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Abstract: The data-driven models have been widely used in building energy analysis due to their
outstanding performance. The input variables of the data-driven models are crucial for their pre-
dictive performance. Therefore, it is meaningful to explore the input variables that can improve the
predictive performance, especially in the context of the global energy crisis. In this study, an algorithm
for calculating the balance point temperature was proposed for an apartment community in Xiamen,
China. It was found that the balance point temperature label (BPT label) can significantly improve the
daily energy consumption prediction accuracy of five data-driven models (BPNN, SVR, RF, LASSO,
and KNN). Feature importance analysis showed that the importance of the BPT label accounts for
25%. Among all input variables, the daily minimum temperature is the decisive factor that affects
energy consumption, while the daily maximum temperature has little impact. In addition, this study
also provides recommendations for selecting these model tools under different data conditions: when
the input variable data is insufficient, KNN has the best predictive performance, while BPNN is the
best model when the input data is sufficient.

Keywords: balance point temperature; prediction; building energy consumption; BP neural network;
random forest; data-driven model

1. Introduction

As global warming and energy crisis intensify, the international community is increas-
ingly focused on sustainable development. As one of the main sources of global energy
consumption, the energy efficiency and emissions of the construction industry are becoming
increasingly important [1,2]. Energy consumption analysis and prediction of buildings are
of great significance for improving building energy efficiency, reducing energy waste and
emissions, and promoting the implementation of the double carbon strategy [3]. Through
scientific analysis and accurate prediction of building energy consumption, it can provide
strong support for decision-making in building design, operation, and management.

Currently, there are many methods for predicting building energy consumption, which
can be classified into two categories based on the analysis methods: simulation technology
based on physical principles and data-driven methods based on artificial intelligence
algorithms.

The simulation method is based on thermodynamics to establish a physical model for
evaluating building energy consumption. Currently, there are various software tools for
simulating building energy consumption, such as DOE-2 [4], Energy Plus [5] TRNSYS [6],
Design Builder [7], etc.

Compared with simulation methods, data-driven methods based on artificial intelli-
gence algorithms are commonly used for building energy consumption prediction.

The data-driven approach uses mathematical analysis methods to establish mathe-
matical models of energy consumption systems based on known input and output data.
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Data-driven models applied in the field of building energy consumption prediction include
Multiple Linear Regression (MLR) [8], Back Propagation Neural Network (BPNN) [9],
Support Vector Regression (SVR) [10], Random Forest (RF) [11], K-Nearest Neighbors
(KNN) regression [12], and Least Absolute Shrinkage and Selection Operator (LSAAO) [13]
regression. These models can identify potential (sometimes previously unknown) relation-
ships between input and output variables through mathematical analysis. These AI-based
data-driven algorithms can achieve high prediction accuracy without requiring much
knowledge of building thermodynamics.

With the continuous development of computer science algorithms, data-driven models
have been widely used in the field of building energy analysis due to their excellent
performance. The input variables of data-driven models are crucial, and the effectiveness
of variables directly affects the predictive performance of the model. Therefore, in order
to increase the predictive accuracy of data-driven models, researchers have to look for
more input variables [9]. However, not all variables that affect the model can be effectively
obtained, and some variables are difficult to measure in practical applications. Therefore,
mining input variables that can significantly increase the predictive accuracy of the model
is a problem that researchers need to explore in depth.

The following researchers use data-driven modeling methods in energy forecasting
research tasks.

Javed F et al. [14] used an ANN model with input feature variables including outdoor
temperature, time, number of individuals, type of enclosure structure, and household
appliance load to predict the expected daily electricity load. Li Q et al. [15] used the DeST
simulation software to predict the cooling energy consumption of buildings with the SVR
model, taking outdoor dry bulb temperature, relative humidity, and solar radiation as input
variables. Sholahudin et al. [16] used dynamic ANN to predict the hourly thermal load of
buildings with dry bulb temperature, relative humidity, solar radiation, and wind degree
as input variables. Y. Ding et al. [17] used meteorological information and historical data as
feature variables to predict the cooling energy consumption of commercial buildings using
SVR. Furthermore, it used Historical Meteorological data as feature vectors and used MLR
and SVR to predict the heating energy consumption of commercial buildings [18]. Cheng
Fan et al. [19] conducted building energy consumption prediction tasks using various
data-driven models with input variables including outdoor temperature, outdoor relative
humidity, chilled water supply temperature, chilled water return temperature, and chilled
water flow rate. Antonio B et al. [20] utilized MLR and SVR to predict building energy
consumption using Meteorological information and time index as input variables. Gorazd
K et al. [21] noticed the impact of the balance point temperature on energy consumption
and therefore used heating degree days to predict instantaneous energy consumption. A
simplified model of heat load prediction, which combines the quasi-steady-state thermal
balance calculation procedure in ISO 52016 and the variable-base degree-days method,
was proposed by Z Hao et al. [22]. However, there was no calculation of the balance
point temperature involved in specific cases. Aranda et al. [23] established three different
MLR models to assess the energy performance of bank buildings in Spain using building
characteristics and climate areas.

Based on the above discussion, we have found the following issues in the existing
research on building energy consumption prediction that have not been well addressed.

• The balance point temperature is one of the factors that affect building energy con-
sumption. How to use statistical methods to identify the balance point temperature
scientifically and effectively?

• Currently, research on using balance point temperature as an input variable in data-
driven models is relatively scarce. Can the addition of a balance point temperature
label (BPT label) improve the prediction accuracy of data-driven models?

• Is there a difference in prediction accuracy of different data-driven model tools trained
on the same dataset, and which data-driven model tool should be prioritized under
different data conditions?
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• What is the importance of each input variable, including the BPT label, in the
prediction model?

This study takes an apartment community in Xiamen, China as an example and uses
different data-driven models to predict and analyze the daily energy consumption of the
building, and answers the above questions. Statistical methods are used in this article to
effectively identify the balance point temperature of apartment buildings and analyze the
impact of balance point temperature labels on the predictive performance of data-driven
models. Specifically, this study considers five representative data-driven models (BPNN,
SVR, RF, LASSO, and KNN) and studies the differences in the predictive performance of
various data-driven models.

The rest of the paper is organized as follows: Section 2 presents the research outline,
data preprocessing, specific algorithms for each data-driven model, and performance
evaluation indicators for the models. Section 3 is a case study that includes analysis methods
for identifying the balance point temperature, detailed data, and model implementation
details. Section 4 is the analysis and discussion, which compares the performance of
various data-driven models using model performance evaluation indicators and analyzes
the importance of input variables. The conclusion is drawn in Section 5.

2. Methodology

This section introduces the research structure and framework of this article, as shown
in Figure 1, which includes three steps. The first step is data collection, data cleaning,
data encoding, and data normalization, to obtain a dataset suitable for the research of this
research. The second step is the identification of the balance point temperature, which
answers the first question proposed in the introduction of this study. A new dataset is
formed by adding the BPT label to the original dataset. In the third part, five data-driven
models are used to analyze building energy consumption prediction for both new and
old datasets, and the prediction accuracy is compared and analyzed. Feature importance
analysis is also conducted for input variables. These, respectively, answer the second to
fourth questions proposed in the introduction.
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2.1. Data Collection

The data collected in this study is related to an apartment complex located in Xiamen,
China, shown in Figure 2.
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Figure 2. Photograph of the selected apartment buildings.

The apartment building was constructed and put into use in 2014. It is an outdoor
corridor-style building with a frame structure, consisting of 9 floors and rooms with a
usable area of 25.33 m2. All electrical appliances in the rooms are uniformly purchased
by the building developer, which means that the models, specifications, power, and other
parameters of the electrical appliances in each room are consistent. Each room is equipped
with two LED tubes, a fan, an air conditioner, and four sockets. Table 1 summarizes the
details. The apartment provides an independent hot water system, which does not consume
electricity when using hot water.

Table 1. Detailed information on the building and room.

Item Detail

Building

Building type Apartment
Location Xiamen, China

Build time 2014s
Floors 9

Room

Room area 25.33 m2

Height 3.10 m
Led tube Model: TSZJD2-T5-28W

Fan Model: FSLD-40
Air conditioner Model: KF-35 GW/S (35355) A1-N1

Socket Maximum load: 2 kW
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This study used explanatory variable and dependent variable data from 1 September
2020 to 1 September 2021, spanning a full year. This section describes the methods and
details of how these variables were collected.

2.1.1. Electricity Consumption Data

The dependent variable, the energy consumption of the building, is obtained from
the central intelligent electricity meters. The electricity consumption data for each room is
obtained from the central intelligent meter with a time step size of day-by-day. It includes
the total electricity consumption of the room, including air conditioning and lighting. Since
the room type and the number of users are the same, the room’s daily average electricity
consumption is selected as the dependent variable, which is the total building energy
consumption divided by the number of rooms (after data cleaning, details see Section 2.2.1).

2.1.2. Weather Data

In this study, three weather variables, including the daily minimum temperature, daily
maximum temperature, and precipitation, were used in the Xiamen area. These climate
data were obtained from the China Meteorological Data Service Center [24]. Figure 3 shows
the variation in air temperature between 1 September 2020 and 1 September 2021. It is
worth noting that the precipitation fluctuates greatly, with a value of 0 when there is no
rain, and several hundred when it rains. Therefore, this study sets the explanatory variable
of precipitation as a categorical variable, namely the sunny-rainy day index, which will be
explained in the following text.
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Figure 3. Daily temperature parameters.

2.1.3. Sunny Day Index

The sunshine-rainy index [9] is a categorical type of climate parameter. Rainy days
may reduce the desire for outdoor activities, thus increasing the use of indoor facilities.
Therefore, whether it is raining or not is used as an explanatory variable in the energy
consumption prediction model. This study defines rainy days as those with a total daily
precipitation of more than 5 mm between 6:00 a.m. and 11:00 p.m. The virtual value of
rainy days is 1, while the virtual value of non-rainy days is 0.

2.1.4. Holiday Index

Building occupancy rate significantly affects its energy demand. However, it is difficult
to accurately measure the actual building occupancy rate in actual research, therefore this
study introduced a categorical variable “holiday index” to describe the occupancy rate of
the buildings. The occupancy rate of holidays will be greater than that of working days.
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The virtual value for holidays is 1 and for working days is 0. The specific dates for the
holidays are obtained from the government website [25].

In summary, the dependent and explanatory variables used in this article are shown
in Table 2. It is worth noting that, since the building area, orientation, and indoor electrical
equipment (including air conditioning) parameters of these eight buildings are the same,
this study did not consider these parameters as explanatory variables.

Table 2. Dependent and explanatory variables for this study.

Variables Symbol Content Type

Dependent variable Y Daily average electricity consumption Continuous variable
Explanatory variable 1 x1 Holiday index Proxy variable
Explanatory variable 2 x2 Sunny day index Proxy variable
Explanatory variable 3 x3 Daily minimum temperature Continuous variable
Explanatory variable 4 x4 Daily maximum temperature Continuous variable

2.2. Data Preparation
2.2.1. Data Cleansing

During the process of data collection, data loss, and anomalies often occur due to
equipment malfunctions or weather conditions. Therefore, it is necessary to clean the data,
which is a crucial step before analysis and research [26].

The main purpose of data cleaning in this study is to eliminate the adverse effects
of missing value, vacant, and anomalous data rooms, and remove them from the dataset.
A room is defined as a missing value room if it has no electricity consumption data for
at least three days, but rooms with less than three missing values can be repaired using
linear interpolation techniques. A vacant room is defined as one where the daily electricity
consumption in a room is zero or below 0.1 kWh hours for five consecutive days. A room
is considered an anomalous data room if its electricity consumption remains the same for
five consecutive days and is not equal to zero.

After data cleaning, a total of 95 rooms were deleted. The electricity consumption data
of 427 rooms were analyzed.

2.2.2. Data Encoding and Normalization

Before performing prediction tasks using data-driven models, categorical features need
to be encoded into 0 or 1 [27], such as the holiday index and the sunny day index mentioned
in the following text. Data normalization is an important step in data analysis. It scales
the datasets of different input variables to the interval [0,1] to eliminate the weakening of
analysis caused by different scales and dimensions of datasets. In this study, the Z-score
standardization [28] method is selected, as shown in Equation (1).

x̂i=
xi − x

δ
(1)

In Equation (1), xi is the i-th value, x is the average of the variable, δ is the standard
deviation, and x̂i is the normalized value.

2.3. Data-Driven Models
2.3.1. Backpropagation Neural Network

The Backpropagation Neural Network (BPNN) [29] is a training algorithm for artificial
neural networks. It uses the backpropagation algorithm to adjust the weights and thresh-
olds in the neural network so that the network can fit the training data with minimum
error. The BPNN consists of an input layer, a hidden layer, and an output layer, and is com-
monly used for classification and regression tasks. During the training process, the BPNN
calculates the error and adjusts the weights and thresholds through the backpropagation
algorithm, in order to fit the training data as accurately as possible.
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2.3.2. Random Forest

Random Forest (RF) algorithms [30,31] can be summarized in the following steps:

1. Select n samples from the dataset using a bootstrapped sampling approach to form a
training set;

2. Generate a decision tree using the sampled dataset.
3. Repeat steps 1 to 2 for k times, where k is the number of trees in the RF.
4. Use the trained Random Forest to predict the test samples and decide the prediction

result using the voting method, as shown in Figure 3.

The two common Variable Importance Measure (VIM) [32,33] calculation methods for
RF are the Gini index and Out-of-Bag (OOB) error rate. This paper uses the OOB error rate
to analyze the VIM. The higher the average of the decrease of OOB error rate, the higher
the VIM; otherwise, the lower the VIM.

The M target variables are calculated according to Equation (2) and their importance
is sorted based on their VIM values, as follows:

1. Construct N decision trees;
2. When the current decision tree ktree = 1, the obtain the corresponding OOB data OOBk;
3. Calculate the prediction error eerOOBk of the current tree for OOBk;
4. Randomly perturb the i-th feature of OOBk as OOBi

k, calculate the prediction error
eerOOBi

k of the current tree for OOBi
k;

5. For each decision tree, ktree = 2, . . . , N, repeat steps 2–4;
6. Calculate the VIM of the target feature according to Equation (2).

VIM =
1
N ∑N

k=1

(
eerOOBi

k − eerOOBk

)
(2)

In the formula, N is the number of trees, eerOOBi
k and eerOOBk represent the predic-

tion errors of the OOB data with and without perturbation for the i-th feature under the
ktree-th tree case, respectively.

2.3.3. Support Vector Regression

Support Vector Regression(SVR) [34] is the application of a Support Vector Machine
(SVM) in regression problems. Unlike traditional regression algorithms such as linear
regression and polynomial regression, the goal of SVR is to find one or more curves
that minimize the error between these curves and the training data, while also avoiding
overfitting as much as possible. The core idea of SVR is to introduce kernel functions, map
the original data to a high-dimensional space, and find the optimal hyperplane to achieve
classification or regression. In regression problems, the goal of SVR is to find a hyperplane
that minimizes the distance between all training samples and the hyperplane, while also
satisfying a certain tolerance, which allows for a certain degree of error. The advantages
of SVR are that it can handle nonlinear problems and has good generalization ability. It
can also improve the fitting ability of the model by using kernel functions for nonlinear
data mapping.

2.3.4. Least Absolute Shrinkage and Selection Operator

Least Absolute Shrinkage and Selection Operator (LASSO) [35], is a machine learning
algorithm used for feature selection and regression analysis. LASSO is a linear regression
algorithm that limits the complexity of the model and the number of features by adding
an L1 regularization term to the loss function. It involves adding a penalty term to the
standard least squares regression objective, which helps to reduce the magnitude of the
coefficients of the features in the model. The penalty term is based on the absolute value
of the coefficients and the algorithm tries to minimize the sum of the residuals and the
penalty term. LASSO is particularly useful when dealing with high-dimensional datasets
where there are many features but only a small number of them are relevant for the
prediction task.
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2.3.5. K-Nearest Neighbors

K-Nearest Neighbors (KNN) [36] is a basic supervised learning algorithm that is
applied in both classification and regression tasks. It is a non-parametric algorithm, which
means that it does not make any assumptions about the data and directly learns the model
from the data. The basic idea of the KNN algorithm is to find the k nearest known samples
with class labels to a new sample, and then predict or classify based on the class labels of
these k samples. In classification tasks, the KNN algorithm classifies the new sample as the
class that appears most frequently among the k nearest neighbors. In regression tasks, the
KNN algorithm sets the predicted value of the new sample as the average value of the k
nearest neighbors. This article belongs to the regression task.

2.4. Model Performance Evaluation Metrics

In order to assess the predictive performance of the models, three metrics [37] com-
monly used in electricity load forecasting are used in this study, namely, coefficient of
variation-root mean square error (CV−RMSE), normalized mean bias error (NMBE) and
regression determination coefficient (R2). The calculation of the above indicators is shown
in Formulas (3) to (5). In the formulas, ŷi is the prediction value, yi is the actual value and
y is the average of the actual values.

CV − RMSE =

√
∑n

i=1(yi−ŷi)
2

n
y

× 100% (3)

NMBE =
∑n

i=1(yi − ŷi)

n × y
× 100% (4)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (5)

3. Case Study
3.1. Identifying the Balance Point Temperature

Xiamen is located in the hot summer and warm winter region of China and is a city
primarily focused on cooling in the summer months with a short period of heating required
in the winter. Additionally, for energy-saving purposes, the air conditioning units installed
by apartment complexes do not have a cooling function. As shown in the scatter diagram
in Figure 4, the energy consumption of a building is highly correlated with the outdoor air
temperature, especially during the warmer phases when the air temperature influences air
conditioning usage. At lower temperatures, however, the rooms have no cooling demand
and contain only the daily base energy consumption, so the energy consumption is almost
constant. This phenomenon is in line with the 3-P model proposed by ASHRAE [37],
where there is a balance point temperature near the red circle. There is a difference in the
correlation between the outdoor air temperature around it and the energy consumption of
the building.

In order to find the balance point temperature, the data is analyzed using statistical
methods. As the balance point temperature is the turning point in the degree of influence
over energy consumption and temperature, the coordinate points on either side of this
turning point are fitted separately and the final fit obtained after integration should be
optimal. Therefore, this study traverses all the coordinate points from left to right and
divides the data into two parts, using that point as the boundary. It should be noted that
after preliminary analysis, only one balance point temperature point was found in this
research case. If there are other climatic regions with k balance point temperature points,
the data will be divided into k+1 parts. A linear regression analysis between temperature
and energy consumption is carried out on each side separately and the intersection of the
two regression fitted lines is recorded. When the fit is optimal, the intersection point is the
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critical point that affects the correlation between temperature and energy consumption,
and its horizontal coordinate is also the balance point temperature. The R2 value is used as
an indicator of how well the model is fitted. The analysis in this section is programmed
using Python language, and its algorithm is shown in Algorithm 1.
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Algorithm 1. Identity balance point temperature.

Input: Daily average air temperature, Daily average electricity consumption
Output: Balance point temperature
1 Traversing all the points and dividing the data set into two parts.
2 Performing linear regression on each side.
3 Calculating the R2 values of the integrated model and the coordinates of the intersection points.
4 Plotting the change in R2 values.
5 Output the intersection point coordinate when the R2 value is maximum.

Running the code, the R2 values change as shown in Figure 5. When the R2 is maxi-
mum, the intersection horizontal coordinate is 22.2 ◦C. At this time, the R2 reaches 0.9408,
and the fitting results of both sides are shown in Figure 6. Therefore, the mean outdoor
temperature of 22.2 ◦C is the balance point temperature of the research object of this study.

3.2. Prediction Model Implementation

This article implements five data-driven models, including RF, LASSO, SVR, BPNN,
and KNN, using the scikit-learn library in Python [38]. Below is a brief introduction to the
parameters that need to be optimized for each model.

In BP neural network, the optimization involves hidden layer number, number of
hidden layer nodes, activation function, and learning rate. The number of hidden layers and
nodes represents the complexity and expressive power of the neural network. The selection
of activation function [39] is crucial as it determines the output value of neurons. The
learning rate [40] controls the speed of updating network weights. Parameter optimization
considers (1) the number of hidden layers (ranging from 1 to 7), (2) the number of nodes in
the hidden layer (ranging from 1 to 100 with an increment of 10), (3) activation function
(including tanh, relu, and sigmoid), and (4) learning rate (ranging from 10−3 to 1 in
geometric progression).
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In SVR, the kernel function, complexity parameter C, and gamma are three very
important parameters. (1) The concept of kernel function is introduced in Section 2.3.3. In
this study, three types of kernel functions were considered for optimization, namely linear,
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polynomial (Poly), and Radial basis function (RBF). (2) The complexity parameter C is the
regularization parameter of SVR, which controls the complexity of the model. The larger
the value of C, the more complex the model, and the more likely it is to overfit; conversely,
the smaller the value of C, the simpler the model, and the more likely it is to underfit. When
C is small, the model will focus more on the sum of squared errors, and when C is large,
the model will focus more on larger errors. The candidate value of C ranges from 0.1 to 80,
with an average increment of 10. (3) The gamma controls the complexity and fitting ability
of the model. When the gamma value is small, the model will focus more on distant sample
points, while when the gamma value is large, the model will focus more on nearby sample
points. In this study, gamma’s candidate values range from 0.01 to 1, with an average of
10 increments.

The parameters that need to be optimized in an RF include max depth and the number
of trees, which, respectively, control the depth of decision trees and the number of decision
trees in the RF. Max depth specifies the depth of each decision tree, and the deeper it is,
the stronger the model’s fitting ability to the training data, but it also increases the risk of
overfitting. The number of trees specifies the number of decision trees in the RF. When the
number of trees is small, the model’s generalization ability is poor, and when the number
of trees is large, the model’s training and prediction time will increase. In this study, the
optimization range for max depth is 3–9, and the range for the number of trees is 10–70.

The parameter to be optimized in LASSO regression is the penalty factor lambda,
which controls the number of non-zero coefficients in the model. The objective of LASSO
regression is to minimize the loss function, which consists of two parts: the fitting error
and the penalty term. The fitting error is the difference between the predicted values of the
model and the true values, while the penalty term is the product of the sum of the absolute
values of the coefficients and lambda. The larger the lambda, the greater the impact of the
penalty term, and the fewer non-zero coefficients in the model. When lambda is 0, LASSO
regression degenerates into simple multiple linear regression. Therefore, by adjusting the
value of lambda, the number of non-zero coefficients in the LASSO model, as well as the
balance between the fitting ability and generalization ability of the model, can be controlled.
Through techniques such as cross-validation, the optimal lambda value can be selected to
obtain the optimal LASSO model. In this study, the optimal lambda was selected from a
geometric series ranging from 10−4 to 103.

The parameters that need to be optimized in the KNN regression algorithm are the
k-value, p-value, and weights-value. Here are some details about each parameter: (1) The
k-value represents the number of nearest neighbors chosen. A smaller k-value leads to a
simpler model that is more susceptible to noise, while a larger k-value results in a more
complex model that is more prone to overfitting. (2) The p-value is used to determine
the distance metric used in the distance calculation. When p = 1, the distance metric is
Manhattan distance; when p = 2, the distance metric is Euclidean distance; and when
p > 2, the distance metric is called Minkowski distance. (3) The weights parameter is used
to specify the contribution of each neighbor to the prediction. There are two possible values:
uniform, which means that the weights of all neighbors are equal and contribute equally
to the prediction, and distance, which means that the contribution of each neighbor is
inversely proportional to its distance from the prediction point so that neighbors closer to
the prediction point have a greater contribution to the prediction.

4. Result and Analysis
4.1. Prediction Model Implementation

This study collected a total of 779,275 original datasets over 365 days (12 months). The
data from 11 months were used for training to predict daily energy consumption for one
randomly selected month. This section analyzed the impact of adding the BPT label to the
input variables on the data-driven model, considering five models: BP, SVR, RF, LASSO,
and KNN. The balanced point temperature information was added to the input variables
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of the data-driven model using a categorical type label, with a value of 0 when the outdoor
average temperature was below 22.2 ◦C and 1 when it was above.

Before conducting predictive analysis, the hyper-parameters of these models were
optimized using grid search and 5-fold cross-validation, and the final optimal parameters
are shown in Table 3.

Table 3. Parameters optimization result and performance of different models.

Model Parameters Optimal Value Best Cross-Validation Score (R2)

BP

Activation relu

0.8484
Learning rate 0.01

Hidden Layers 3
Hidden Nodes 50

SVR
Kernel function RBF

0.7436C 0.8
gamma 0.23

RF
Max depth 5

0.8350Number of trees 20

LASSO alpha 0.001 0.6558

KNN
K 3

0.8233P 3
weights distance

The visualization of the grid search is presented in Figure 7.

Buildings 2023, 13, x FOR PEER REVIEW 13 of 19 
 

Figure 7c shows the optimization process of SVR. Similarly, in order to visualize the 

optimization process, this article only exemplifies the influence of C and gamma on the 

SVR, while the kernel function is RBF. As C and gamma increase to a certain extent, the 

score of the cross-validation set drops sharply. Overall, the optimal values for C and 

gamma are 0.8 and 0.23, respectively. 

Figure 7d shows the optimization process of LASSO. As alpha increases, the overall 

performance of the model generally decreases, especially when alpha is greater than 1, the 

model performance is almost 0. The optimal alpha for the model is 10−3. 

Figure 7e shows the optimization process of KNN. The optimal parameter combina-

tion for the model is K = 3, p = 3, and weights = distance. 

 

Figure 7. Grid search for optimal parameters: (a) BPNN, (b) RF, (c) SVR, (d) LASSO, (e) KNN. 

The evaluation metrics before and after introducing the BPT label for each model are 

shown in Table 4. The difference between “new” and “original” is that the input variables 

of the new model include the BPT label. It can be seen that the predictive performance of 

each data driven model is significantly improved with the introduction of the BPT label, 

and all evaluation metrics are significantly better, including the test set and training set. 

Among them, the BPNN model has the largest improvement in predictive performance, 

with an increase of 0.3448 in R2 value and a decrease of 19.20% in CV−RMSE value for the 

test set. The KNN model has the least improvement in predictive performance, but the R2 

value has still increased by 0.144, which is also a significant improvement. 

  

Figure 7. Grid search for optimal parameters: (a) BPNN, (b) RF, (c) SVR, (d) LASSO, (e) KNN.



Buildings 2023, 13, 1423 13 of 19

Figure 7a shows part of the optimization process of the BPNN. As mentioned in
Section 3.2, BPNN needs to optimize four parameters. However, in order to visualize
the data analysis, this study only displays the changes in the number of hidden layers
and hidden nodes, while the activation function and learning rate are already optimized,
with relu and 0.01, respectively. Overall, when the activation function and learning rate
are constant, the influence of the number of hidden layers and hidden nodes on the
performance of BPNN is limited. After iterative optimization, the final model performance
only has slight fluctuations. At this point, the optimal number of hidden layers is 3 and the
optimal number of hidden nodes is 50, with a cross-validation score of 0.8484.

Figure 7b shows the process of optimizing the RF. The impact of max depth is greater
than the number of trees. When the max depth parameter is fixed, the change in the number
of trees only has a slight impact on the predictive performance of the RF. Overall, the model
performs best when the max depth is 5 and the number of trees is 20.

Figure 7c shows the optimization process of SVR. Similarly, in order to visualize the
optimization process, this article only exemplifies the influence of C and gamma on the
SVR, while the kernel function is RBF. As C and gamma increase to a certain extent, the
score of the cross-validation set drops sharply. Overall, the optimal values for C and gamma
are 0.8 and 0.23, respectively.

Figure 7d shows the optimization process of LASSO. As alpha increases, the overall
performance of the model generally decreases, especially when alpha is greater than 1, the
model performance is almost 0. The optimal alpha for the model is 10−3.

Figure 7e shows the optimization process of KNN. The optimal parameter combination
for the model is K = 3, p = 3, and weights = distance.

The evaluation metrics before and after introducing the BPT label for each model are
shown in Table 4. The difference between “new” and “original” is that the input variables
of the new model include the BPT label. It can be seen that the predictive performance of
each data driven model is significantly improved with the introduction of the BPT label,
and all evaluation metrics are significantly better, including the test set and training set.
Among them, the BPNN model has the largest improvement in predictive performance,
with an increase of 0.3448 in R2 value and a decrease of 19.20% in CV−RMSE value for the
test set. The KNN model has the least improvement in predictive performance, but the R2

value has still increased by 0.144, which is also a significant improvement.

Table 4. Prediction metrics for the models.

Model

R2 CV−RMSE (%) NMBE (%)

Original New Original New Original New

Train Test Train Test Train Test Train Test Train Test Train Test

BPNN 0.8351 0.4946 0.9204 0.8393 54.03 56.38 37.54 37.18 18.81 10.00 2.68 0.94
SVR 0.7641 0.5151 0.8279 0.7413 48.77 64.59 41.65 47.18 10.71 74.18 8.68 54.51
RF 0.8733 0.5214 0.9171 0.7379 35.74 64.16 28.91 47.48 46.17 59.25 17.88 38.55

LASSO 0.6134 0.2167 0.6759 0.5232 62.42 82.09 57.16 64.04 24.00 84.76 26.00 38.23
KNN 0.9997 0.5942 0.9999 0.7382 1.84 59.08 0.95 47.46 0.00 58.64 0.00 60.92

From the evaluation metrics, it can be seen that the predictive accuracy of the Lasso
model is the worst. Before incorporating BPT label, its R2 value is only 0.2167. Even after
adding the BPT label to the input variables, its R2 value only increased to 0.5232. Because it
is essentially a simple linear regression model and although it incorporates regularization
coefficients, its predictive accuracy still lags behind other more complex algorithms.

When using the training set for training, the KNN model has the best fitting effect, that
is, the evaluation index of the training set is better than the other four models, regardless of
whether the balance point temperature label is added or not. Its R2 value almost reaches
1.0, and the NMBE value is close to 0, which almost perfectly fits the data in the training set.
However, there is a risk of overfitting, as evidenced by the fact that with the addition of the
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BPT label, its R2 value is not as good as expected, but inferior to BPNN and SVR, and its
NMBE value even slightly increases. This indicates that KNN may lead to a decrease in
prediction accuracy due to overfitting. However, this characteristic can allow KNN to play
more advantages than other models when there is insufficient input variable data.

The prediction accuracy of the BPNN model is most affected by the input variables,
and the prediction accuracy of its new model is 70% higher than that of the original model.
This indicates that the prediction effect of BPNN is largely dependent on its input variables.
Therefore, when using the BP model, it is necessary to choose appropriate input variables.

From the perspective of evaluation metrics, the prediction accuracy of the SVR and RF
is similar. However, they are greatly affected by input variables. With the addition of the
BPT label, their prediction accuracy has increased by about 45%.

Overall, using data-driven algorithms with the same dataset, when the input variables
are insufficient, the predictive performance is in the following order: KNN, RF, SVR,
BPNN, and LASSO. However, when there is sufficient input variable data, the predictive
performance is in the following order: BPNN, SVR, KNN, RF, and LASSO.

In order to evaluate the statistical significance of adding the BPT label to improve
prediction accuracy, a t-test was performed on the predicted energy values. It was assumed
that adding the BPT label had no significant difference in the model results. The test results,
as shown in Table 5, indicate that all p-values are less than 0.01, rejecting the null hypothesis.
This demonstrates that adding the balance point temperature label to the input variables
can significantly improve the predictive performance of the data-driven model.

Table 5. Result of t-test between the results with/without BPT label.

BP SVR RF LASSO KNN

p-value 0.000 0.000 0.000 0.000 0.000

Figure 8 shows the prediction results of various data-driven models on daily building
energy consumption with and without BPT label, i.e., using both new and original datasets,
and compares them with the actual energy consumption. In each figure, “real value”
represents the ground truth, “pred” represents the predicted value using the original
dataset, and “new pred” represents the predicted value using the new dataset with BPT
label. It can be seen that the data-driven models with BPT labels can better fit the trend of
the dataset.

4.2. Importance Analysis of Input Variables

This study analyzes the building energy consumption of an apartment building in
Xiamen, China. Four explanatory variables were collected and five data-driven models
were established to predict the building’s daily energy consumption. A balance point
temperature label was later added to determine the impact of its inclusion on the accuracy
of the data-driven model predictions. The importance of each input variable, i.e., the degree
of influence on energy consumption, was analyzed using the feature importance method
based on the RF algorithm.

Figure 9A shows the importance of each variable in the original model. The impact of
daily minimum air temperature (85%) on energy consumption is far greater than that of
other variables, playing a dominant role, and its importance is much greater than that of
daily maximum temperature (11%). This is an interesting phenomenon. The importance
of the holiday index is almost negligible, while the importance of the sunny day index
accounts for 3%. With the addition of the BPT label, the importance of the minimum
temperature has decreased, and its partial importance has been shared by the balance point
temperature, while the importance of other variables has remained largely unchanged, as
shown in Figure 9B. Finally, the importance of the BPT label accounts for 25%, and the
importance of the minimum temperature has dropped to 62.5%. Therefore, the balance
point temperature cannot be ignored in the prediction model of building daily energy
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consumption. This also explains why adding the BPT label to the input variables in the
previous experiment greatly improves the prediction accuracy of the prediction model.
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It is worth noting that in the daily energy consumption prediction model, both the
daily minimum and maximum temperatures are considered temperature information in
meteorological data. The importance of the daily minimum temperature dominates, while
the daily maximum temperature is not as important. This indicates that the daily minimum
temperature dominates people’s main thermal sensation on that day, rather than the daily
maximum temperature. For example, if the minimum temperature of a day is very low,
even if the maximum temperature at noon is high, people will still consider it a cold season
and usually will not turn on the air conditioning briefly at noon, which means that the
energy consumption of that day will not increase significantly. On the contrary, if the
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minimum temperature of the day is also high, people will feel that it is a hot season and
choose to use air conditioning, which significantly increases energy consumption.

5. Discussion

Given the widespread lack of information on building data, researchers need to con-
tinue exploring how to accurately predict building energy consumption with relatively
limited data. This study summarizes two potential strategies that can improve the pre-
dictive performance of building energy models: (1) mining efficient feature variables and
(2) selecting and optimizing models. Specific discussions are as follows.

• The current data-driven building energy consumption prediction models tend to focus
on selecting input feature variables related to meteorological and building parameters.
In order to discover more feature variables that influence building energy consump-
tion, researchers have deployed numerous sensors within and around buildings and
constructed energy management systems. However, the excessive monitoring data
has instead increased the difficulty of analysis, as most input variables have mini-
mal impact on building energy consumption, such as the holiday index in this study
(which had a feature importance of only 0.4%). Therefore, improving feature variable
selection can involve more comprehensive consideration of building attributes and en-
vironmental factors, using more advanced feature selection techniques, and exploring
new feature variable methods. This article is the first study to use the balance point
temperature label as a feature variable. Through the data analysis, it was found that
the balance point temperature label can significantly improve the performance of the
building energy consumption prediction model, with an importance of about 25%.

• Building energy consumption models can be modeled based on different machine
learning algorithms, such as BPNN, RF, SVR, LASSO, KNN, etc., as used in this study.
Different algorithms are suitable for different datasets and problems, so selecting
the appropriate algorithm is crucial to improve predictive performance. This article
suggests through the analysis of a case in Xiamen that when there are sufficient input
features, BPNN is optimal, and when input features are insufficient, KNN is best.
However, in actual situations, there is no quantitative standard for whether input
feature data is sufficient, but rather a subjective judgment based on the researcher’s
experience. Therefore, before conducting predictive analysis on a specific building
case, potential models should be screened instead of using a single prediction model
or method that the researcher is good at. In addition, model optimization can also
improve predictive performance. Hyper-parameters should be optimized before
model application.

As predictive models continue to deepen and optimize, the algorithms themselves
have become more mature. However, even so, the limitations of machine learning-based
algorithms should also be discussed.

• Data quality issues: The predictive performance of building energy consumption
models is influenced by the quality and quantity of input data. If the data con-
tains missing values, outliers, or noise, the predictive performance of the model will
be affected.

• Transferability issues: The predictive performance of building energy consumption
models may be influenced by transferability issues between datasets. This is be-
cause building characteristics and environmental factors may vary across different
geographic locations and time periods, thus limiting the predictive performance of
the model.

• Interpretability issues: Machine learning models are often considered “black box”
models, making it difficult to explain the reasons for their predicted results. This may
limit the practical application of the model.

Finally, it needs to be further explained that the experiments in this article were
conducted in Xiamen, China, which belongs to the climate zone of hot summer and warm
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winter. For buildings located in other geographical locations, the number and size of the
balance point temperature may be different, but the statistical algorithm proposed in this
article can be used as a reference and reference.

6. Conclusions

With the in-depth development of building energy performance evaluation, abnormal
energy consumption diagnosis, and building energy conservation, energy consumption
prediction has become the research basis of these works. This article analyzed the daily
power consumption data of a certain apartment community in Xiamen and improved the
prediction accuracy of five data-driven models using the balance point temperature label.
The method was applied and verified in practical tests, and the following conclusions were
drawn:

1. This article proposes a statistical algorithm for calculating the balance point tempera-
ture and identifies the balance point temperature of a residential building in Xiamen,
China as 22.2 ◦C. Significant differences in the correlation between temperature and
building energy consumption exist around this balance point temperature.

2. Adding the balance point temperature label to the input variables can significantly
improve the daily energy consumption prediction accuracy of data-driven models.
The R2 values of the BPNN model increased by 0.3448, SVR increased by 0.2262, RF
increased by 0.2165, LASSO increased by 0.3066, and KNN increased by 0.1440.

3. In the task of daily energy consumption prediction, the prediction accuracy of data-
driven models varies under different input data conditions. When the input variable
data is insufficient, the prediction performance from high to low is KNN, RF, SVR,
BPNN, and LASSO. When the input variable data is sufficient, the prediction perfor-
mance is in the order of BPNN, SVR, KNN, RF, and LASSO.

4. Among the input variables of the daily energy consumption prediction model, the
dominant variable is the daily minimum temperature, which is much more important
than the daily maximum temperature. The balance point temperature label is crucial
in the prediction model and accounts for 25% of the importance.
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