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Abstract: In order to solve the equilibrium problem related to compaction degree, structural integrity
of skid resistance, and skid resistance of asphalt wearing layer on a concrete bridge deck, the
influence of rolling mode on compaction degree, structural integrity of skid resistance, and skid
resistance performance was analyzed according to compaction curve characteristics, image processing
technology, and laser method from the compaction mechanism and temperature control of rolling
equipment. The results showed that the compaction degree and rolling times of an SMA-13 asphalt
wearing course on the bridge deck could be characterized by a logarithmic model, and the model
parameters had clear physical significance. Compared with the vibratory roller, the oscillation roller
could achieve a greater and more stable compaction degree of the mixture and maintain a better
density, compaction degree, and void ratio after 5 times of oscillation rolling. The pavement wear
characteristics were extracted by a digital image method. The results showed that with the increase
in rolling times, the rolling temperature decreased gradually, and the wear rate of surface texture
increased significantly. The multiscale evaluation of pavement antiskid performance by a laser
method showed that the surface structure gradually decreased and tended to be stable (1.2 mm) with
the increase in rolling times of the vibratory roller, the microscopic texture density increased with the
increase in rolling times, and the proportion of acute angle (<90◦) in the peak angle of the surface
texture profile decreased with the increase in rolling times. The SMA-13 asphalt wearing course on
the bridge deck was rolled by a vibratory roller for 6 times, so as to achieve the balance of compaction
degree, structural integrity, and skid resistance.

Keywords: SMA-13 asphalt pavement on bridge decks; compaction; rolling process; image processing
techniques; wear rate; construction depth; microtexture density; contour crest angle

1. Introduction

With the increasing trend of “large flow, large-scale vehicle, heavy load and overload”
in the world [1,2] and the frequent occurrence of extreme weather conditions, asphalt
pavement should meet higher performance requirements. Due to the “more coarse aggre-
gates, more mineral powder, more asphalt and less fine aggregates” characteristics of Stone
Mastic Asphalt(Hereinafter referred to as SMA), the mixture has a good skeleton. At the
same time, there is enough asphalt mastic to fill the skeleton voids. Better stability against
high and low temperature, good water stability, durability, and surface function make its
application more and more widespread.
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For 4 cm SMA pavements on bridge decks, vibratory compaction tends to crush the
aggregate, destroy the integrity of the surface coarse aggregate, result in a loose mixture
and reduced compaction, and increase the vertical vibration of the bridge deck and the
longitudinal pushing of the pavement, resulting in bond failure at the paving layer interface
and damaging the levelness [3]. For the bridge itself, it can increase the vertical vibration of
the deck, which can seriously cause internal damage to the bridge structure and reduce
bridge safety [4]. However, because the use of static rolling to compact the bridge deck
pavement can be too inefficient and heat dissipation is too fast, the required degree of
compaction cannot be achieved. Meanwhile, a very high compaction speed will reduce
the compaction quality of asphalt mixture. Inadequate compaction will directly affect the
concrete void ratio, compaction, and compressive tensile strength and other physical and
mechanical performance indicators, making the road surface seep underwater. Meanwhile,
it is prone to early damage such as potholes and looseness under the action of vehicle
dynamic load, which is an important cause of early water damage of pavement [5–8]. A
1% increase in the compaction of asphalt mixtures can effectively increase the load-bearing
capacity by 10% to 15%, and good compaction quality is extremely critical to prolong the
service life of the road [9,10].

SMA mixtures have a higher viscosity due to the use of high levels of modified
bitumen, resulting in a higher temperature sensitivity than AC asphalt mixes. At the same
time, the cement concrete of the bridge deck system has a high specific heat capacity and
a high heat absorption capacity, so that sufficient excitation force needs to be applied to
the asphalt pavement in a relatively short time. At present, the rolling equipment is being
updated very rapidly, and the development of large-tonnage, high-frequency rollers in the
market has significantly improved the compaction effect of asphalt pavements [11]. There
is also increasing research into the compaction process and the method of evaluating the
compaction effect of asphalt pavements. Wang Siqi et al. reviewed the most advanced
and practical nondestructive testing methods for pavement density measurement [12].
Yan Tianhao et al. proposed a new method to evaluate the compaction of asphalt mixes
based on the physical mechanism of compaction [13], and Geng Qin studied the effects
of vibration duration, compaction degree, compaction temperature, and semirigid base
modulus [14]. However, in recent years, it has been found that the abrasion damage to the
surface texture caused by the rolling process has gradually become an engineering problem
that cannot be ignored. Generally speaking, excessive compaction can easily lead to broken
pavement aggregate corners, but the compaction of individual sections of drilled cores
that does not exceed a hundred also appears as a large area of “white spots”. Early corner
wear of newly paved pavements directly reduces the skid resistance and durability of the
pavement, which has a very negative impact on traffic safety [15–17].

For the SMA asphalt surface pavement of a cement concrete bridge deck, balanced
pavement compaction and skid resistance is the key to solve the problem of road wearing
course construction quality. Early research on the influence of compaction methods was
limited by technology, and the evaluation of compaction quality mainly focused on the
macroscopic volume parameters and mechanical properties of the mixture specimens [18].
In this paper, the compaction effect of pavements under different rolling processes was
analyzed through the construction of the upper layer of a highway bridge section, and the
effect of construction temperature and the rolling process on the degree of wear of the struc-
ture was carried out according to digital image processing. A multiscale evaluation related
to the skid resistance of the pavement was carried out based on the laser method. Taking
into account compaction, structure wear, and skid resistance, a reasonable compaction
process was proposed to provide guidance on compaction technology for the construction
of SMA wearing courses on bridge decks.
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2. Mechanism
2.1. Oscillating and Vibratory Roller Working Mechanism

The compaction process of the asphalt mixture is from a loose plastic state to a high
modulus viscoelastic solid state. The vertical force of the roller overcomes the cohesion
and shear stress between the particles of the hot mixture asphalt mixture and rearranges
them to a relatively stable state. An in-depth study showed that compaction forming
is the key to playing the role of lubricating the free asphalt in the mixture, which can
effectively reduce the compaction work required to overcome the embedded interlocking
forces between coarse aggregates [19]. During the rolling process, the aggregate particles
within the mixture are spatially displaced and rotated until a new balance is achieved
between the internal forces (interaggregate friction and asphalt cohesion) and external
forces (mechanical rolling action) of the aggregate particles.

In fact, vibratory compaction is a method of compaction that combines vibration and
rolling, thus stimulating the horizontal vibration of the pressed material particles. The
main working device is the vibratory wheel. The principle of operation is that the central
drum drives the eccentric shafts on both sides by means of synchronized gearing. The shaft
is equipped with eccentric blocks, and the rotation of the eccentric shaft drives the eccentric
blocks to generate centrifugal force, thus making the vibratory wheel vibrate.

When the angular velocity of the eccentric shaft is constant, the excitation force couple
varies in a sine wave. The vibratory wheel vibrates under the action of the varying force
couple, generating vibration waves in its forward and backward directions (see Figure 1a),
producing alternating shear strains on the compacted material, so that the vibratory wheel
produces a “rubbing” effect on the ground. At the same time, its own gravity causes a
vertical displacement of the compacted material. As a result, the compacted material is
resonated and displaced by the combined effect of the alternating force coupling of the
vibratory wheel and the vertical static load, rearranging the position of the particles in the
material and reducing the voids between the particles, thereby improving the compaction
of the material.
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Figure 1. Mechanism diagram of vibratory roller. (a) Oscillating pressure wave. (b) Mechanism of
action between the vibratory roller and the asphalt mixture.

Figure 1b shows the mechanism of action between the vibratory roller and the asphalt
mixture. As can be seen from Figure 1b, the alternating moment M applied to the vibratory
roller causes the roller to be subjected to an alternating torque, forming a vibration wave in
the front-to-back direction. The compacted asphalt mixture is subjected to an alternating
shear strain by the oscillating excitation force, where G is the axial load on the compaction
wheel and F is the horizontal thrust. F1 is the force on the aggregate particles of the asphalt
mixture in the horizontal direction, F2 is the force in the vertical direction, and the combined
force of F1 and F2 is F. The horizontal excitation force of the vibratory roller and the vertical
static load of the vibratory roller act together on the Matsuura asphalt mixture. The shear
strength of the asphalt mixture is destroyed under the action of the alternating shear stress,
and the bond between the particles of the mixture is weakened to make them rearrange
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and become more dense to achieve compaction of the asphalt mixture in both horizontal
and vertical directions.

Vibratory rollers rely mainly on the vibrating rollers to provide the excitation force.
During operation, the vibration shaft rotates at high speed to drive the eccentric block to
generate an excitation force that produces an impact on the road surface. Each impact of the
vibratory roller generates a vibration wave (see Figure 2) on the material being compacted,
causing the resting material particles to enter a state of motion. When the frequency of
the excitation force is close to the inherent frequency of the pavement, the pavement will
resonate, the fine aggregate will fill the void between the skeleton, the coarse aggregate
will move between each other to reduce the void between the particles, and the mixture
will be compacted to increase the internal frictional resistance between the aggregates, thus
increasing the bearing capacity of the pavement.
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2.2. Skid Resistance Mechanism of Tires on Asphalt Pavements

The asphalt mixture meets the compaction requirements and is the basis for the
durability of the pavement. On this basis, the skid resistance of the pavement seriously
affects the safety of traffic. In recent years, 3–4 years after the opening of the highway,
the construction depth of the asphalt surface layer, friction coefficient, and other skid
resistance indicators begin to decline rapidly, even lower than the current standard, which
not only causes a large loss of construction funds, but also has a negative social impact and
poses a serious threat to the concept of safe, convenient, and efficient development of the
transportation industry.

During braking and sliding, the car tire creates a cutting action on the surface of the tire
due to the microconvex body of the asphalt pavement aggregate surface being embedded
into the tread rubber to cause a greater stress concentration. This microcutting action is
similar to the ploughing phenomenon on metal surfaces. The resistance generated by the
microcutting action constitutes another part of the frictional component of the tire sliding
process, as shown in the figure.

In the field of pavement research, results have shown that the important factors
affecting the skid resistance of asphalt pavements are microtexture, macroscopic charac-
terization, and material properties [20–24]. Material properties include the quality of raw
materials, type of grading, and others, which have great influence on the microtexture and
macroscopic characterization of asphalt pavements [25–27].

The mechanism of the skid resistance of asphalt pavements is the frictional force
generated by the mutual coupling between the wearing course and the vehicle tire, which
mainly includes adhesion, hindrance, and ploughing force [28–30]; see Figure 3 and Table 1.
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Table 1. Mechanisms of skid resistance of asphalt pavements.

Item Causes Influencing Factors

Adhesion Generated by microstructure
Road surface material characteristics,

speed of traffic, cleanliness of the
contact interface, etc.

Hindrance

Generated by macrostructure

Stone distribution patterns, degree of
tire deformation, etc.

Ploughing force Stone surface form, tire rubber
hardness, etc.

It is generally believed that the mechanism of the antiskid performance of asphalt
pavement is mainly the result of [24,30] the mutual contact and friction between the surface
texture (or texture) and the tire at different scales: the interaction of the tire with the surface
texture (convex and concave contours formed by coarse aggregate particles embedded in
each other) at a large scale (macroscopic), the interaction of fine aggregate particles or coarse
aggregate angles with the tire at a fine scale, and the contact between the microtexture of
the crushed surface of the coarse aggregate particles and the tire at a microscopic scale.

For SMA asphalt pavements, the mixture is characterized by a gap gradation. The
coarse aggregate skeleton plays a major role in achieving good high-temperature perfor-
mance while also forming an excellent pavement contour morphology: a rich skid-resistant
structure at the macroscopic scale, a certain amount of coarse aggregate angularity (fine
view), and a relatively more abundant exposed coarse aggregate fracture surface (micro-
scopic view).

3. Vibratory Compaction and Oscillatory Compaction Comparison Test
3.1. SMA-13 Asphalt Mixture Ratio Design

The hot bin aggregate particle size specifications were 11–16 mm, 6–11 mm, 3–6 mm,
and 0–3 mm; the blending ratio was 41%: 33%: 5%: 11%: 8.5%: 1.5%, and the synthetic
gradation is shown in Figure 4. An asphalt aggregate ratio of 6.1% was used, the fiber
content was 0.3% of the asphalt mixture, and SMA mixture performance test results are
shown in Table 2. SMA-13 indicates that the maximum nominal particle size of the asphalt
mastic crushed stone mix is 13mm. Hereinafter referred to as SMA-13 for this asphalt mix.
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Table 2. Performance test results for SMA-13 asphalt mixes.

Type of Test Specification
Requirement Test Results Evaluation

Void ratio (%) Between 3–4 3.6 Passed

Mineral gap rate (%) Max ≥17 17.3 Passed

Saturation (%) Between 75–85 78.9 Passed

Stability (KN) Max ≥6.0 11.81 Passed

Flow value (0.1 mm) Between 15–40 38.5 Passed

Residual stability (%) Max ≥80 93.9 Passed

Dynamic stability
(times/mm) Max ≥6000 9380 Passed

Permeability coefficient
(mL/min) Min ≤100 23 Passed

3.2. Test Program

In order to compare the variation of compaction density with rolling variables of
SMA asphalt mixes (around 4 cm) for bridge decks under different rolling processes, high-
frequency vibratory rollers (Hummer HD138) and vibratory rollers (Hummer HDO138V)
of the same tonnage (13t) were selected to roll the asphalt pavement at the same speed,
frequency, and amplitude. The compaction was measured with a non-nuclear density meter
at different compaction times. The compaction values of the asphalt pavement were then
calculated and calibrated by the core specimen for different rollers and different times, and
the compaction curves were plotted against times.

Two 50 m long test sections of an SMA-13 modified asphalt wearing course (loose
layer of approximately 5 cm, paved section of cement concrete bridge) were selected for
compaction tests using vibratory rollers. The tests were carried out with the optimum
frequency and amplitude set for each test. The compaction after each rolling was measured
with a non-nuclear density meter, and the number of rolling times was set to 10. The length
of the test section was 50 m, and the speed of the roller was controlled at 3–3.5 km/h to
ensure the compaction quality. Cores were drilled and sampled from the final compacted
surface texture to calibrate the compaction with a non-nuclear density meter.

FLIR handheld infrared cameras [31–33] were used to monitor the temperature of
asphalt mixture at different construction sites in real time. As the surfaces of objects
at different temperatures radiate infrared light outwards, thermal imagers are able to
convert the radiated energy into an electrical signal that is displayed as an image of the
temperature field [34]. An infrared imager was used to test and evaluate the temperature
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uniformity of the mixture at each stage of the construction process. To ensure that the
results are comparable, the thermal infrared imaging equipment used must be calibrated
with a mercury thermometer according to the following steps: (1) Handheld thermal
infrared imaging equipment with the lens oriented perpendicular to the unrolled SMA-13
asphalt pavement after paving (flat view), with a fixed lens height of approximately 1 m.
(2) Switch on the thermal infrared imaging equipment and record the temperature T1 of
the SMA-13 asphalt pavement, while the temperature T2 of the SMA-13 structural layer is
measured using a mercury thermometer inserted at a position approximately 2 cm inside
the pavement. (3) Correction value D = T1 − T2 for the detection of temperature at a height
position of 1 m in the flat view of a handheld thermal infrared imaging device. (4) Thermal
infrared imaging temperature calibration result T = TR + D, where TR represents the actual
temperature reading of the thermal infrared device, as shown in Figure 5.
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was basically close at all measurement points, with a drop of 9–14 °C compared with the 
arrival temperature. This indicates that due to the high specific heat capacity of the cement 
concrete bridge deck system, it conducts heat quickly, resulting in rapid heat dissipation 
from the asphalt mixture. Differences in the temperature distribution of the mixture in 
other construction sessions are related to the wind speed and the amount of solar radia-
tion during the testing process. The oscillatory compaction process is superior to the vi-
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100 °C after 10 times. 
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ture. (c) Temperature after rerolling. (d) Temperature after final rolling.

3.3. Working Temperature

The construction temperature was tested at different numbers of rolling times, and
the results are shown in Figure 6. As can be seen from Figure 6, the paving temperature
was basically close at all measurement points, with a drop of 9–14 ◦C compared with the
arrival temperature. This indicates that due to the high specific heat capacity of the cement
concrete bridge deck system, it conducts heat quickly, resulting in rapid heat dissipation
from the asphalt mixture. Differences in the temperature distribution of the mixture in
other construction sessions are related to the wind speed and the amount of solar radiation
during the testing process. The oscillatory compaction process is superior to the vibratory
compaction process in terms of temperature maintenance because the horizontal oscillation
effect fills the mastic gravel into larger pores on the surface, reducing the contact area with
air and reducing the rate of heat exchange. In both vibratory and oscillatory compaction,
the construction temperature drops to below 120 ◦C after 6 times and below 100 ◦C after
10 times.
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3.4. The Influence of the Rolling Process on the Size of the Compaction

Three representative measuring points were selected for each section, and the com-
paction of the measuring points after each compaction was measured using a non-nuclear
density meter in five directions. The cores are taken at the center of the measuring points,
and the raw data of the non-nuclear density meter are calibrated by determining the gross
bulk density of the core samples using the surface dry method, as shown in Figure 7.
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Figure 8 shows a comparison of the compaction changes between the oscillating and
vibrating rollers when rolling the SMA-13 bridge deck. The test results show that both
oscillatory and vibratory compaction can meet the theoretical compaction requirements,
while the compaction of the mixture reaches a relative peak after 5 times. Combined with
the temperature test results, the compaction increased by 10.5–11.4% after the first pass of
the vibratory roller and 9.2–10.5% after the first pass of the vibrating roller, indicating that
the compaction of the mixture can be significantly improved by the vibrating of the roller
under high temperature.
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deck SMA-13.

It is shown that the construction temperature of SMA-13 asphalt mixture for bridge
decks is greater than 120 ◦C, which is conducive to the formation of compaction.

After vibratory rolling for 5 times, the compaction of the bridge deck SMA-13 reaches
its peak in a stable trend, and too much rolling does not increase the contribution of
the compaction effect. This indicates that after the energy absorbed by the paving layer
has reached saturation, the oscillation energy of the oscillating compaction wheel then
propagates along the horizontal direction within the layer, achieving a rolling effect under
the influence of alternating shear stresses in the horizontal and vertical directions, making
full use of the vibration energy and causing the mixture to rearrange to achieve dense
compaction.

The vibratory roller shows a slight decrease at the fourth pass and then reaches a
peak after the fifth rolling pass. This indicates that the excitation force generated by the
vertical vibratory compaction of the vibratory roller is applied to the paving layer, most
of which is absorbed by the paving layer and a small portion is transferred to the lower
bridge structure, resulting in a smaller compaction growth rate after the initial compaction
compared with the vibratory roller. Continue to increase the number of rolling variables
instead of a smaller compaction phenomenon, indicating that excessive vibration rolling
not only cannot improve the compaction of asphalt pavement, but because the pavement
can absorb the maximum energy, vertical vibration will be excess excitation work reflected
back to the compacted pavement. The asphalt mixture will then be internally overvibrated
from the compact state, destroying the compactness of the paving layer.

At the same time, according to Figure 6, as the rolling times increase, the lower the
temperature of the asphalt mixture, the continuous vertical excitation force of the vibratory
roller will destroy the skeleton of the mixture. At the same time, the viscosity of the asphalt
is too high, resulting in poor flowability, and the asphalt slurry is unable to fill the pores
formed after the skeleton has been destroyed, and thus the compaction becomes smaller
and smaller. The alternating shear stress of the oscillatory roller not only does not destroy
the skeleton, but the “rubbing” effect lifts the excess asphalt slurry to the surface, filling the
open pores and ensuring compaction while improving impermeability.

3.5. Influence of the Rolling Process on Compaction Uniformity

The effect of oscillatory compaction and vibratory compaction on the compaction
effect of SMA on bridge decks is further demonstrated by a stretched grid inspection of
the completed pavement compaction with a longitudinal interval of 1 m and a transverse
interval of 1 m, as shown in Figure 9.
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The test results show that under the same compaction conditions, the types of rolling
machines can meet the theoretical compaction requirements, and the HDO138V oscillation
roller achieves a higher average theoretical compaction than the HD138 vibratory roller.
Figure 10 and Table 3 show the statistics for the compaction of the bridge deck pavement
with vibratory rollers and oscillation rollers. The test results show that there is a significant
difference in the compaction of the SMA-13 asphalt wearing course of the bridge deck
under a tightly followed rolling process of 10 times. For oscillatory compaction, the density,
compaction, and void ratio of the pavement tend to be in the direction of dense compaction,
increasing the proportion of voids not less than 2%, while the proportion of voids greater
than 6% are kept at a very low level, with a smaller distribution of voids and a more
uniform distribution of compacted density. The void ratio is mainly distributed in the
range of 2.5% to 5%, while the average percolation coefficient is only 7 mL/min, indicating
that the oscillating compaction wheel can play a rubbing effect after the compaction density
of the pavement layer has reached the maximum, and achieve effective slurry lifting and
reduce the open pore space.
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Table 3. Statistics on the compaction quality of the SMA-13 pavement layer on the bridge deck.

Quality Statistics Indicator Oscillating Roller Vibratory Roller

Average compaction density, g·cm−3 2.507 2.471

Standard deviation of compacted density, g·cm−3 0.026 0.039

Compaction density dispersion factor, % 1.05 1.57

Average theoretical compaction degree, % 96.36 94.98

Site average void ratio, % 3.6 5

Range of site void ratio distribution, % 2–6 2.5–9

Percentage of measurement points with a site void
ratio greater than 6%, % 2.4 20.7

Percentage of measurement points with a site void
ratio of 3.5% to 6%, % 42.9 68.4

Percentage of measurement points with 2% to 3.5%
voids on site, % 54.8 2.4

Range of distribution of permeability coefficients,
mL·min−1 0–20 0–120

Average permeability coefficient on site, mL·min−1 7 86

Standard deviation of permeability coefficient,
mL·min−1 6.74 45

For the vibratory roller, the distribution of air voids was wide, ranging from 2.5% to
9%. The percentage of measured points with a void ratio of higher than 6% for bridge
compaction was 20.7%, and the percentage of measured points with a void ratio of higher
than 7% was 10.2%. The average measured permeability coefficient was 86 mL/min, with a
maximum value of 120 mL/min, indicating that there is a greater risk of water permeation
in asphalt pavement with a void ratio higher than 7%. It shows that excessive rolling of the
vibratory roller not only fails to improve the compaction density of the pavement, but also
greatly increases the probability that the compacted pavement will be overcompacted and
vibrated apart, resulting in a decrease in the compaction of the pavement.

4. Wear Evaluation Method of Road Surface Construction Based on Digital
Image Technology
4.1. Fundamentals of Digital Imaging

In the past, many studies have been conducted to evaluate the wear and tear of the
surface texture by means of the rolling process during construction. Only with more
subjective visual judgment, it is difficult to accurately reflect macro indicators, such as
structure depth. As a result, the wear of the structure during rolling will have a direct
impact on the skid resistance and durability of the pavement in service. New asphalt
pavement structures are typically a darker black in color under the asphalt membrane
coating. The color difference between the worn area and the unworn areas of the pavement
is obvious with different rolling variables, and provides a good basis for the grayscale
characteristics of the digital image technology [35–37].

The basic principle of digital image technology is to use optical components to convert
the acquired image information into discrete digital matrix information, which can be
extracted into two-dimensional matrix data by software recognition, as shown in Figure 11.
By quantizing the pixel values of the digital image, the pixel distribution matrix of the
surface texture can be obtained.
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4.2. Image Acquisition and Analysis

During the image acquisition process, direct sunlight must be avoided, while the
camera lens should be held parallel to the road, and the shooting distance should be fixed
at about 50 cm. The uneven light intensity and the reflective phenomenon of the asphalt
film make it difficult to identify the wear characteristics of the road surface. Therefore,
the pavement image must be filtered and denoised, enhanced, and grayed out, and then
binarized to extract the target features. The Otsu method (maximum interclass variance
method) is a more effective binarization method. Based on the feature that the grayscale
value at the wear location is larger than the background grayscale value, the Otsu method
is used to calculate the grayscale threshold and perform segmentation of the wear features
from the background image to obtain wear information.

For an image with a size of M × N, assume that the number of pixels is N, the value
range of gray level is [0, L − 1], ni represents the number of pixels with a gray level of i,
and Pi represents the probability of the occurrence of points with a gray level of i; then:

Pi = ni/N, i = 0, 1, 2, . . . , L− 1 (1)

∑L−1
i−0 P = 1i (2)

According to the gray value characteristics, the pixels in the image are classified into
background class and target class based on the threshold value t, which are represented by
C0 and C1, respectively. The gray value range of elements in C0 is between [0, t], while the
gray value range of elements in C1 is between [t + 1, L − 1]. For the whole image, its gray
mean is:

ut = ∑L−1
i=0 iPi = w0u0 + w1u1 (3)

The mean values of C0 and C1 are:

u0 = ∑t
i=1 ipi/w0 (4)

u1 = ∑L−1
i=t+1 ipi/w1 (5)

Among them
w0 = ∑t

i=0 Pi (6)

w1 = ∑L−1
i=t+1 Pi = 1− w0 (7)
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The interclass variance is defined as:

σB
2 = w0w1(u0 − u1)

2 (8)

where t ∈ [0, L− 1]; when the value of σB
2 in the above formula is the largest, the corre-

sponding t value is the ideal segmentation threshold [38].
The morphological features of the white areas of the binarized image are extracted, and

the number of nonzero pixels of the image is counted by writing a program in MATLAB,
which in turn allows for obtaining the proportion of the cumulative area of the worn area
to be obtained, which can be defined as the wear rate:

w =
∑ Si
S0

=
Nw

N0
× 100%. (9)

where w represents the wear rate, %; Si represents the area of the ith wear location, mm2;
S0 represents the total area of the road surface corresponding to the image, mm2; Nw
represents the number of nonzero pixel points in the binary image; and N0 represents the
total number of pixels in the binary image.

4.3. Wear Evaluation Results of Road Table Construction Based on Digital Image Technology

After image grayscale processing and binarization calculations, the wear results for
each measurement point of each grinding scheme road section were counted and are shown
in Table 4. The wear rate of the surface texture increases with the increase in the number of
times. After 5 to 6 times, the wear rate of the surface texture is less than 1%, which can be
considered an intact structure with good angles. After 6 times, the wear rate of the surface
texture increases at a higher rate. The wear rate of the structure after 9 times is the most
serious, basically over 10%.

Table 4. Calculation results of the digital image method.

Scheme Total Pixels/pcs Wear Zone Pixels/pc Wear Rate Mean Value/%

Rolling for 5 times 15,240,960 10,059 0.07%

Rolling for 6 times 15,240,960 85,957 0.56%

Rolling for 7 times 15,240,960 522,527 3.43%

Rolling for 8 times 15,240,960 971,242 6.37%

Rolling for 9 times 15,240,960 1673,455 10.98%

Rolling for 10 times 15,240,960 2245,942 14.74%

The mixture is plastic at high temperatures, and most of the impact energy is absorbed
and converted into work performed to overcome the frictional resistance embedded in
the particles of the mixture and the viscosity of the asphalt. As the temperature of the
surface layer decreases and the modulus of stiffness of the mixture increases, the surface
of the asphalt concrete forms a relatively hard and thin-shell structure. At this point, the
pavement reaches a flatter and denser state, and the effective contact area of the steel
wheels is greatly reduced. At this point, the use of steel wheel oscillation rolling is likely to
result in the surface structure corners being crushed and broken, forming a “white spot”
phenomenon.

The influence of the mixture temperature on the wear of the structure during oscillation
rolling was further analyzed by plotting the regularity curve based on the temperature
and wear rate before oscillation rolling of the last steel wheel at different measurement
points, as shown in Figure 12. As the temperature of the pavement decreases, the wear rate
of the surface texture by oscillation rolling of the steel wheel shows an increasing trend,
and there is a good exponential relationship between the steel wheel rolling temperature
and the wear rate of the road surface structure with a correlation coefficient of 0.940. Test
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data indicate that the use of steel wheel compaction at pavement temperatures below
105 ◦C will result in a structural wear rate of more than 10%, indicating that most of the
compaction power of vibration at this temperature cannot be absorbed by the mixture.
When the pavement temperature is 110–120 ◦C, the surface texture wear rate is 3–5%; when
the pavement temperature is higher than 120 ◦C, the steel wheel vibration pressure on the
surface texture wear is smaller (less than 1%); when the steel wheel oscillation compaction
energy can be mostly absorbed by the mixture, compaction effect is better. Therefore, the
compaction process should strictly control the pavement temperature of the double steel
wheel vibration rolling to avoid damage to the surface texture by the oscillating alternating
shear stress energy at low temperature.
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5. Evaluation Method of the Skid Resistance of Road Surfaces Based on the
Laser Method
5.1. Principle of Detection

In recent years, the road antiskid mechanism and application research has become
more and more in-depth, and there are few studies on the influence of the rolling process
on the initial skid resistance of asphalt pavement during construction. Pavement skid resis-
tance construction testing and evaluation methods are mainly divided into coarse aggregate
texture testing pavement construction evaluation. For coarse aggregate, morphology and
texture testing means mainly include a digital image method, laser scanning method, CT
scanning, microscope observation, and other testing means. For asphalt mixture, surface
texture testing means mainly include a digital image method, laser scanning method, and
industrial CT scanning method. Usually, due to the contradiction between testing range
and accuracy, there are mainly multidimensional evaluation indicators, such as depth of
construction indicators in a large range, fractal dimensional roughness in a small range,
and peak intersection angle of contours in skid-resistant construction-sensitive areas.

The PATT pavement laser antiskid texture tester reconstructs a three-dimensional
surface model of asphalt surface texture, and the height relationship between the different
measuring points can be determined, so that the contour construction of the road surface
can be obtained [20–24,39], The detection method and the detection scheme are shown in
Figure 13. The calculation formula is

PS =
count−

(
216/2

)
216/2

× 2× s f × 10−dp (10)

where PS is the elevation, count is the laser device measurement, sf is the magnification
factor, and dp is the laser device point position factor.
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Figure 13. Three-dimensional surface configuration inspection. (a) Field inspection situation.
(b) Schematic representation of the scanning principle.

5.2. Detection Scheme

Based on the variation of compaction and wear rate with the number of rolling cycles,
four 50 m long test sections were selected and rolled 5–8 times according to the previous
rolling conditions. Ten measuring t points were selected for each type of rolling section,
and random points were selected for the location of the paver’s nondissociation zone. A
PATT pavement laser antiskid texture tester was used to efficiently and accurately obtain
the three-dimensional surface configuration, microtexture distribution density, and contour
peak crest angle of the rolled pavement.

5.3. Principle of Construction Depth Calculation

The PATT pavement laser antiskid texture tester was used to obtain the surface of the
pavement texture for different times of oscillatory rolling and to calculate the area of the
texture envelope of the two-dimensional contour at unit intervals. Assuming that the first
contour envelope area is A1 and the average section depth is I1, the following equation can
be obtained:

A1 × d = I1 × l × d. (11)

where A1 represents the constructed envelope area of the 2D contour, mm2; d represents the
contour line acquisition interval in the Y direction, mm; I1 represents the average section
depth under the 2D contour, mm; and l represents the length of the contour curve, mm.

This gives the following relationship:

A1 = I1 × l. (12)

Calculate the constructed envelope area Ai for each 2D contour (i = 1, 2, 3, . . . ); then
the average constructed depth of the surface is as follows:

V =
A1d

2
+

n−1

∑
i=2

Aid+
And

2
. (13)

A = l × D. (14)

MTD∗ =
V
A

=

A1 + 2
n−1
∑

i=2
Aid+An

2(n− 1)d
=

(
I1 + 2

n−1
∑

i=2
Iid+In

)
× l

2(n− 1)d
. (15)

where MTD* is the average construction depth of the road 3D surface, mm; V is the
approximate volume under the construction envelope of the road 3D surface, mm3; A is
the horizontal projection area of the road 3D surface, mm2; D is the width of the scanning
Y-axis direction, mm; n is the number of contour lines; and Ii is the average section depth
of the ith contour line, mm.
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5.4. Principles of Microtexture Density Calculation

The microtexture of the pavement surface mainly provides the adhesion component,
which is a function of the shear strength τi at the pavement interface and the contact area Ai.
The richer the microtexture of the pavement, the greater the adhesion and the better the skid
resistance. In order to better evaluate the density of the distribution of the surface texture,
the morphological data are collected at the microscopic scale of the three-dimensional
surface texture, and the specific surface area of the structure (macroscopic and microscopic)
within the range is calculated using the projection plane of the three-dimensional surface
texture as a reference, as shown in Figure 14.
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The texture area per unit reference plane is used to characterize the density of distribu-
tion of road surface structures, defined as the density of microtexture distribution:

SMI =
AT
AP

=
AT

a× b
(16)

where SMI indicates the density of microstructure distribution; AT is the area of microscopic
three-dimensional surface graphics, mm2; and AP is the plane area of the tectonic profile
area (i.e., horizontal projection area), which can be calculated from the side lengths a and b
of the measurement area, mm2. If the SMI value is close to 1, it indicates that the tectonic
distribution of the pavement texture is sparse and the pavement tends to be smooth and flat.

5.5. Principle of Contour Crest Angle Calculation

The form of the protruding peaks of the road structure affects the engagement defor-
mation of the tire when it contacts the road surface structure; i.e., it mainly contributes
to the plough force component between the tire and the road. The smaller the value of
the contour crest angle of the pavement configuration, the more pointed and narrow the
aggregate particles and the greater their contribution to the ploughing force; the larger the
angle value, the wider and flatter the aggregate particles and the smaller the ploughing
effect, as shown in Figure 15.

Calculate the contour crest angle of the surface texture according to the following
formula:

α = arctan
∣∣∣∣ xi − xi−1

yi − yi−1

∣∣∣∣+ arctan
∣∣∣∣ xi+1 − xi
yi+1 − yi

∣∣∣∣, i = 2, 3, · · · , n. (17)

where xi represents the value of the ith extreme point on the x-coordinate axis. If the peak is
at point i, the valley is at point i − 1 and at point i + l; yi represents the value in the height
direction of the ith extreme point.
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5.6. Evaluation Results of the Skid Resistance of Road Surfaces Based on the Laser Method

According to the experimental results, as shown in Figure 16, the average depth of
the structure decreases as the number of times increases. The average structure depth
decreases rapidly from the 5th to the 7th compaction at a rate of 19.9%, and stabilizes
(1.2 mm) after the 7th to the 8th compaction. After vibration compaction for 5 times,
SMA-13 asphalt pavement surface construction depth is greater than 1.2 mm, the surface
open pores will be large, and the pavement below the 1 cm range of connected voids will
be more. Water will enter the pores and produce a pumping effect under vehicle load,
which may lead to asphalt stripping and early water damage under long-term operation.
When the vibratory compaction reaches 7–8 times, the compaction degree has stabilized
and the vertical excitation force is unable to improve the compaction degree, while the
horizontal excitation force produces a rubbing effect on the paving layer similar to that
of a tire roller, which fills the mastic rubble into the larger pores on the surface, thus
making the compaction surface denser and improving the water penetration resistance of
the surface layer.
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According to the experimental results, as shown in Figure 17, the microtexture density
increases with the number of rolling times. The average value of microtexture density at
the measuring points was 1.662 after rolling for 5 times. At this point, the road surface
was macroscopically large and the microtexture density was mainly provided by the
microtexture on the surface of the coarse aggregate, but the thicker asphalt mastic film
covered part of the microconvex structure on the surface of the coarse aggregate, resulting
in the smallest microtexture density. As the rolling times increases and the temperature
of the asphalt mixture decreases, resulting in a greater wear of the surface texture, the
SMA surface gullies are somewhat smoothed out and the exposed coarse aggregate and
the wear on the aggregate angles make for a richer mix surface structure, providing fresh
microtextures at the same time as the uplifted asphalt mortar.
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Figure 17. Variation of the microtexture density of the road surface at different numbers of
rolling times.

According to the experimental results, as shown in Figure 18, the proportion of the
acute part (<90◦) of the contour crest angle of the surface texture decreases with the number
of rolling times, from 9.97% to 2.55%, and the angles in this zone are related to the sharpness
of the coarse aggregate angles on the one hand. Conversely, the obtuse part (90◦ to 180◦)
increases from 90.03% to 97.45%. The angularity of this zone is mainly related to the
amount of coarse aggregate (gradation) and the spatial distribution state of the coarse
aggregate in the pavement. At 5 times, the proportion of sharp angles (<90◦) was 9.97%. At
this time, the construction temperature is high, the asphalt mix is easy to work with, the
aggregate particles are rolled to form a skeleton and the surface aggregate angular gullies,
and the proportion of SMA aggregate in a “vertical” state is high. The “upright” state
of the aggregate particles is difficult to maintain due to the impact and friction between
the double steel rollers and the aggregate particles during the rolling process. A contour
crest angle of 0◦–90◦ will be converted to a 90◦–180◦ contour crest angle. The unconverted
“upright” state of the aggregate will also be smoothed and worn down by the steel wheels
as the temperature decreases, and as the number of rolling times increases, the greater is
the proportion of “lying down” due to the rolling rock.
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6. Conclusions

(1) It is concluded that for a 4 cm SMA-13 bridge deck pavement, the oscillatory
roller could achieve a greater and more stable compaction of the mixture and, at the same
time, improve the uniformity of pavement compaction, air voids, and water permeability
resistance, thus ensuring the durability of the bridge deck pavement.

(2) Using digital image processing techniques to analyze the roll-formed pavement
structure, the angular wear rate is proposed to evaluate the degree of damage to the surface
texture by different rolling processes. As the steel wheel oscillation rolling temperature
decreases, the wear rate of the pavement structure increases significantly.

(3) The laser test results of the pavement texture reflect the influence of a different
rolling process on the surface texture. As the number of oscillating rolling cycles increases,
the pavement macrotexture depth gradually decreases and tends toward a stable value
(1.2 mm), the microtexture density increases, and the proportion of acute angles (<90◦) in
the contour crest angle of the pavement decreases.

(4) The results of this study are only applicable to the type of SMA-13 asphalt mixture
shown in the paper. The applicability of this study conclusion to the rolling process of other
pavement types on the cement concrete bridge deck cannot be determined, but it can be
determined by referring to this study scheme.
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