research on UHPFRC beams with var-
ious types of fibres and dosages, larger overall dimensions matching structural dimen-
sions, and different span-to-depth ratios to deepen the knowledge regarding the perfor-
mance of UHPFRC in terms of various parameters and the feasibility of its application in
real-world applications.
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