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Abstract: The impact effect is a crucial issue in civil engineering and has received considerable
attention for decades. For the first time, this study develops hybrid machine learning models that
integrate the novel Extreme Gradient Boosting (XGB) model with Particle Swam Optimization (PSO),
Grey Wolf Optimizer (GWO), Moth Flame Optimizer (MFO), Jaya (JA), and Multi-Verse Optimizer
(MVO) algorithms for predicting the permanent transverse displacement of circular hollow section
(CHS) steel members under impact loads. The hybrid machine learning models are developed using
data collected from 357 impact tests of CHS steel members. The efficacy of hybrid machine learning
models is evaluated using three performance metrics. The results show that the GWO-XGB model
achieves high accuracy and outperforms the other models. The values of R2, RMSE, and MAE
obtained from the GWO-XGB model for the test set are 0.981, 2.835 mm, and 1.906 mm, respectively.
The SHAP-based model explanation shows that the initial impact velocity of the indenter, the impact
mass, and the ratio of impact position to the member length are the most sensitive parameters,
followed by the yield strength of the steel member and the member length; meanwhile, member
diameter and member thickness are the parameters least sensitive to the permanent transverse
displacement of CHS steel members. Finally, this study develops a web application tool to help
rapidly estimate the permanent transverse displacement of CHS steel members under impact loads.

Keywords: circular hollow section steel members; Extreme Gradient Boosting; Grey Wolf Optimizer;
hybrid machine learning models; impact effect; transverse displacement

1. Introduction

Nowadays, many cross-section types are employed for construction members in steel
structures. Due to its excellent properties, the circular hollow section (CHS) is considered
one of the most used sections [1]. The CHS steel member increases the strength-to-weight
ratio during serviceability. In addition, it improves structural efficiency and allows for a
longer member span. Consequently, CHS steel members are employed in various well-
designed and highly efficient steel structures worldwide, such as offshore platforms, subsea
pipelines, conveyor columns, overpass columns, building garages, and airport terminals.
Generally, these structures can be subject to impact loads during their design life [2,3]. For
example, in offshore platforms and subsea pipelines, accident loads often lead to tubular
structures failing due to dropped objects or collisions [4,5]. However, the structures may be
subjected to impact loads from accidental or intentional impacts, such as collisions with
vehicles, or terrorist attacks [2,6]. In the event of an impact, structures will gradually lose
their bearing capacity and may even collapse without warning.
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Several experimental and numerical studies have been conducted to determine struc-
tural members’ behavior and failure modes under the impact load [7–17]. Moreover, several
building codes and previous studies have provided guidelines for structures under impact
loads [2,18,19], and many studies have developed analytical procedures (i.e., plastic col-
lapse mechanism theory) to describe the mechanical behavior of solid metal and hollow
sections [20–26]. Nevertheless, they do not provide detailed guidelines for such types of
CHS steel members under impact loads [27,28]. They are usually designed from a me-
chanical perspective and do not adapt readily to routine civil-structural design [2]. Since
impact behavior is a complex engineering task, developing a theoretical model for a specific
problem under impact load is challenging.

Machine learning (ML) methods have recently received considerable attention in civil
engineering [29–35]. Among various regression ML algorithms, the Extreme Gradient
Boosting (XGB) algorithm has recently gained substantial popularity in modeling several
nonlinear mechanical behaviors for classification and regression [36–43]. The XGB provides
good prediction performance by reducing overfitting and controlling model complexity
through its built-in regularization [44,45]. For example, Feng et al. [46] have shown that the
XGB model could predict the shear strength of reinforced concrete deep beams better than
other ML models. Additionally, the XGB model has been shown to perform better than
other ML models for several structural engineering problems [47–49]. However, it should
be noted that ML algorithms require hyperparameters to be set before they can be run.
Therefore, selecting appropriate hyperparameters of ML models for a specific dataset is
critical because the performance of ML models depends on their hyperparameter settings.

In recent decades, metaheuristic algorithms have been used as one of the most popular
research topics in many optimization fields, including the optimum design of truss and
frame structures [50–53] or damage detection [54–56] because of their simplicity and flexibil-
ity, derivative-free mechanism, low dependency on problems, and local optima avoidance.
In contrast to gradient-based methods, metaheuristic algorithms are more efficient because
they are simple and easy to use [57]. To enhance the ability of ML models to generalize,
an optimal set of hyperparameters must be determined. In recent years, metaheuristic
algorithms have gained popularity as an alternative method for fine-tuning the hyper-
parameters of ML models, since they can improve the performance of the optimization
strategy [45,58–62].

Although metaheuristic algorithms have been used for different engineering problems,
there has been no comprehensive evaluation or comparison of metaheuristic algorithms
hybridized with the XGB models for predicting the permanent transverse displacement
(Wf) of CHS steel members. For the first time, this study compares the performance of
several hybrid models by combining the XGB model with the PSO, GWO, MFO, JA, and
MVO algorithms for predicting the Wf of CHS steel members. The hybrid ML models are
trained and tested on an experimental database collected from the literature and evaluated
using various performance metrics. The performance of hybrid ML models is assessed to
find the best model for predicting the Wf of CHS steel members. Finally, a web application
is developed that can provide this prediction quickly and repeatedly.

2. Data Collection

The full-clamped CHS steel members under transverse impact loading using drop-
weight tests are shown in Figure 1. The critical parameters of the specimens are the member
length (L), the member diameter (D), the member thickness (t), the ratio of impact position
to the member length (Lr), the yield strength of the steel member (fy), the impact mass (G),
the initial impact velocity of the indenter (V0), and Wf.

According to Jones et al. [63] and Jones and Shen [23], the idealized deformed cross-
section of full-clamped CHS steel members at the point of impact is shown in Figure 2,
where R is the original mean radius of a member, Wl is the local displacement, Wg is the
global displacement, and Dm is the the maximum outside diameter of a dented cross-section.
The dented zone is somewhat symmetrical about the impact plane for the middle- and
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quarter-span impact tests; meanwhile, it is no longer symmetrical about the impact plane
for the impact position close to support. This method idealizes a deformed cross-section
to estimate the local displacement and global displacement of the permanent transverse
displacement from the experimental measurements of the final cross-section [4]. After an
impact test, the Wf is measured at the indentation point on the member prior to unclamping
and removal from the rig. After removal, the Wf is measured again while supporting the
member on two knife-edged vee blocks spaced L apart (representing the same support
span). It was found that there was very little difference (0.5 mm maximum) between the
two measurements, so an average value was taken [64]. It is worth noting that the Wf is the
main parameter used to estimate the total plastic energy absorbed in a member [4].
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This study collects a comprehensive database of 357 experimental tests of full-clamped
CHS steel members under impact load. The database is collected mainly from the studies
of Jones et al. [63], Chen and Shen [64], and Jones and Birch [65]. Jones et al. [63] conducted
130 tests of fully clamped CHS steel members under lateral impact load, considering several
diameters, lengths, and velocities. Chen and Shen [64] conducted 226 tests of CHS steel
members under lateral impact load. Jones and Birch [65] conducted 54 impact tests on
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CHS steel members under impact load. The database deals with outliers, duplicates, and
missing values. As a result, the final database of the 357 data points used in this study is
summarized in Table 1.

Table 1. Statistical properties of experimental data.

L (mm) D (mm) t (mm) Lr fy (MPa) G (kg) V0 (m/s) Wf (mm)

Min 160.00 19.00 0.90 0.00 217.44 6.50 1.39 3.29

Mean 504.57 52.16 1.69 0.30 453.41 40.11 5.79 27.94

Max 1200.00 120.00 2.00 0.50 559.00 98.00 11.81 101.94

Std 305.43 30.02 0.38 0.21 106.02 20.84 3.12 21.33

Cov 0.61 0.58 0.22 0.69 0.23 0.52 0.54 0.76

The distributions of the input parameters (L, D, t, Lr, fy, G, and V0) and the output
parameter (Wf) are shown in Figure 3. Additionally, Figure 4 shows the correlation matrix
of the variables. Correlation values between the independent variables (L, D, t, Lr, fy, G,
and V0) and dependent variable (Wf) are 0.48, 0.50, 0.27, 0.52, 0.0, 0.43, and 0.69, respectively.
It can be seen that the V0 is strongly correlated with Wf; meanwhile, the variables L, D, t,
Lr, and G are moderately correlated with Wf, while fy is almost independent of the Wf.

Buildings 2023, 13, x FOR PEER REVIEW 4 of 18 
 

This study collects a comprehensive database of 357 experimental tests of full-

clamped CHS steel members under impact load. The database is collected mainly from 

the studies of Jones et al. [63], Chen and Shen [64], and Jones and Birch [65]. Jones et al. 

[63] conducted 130 tests of fully clamped CHS steel members under lateral impact load, 

considering several diameters, lengths, and velocities. Chen and Shen [64] conducted 226 

tests of CHS steel members under lateral impact load. Jones and Birch [65] conducted 54 

impact tests on CHS steel members under impact load. The database deals with outliers, 

duplicates, and missing values. As a result, the final database of the 357 data points used 

in this study is summarized in Table 1. 

The distributions of the input parameters (L, D, t, Lr, fy, G, and V0) and the output 

parameter (Wf) are shown in Figure 3. Additionally, Figure 4 shows the correlation matrix 

of the variables. Correlation values between the independent variables (L, D, t, Lr, fy, G, 

and V0) and dependent variable (Wf) are 0.48, 0.50, 0.27, 0.52, 0.0, 0.43, and 0.69, respec-

tively. It can be seen that the V0 is strongly correlated with Wf; meanwhile, the variables 

L, D, t, L𝑟, and G are moderately correlated with Wf, while fy is almost independent of 

the Wf. 

 

 

Figure 3. Cont.



Buildings 2023, 13, 1384 5 of 18Buildings 2023, 13, x FOR PEER REVIEW 5 of 18 
 

 

 

Figure 3. Distribution of input and output parameters: (a) the member length, (b) the member di-

ameter, (c) the member thickness, (d) the ratio of impact position to the member length, (e) the yield 

strength of the steel member, (f) the impact mass, (g) the initial impact velocity of the indenter, and 

(h) the permanent transverse displacement. 

 

Figure 4. Pearson correlation between input and output parameters. 

  

L 1.00 0.99 0.54 0.07 -0.25 0.57 0.31 0.48

D 0.99 1.00 0.49 0.09 -0.20 0.55 0.34 0.50

t 0.54 0.49 1.00 0.07 -0.52 0.06 0.44 0.27

L
r 0.07 0.09 0.07 1.00 -0.15 0.35 0.23 0.52

f y -0.25 -0.20 -0.52 -0.15 1.00 -0.15 0.11 0.00

G 0.57 0.55 0.06 0.35 -0.15 1.00 -0.18 0.43

V
o 0.31 0.34 0.44 0.23 0.11 -0.18 1.00 0.69

W
f

0.48 0.50 0.27 0.52 0.00 0.43 0.69 1.00

L D t L r f y G V o W f

Figure 3. Distribution of input and output parameters: (a) the member length, (b) the member
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and (h) the permanent transverse displacement.
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3. Machine Learning and Optimization Algorithms

This study uses five popular metaheuristic algorithms (i.e., PSO, GWO, MFO, JA,
and MVO) coupled with the XGB model to investigate the prediction of the Wf of CHS
steel members under impact loading. Due to space limitations, brief descriptions of these
algorithms are presented in this section. The information needed on selected ML algorithms
in this study can be found in previous references [66,67].

3.1. Extreme Gradient Boosting (XGB)

Chen and Guestrin [68] developed the XGB based on the gradient boosting algorithm
proposed by Friedman et al. [69]. The XGB is a highly optimized and parallelized version
of the gradient boosting algorithm. For each iteration of the XGB, the residual is used to
calibrate the previous predictor. Additionally, the XGB uses an approximate algorithm to
find the best-split points. The XGB is characterized by some critical features [68]: paralleliza-
tion (can train with multiple CPU cores), regularization (contains several regularization
penalties to avoid overfitting and generalize adequately), scalability (can run distributed
and process enormous amounts of data), effective tree pruning (can make the splitting up
to the specified max_depth value and then start pruning the tree backward), and missing
value handling (has an in-built capability to handle missing values).

The XGB is superior to gradient boosting in many respects (i.e., the smarter breakup of
trees, random hidden node generation, shorter leaf nodes, and out-of-core predictions) [69].
Moreover, the XGB adds the regularization term in the loss function to avoid overfitting. In
addition, the training time is drastically reduced by parallelizing the entire boosting process
in the XGB [68]. Therefore, the XGB can be used for many engineering simulations and
provides fast and reliable results [70–72]. The details of the XGB can be found in [60,72].

3.2. Particle Swarm Optimization (PSO)

Kennedy and Eberhart developed the PSO algorithm [73], which is inspired by the
complex social behavior of flocking birds. The basic idea of PSO is to share the food place
between groups of birds (also called particles). Particles have two important indexes: (I) the
fitness value and (II) velocity. PSO creates a population of random particles and moves
them using velocity in the search space in every iteration. This velocity term refers to the
best-found solution and each particle’s best experience. The next step would be to repeat
this procedure to find a more promising search area and a better solution. The details of
the PSO algorithm can be found in [73].

3.3. Grey Wolf Optimizer (GWO)

Mirjalili et al. proposed GWO [74] inspired by the grey wolves’ social hierarchy
and hunting behavior. To represent the social hierarchy (leadership), the grey wolves’
population is divided into four levels: alpha (α) is at the top of the hierarchy, leading the
group; beta (β) is next to α in the social hierarchy to help α in making decisions and other
activities; omega (ω) is dominated by other wolves; and delta (δ) dominates ω but submits
to α and β. δ includes caretakers, hunters, sentinels, scouts, and elders [74]. The hunting
behavior is divided into four steps: searching, encircling, hunting, and attacking the prey.
The details of the GWO algorithm can be found in [74].

3.4. Moth Flame Optimizer (MFO)

Mirjalili developed an MFO based on moths’ navigation method through the night [75].
The main inspiration of MFO is the attraction and spiral movement of moths around
artificial light sources. This spiral movement occurs because moths are easily tricked by
artificial light. Due to the extremely short distance, a moth fails to keep a fixed angle when
it sees an artificial light. Therefore, a deadly spiral path is generated in the MFO. Using
MFO, a given optimization problem can be reasonably approximated to its global optimum.
The details of the MFO algorithm can be found in [75].
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3.5. Jaya Algorithm (JA)

JA is a simple yet powerful algorithm introduced by Rao [76]. The JA has a few specific
parameters (i.e., population size and termination condition) without algorithm-specific
parameters being set in advance, which makes it easy to implement. In each iteration, JA
aims to avoid the worst solution and find the best one. The details of the JA algorithm can
be found in [76].

3.6. Multi-Verse Optimizer (MVO)

MVO was proposed by S. Mirjalili et al. [77] and inspired by the multi-verse theory
in physics. The MVO explains how the Big Bang creates multiple universes and how they
interact through the white hole, black hole, and wormhole. MVO utilizes the concepts
of a white hole and a black hole to explore the wormhole and exploit the search spaces
to formulate a population-based algorithm. In the MVO, population size represents the
number of universes, a universe is a solution, and objects in the universe are variables.
Additionally, each solution has an inflation rate (fitness value) that represents the quality of
the solution. The details of the MWO algorithm can be found in [77].

4. Development of Hybrid ML Models

Three performance metrics are used in this study to evaluate the ML models. They are
the correlation coefficient (R2), the root mean square error (RMSE), and the mean absolute
error (MAE). R2, RMSE, and MAE are expressed as follows.

R2 = 1− ∑N
i=1(ti − oi)

2

∑N
i=1
(
ti − t

)2 (1)

RMSE =

√√√√ 1
N

N

∑
i=1

(ti − oi)
2 (2)

MAE =
∑N

i=1|ti − oi|
N

(3)

where N is the number of samples, t is the average of actual values, and [t1, . . . , tN ]
T and

[o1, . . . , oN ]
T are the actual and the predicted values, respectively.

Figure 5 summarizes the entire process of developing the hybrid ML models used in
this study. First, the experimental database is collected and randomly divided into training
and test sets. Then, the training set is used to develop the ML models using the K-fold
cross-validation (CV) technique. Previous studies have explained the idea of the K-fold
CV in detail [32,45,78]. This study adopts a 5-fold CV into the training data set. In the next
step, the optimization algorithms are used to find the optimal hyperparameters based on
the average MAE value over the testing folds. This process is iterated by changing the
training-test ratio and population size. Therefore, many models are built and evaluated
using three metrics (R2, RMSE, and MAE) to adopt the best hybrid ML model. Finally, a
new prediction can be obtained. Based on the best hybrid model, the contribution of the
input variable to output prediction is performed using the SHAP method. In addition, a
web application is developed to predict the Wf rapidly. The following sections introduce
detailed descriptions of the procedure.

Considering the main factors affecting the transverse displacement mentioned in
Section 3, the input variables of the ML models are the L, D, t, Lr, fy, G, and V0, and
the output is the Wf. ML models are significantly influenced by the dataset division
ratio [32,45,66,79–83]. To investigate the effect of database division on ML model perfor-
mance, this study uses seven ratios of 0.60:0.40, 0.65:0.35, 0.70:0.30, 0.75:0.25, 0.80:0.20,
0.85:0.15, and 0.90:0.10 to select the best one for the current database.
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It is worth emphasizing that hyperparameters are the key to XGB models. Therefore,
finding the best combination of hyperparameters for XGB models plays a crucial role.
Table 2 presents the hyperparameters and ranges of the XGB model applied in this study.

Table 2. Hyperparameters of XGB algorithms.

No. Hyperparameters Range Optimal Value of GWO-XGB

1 gama (0.0, 1.0) 0.36999

2 learning_rate (0.01, 1.0) 0.21749

3 max_delta_step (1, 10) 10

4 max_depth (1, 10) 7

5 min_child_weight (0.0, 1.0) 0.76846

6 n_estimators (1, 100) 97

7 reg_alpha (0.0, 1.0) 0.39350

8 reg_lambda (0.0, 1.0) 0.97931

9 subsample (0.0, 1.0) 0.28597

5. Results and Discussions
5.1. Comparison of Performance of Different ML Models

This study develops many hybrid models that combine the PSO, GWO, MFO, JA, and
MVO algorithms with the XGB model, considering the effect of population size and training-
test ratio. The detailed results are presented in the Supplementary Materials. A comparison



Buildings 2023, 13, 1384 9 of 18

of performance metrics on a test set is used to evaluate the ML models’ performance on
unseen data. Accordingly, each evaluation metric is scored from 1 to 35, corresponding
to the training ratios and population sizes. It is noted that the higher the R2 value is, the
higher the score is, and the higher the RMSE and MAE values, the lower the score. When
the value of the evaluation metric obtained by different ML models is the same, the scoring
is equal. After that, all evaluation metric score values are summed up to get the final score
of each ML model. The best results of the PSO-XGB, GWO-XGB, MFO-XGB, JA-XGB, and
MVO-XGB models are highlighted in bold in the tables in the Supplementary Materials.
Table 3 and Figure 6 show the performance of these models based on the R2, RMSE, and
MAE values. In addition, their results are compared with those of the default XGB model to
demonstrate the efficacy of the optimization algorithm. Generally, the training performance
is better than the test for all models. In the GWO-XGB model, however, there is a minor
difference between training and test sets, so there is little overfitting. The GWO-XGB
provides (0.997 and 0.981), (1.207 mm and 2.835 mm), and (0.797 mm and 1.906 mm) for
R2, RMSE, and MAE in the training set and test set, respectively. In contrast, the default
XGB model significantly differs between training and test performances. The default XGB
obtains (1.0 and 0.954), (0.174 mm and 4.248 mm), and (0.094 mm and 2.377 mm) for R2,
RMSE, and MAE in the training set and test set, respectively.

Table 3. Performance of ML models.

Training Set Test Set

Model Pop Training
Ratio R2 RMSE

(mm)
MAE
(mm) R2 RMSE

(mm)
MAE
(mm)

PSO-XGB 150 0.90 0.996 1.295 0.750 0.975 3.097 2.019
GWO-XGB 150 0.90 0.997 1.207 0.797 0.981 2.835 1.906
MFO-XGB 200 0.90 0.995 1.47 0.903 0.969 3.433 2.284

JA-XGB 50 0.90 1.0 0.427 0.313 0.966 3.593 2.280
MVO-XGB 200 0.90 0.996 1.408 0.888 0.975 3.041 2.152

Default XGB - 0.90 1.0 0.174 0.094 0.954 4.248 2.377

It is observed that all hybrid ML models perform better than the default XGB model
in the test set. Compared with the default XGB model, R2 increased by (2.201%, 2.830%,
1.572%, 1.258%, and 2.201%), RMSE decreased by (27.095%, 33.263%, 19.185%, 15.419%,
and 28.413%), and MAE reduced by (15.061%, 19.815%, 3.912%, 4.081%, and 9.466%),
respectively, in the PSO-XGB, GWO-XGB, MFO-XGB, JA-XGB, and MVO-XGB models.
This indicates that the PSO, GWO, MFO, JA, and MVO algorithms can significantly enhance
the capacity of the XGB model. Overall, it seems that the GWO improved the XGB model
over the other optimization algorithms in this study.

According to the results, the GWO-XGB model with a population size of 150 and a
training-test ratio of 0.90:0.10 performs better than the other ML models; meanwhile, the
default XGB model has the worst prediction performance. The optimal hyperparameters of
the best GWO-XGB model are shown in Table 2.

Figure 7 compares the predicted and the actual values of the PSO-XGB, GWO-XGB,
MFO-XGB, JA-XGB, MVO-XGB, and default XGB models. In this figure, the vertical axis
represents predicted values of Wf, and the horizontal axis represents observed values of Wf.
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5.2. Model Explanation

In this section, the Shapley additive explanations (SHAP) method [84] is used to
explain individual and global prediction of Wf. The effect of the Shapley value on the
prediction value is shown in Figure 8. Shapley values are like arrows pointing towards a
predicted value that either increases (positive value) or decreases (negative value).

Figure 9a shows the global importance factors of the seven input variables for the
Wf prediction. The feature with a larger absolute summation of Shapley values is more
important. It can be seen that the V0 and G have a significant influence on the Wf prediction,
followed by Lr, fy, L, D, and t.
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Figure 9b shows the SHAP summary plot. Each point on the graph represents the
Shapley value for each specimen. The red point on the right-hand side of the plot indicates
a positive correlation with the Wf, while the red point on the left-hand side indicates
a negative correlation. Accordingly, when V0, G, and Lr increase, the Wf increases. In
contrast, the Wf decreases if the fy increases. Meanwhile, the L, D, and t are less effective
and unclear on Wf predictions.
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Figure 10a shows the Shapley values of a typical prediction using the GWO-XGB
model for a specimen with L = 1200.0 mm, D = 120.0 mm, t = 2.0 mm, Lr = 0.5,
fy = 468.0 MPa, G = 79.5 kg, and V0 = 9.88 m/s. It can be seen in Figure 10a that the
prediction (60.785 mm) is larger than the base value (29.385 mm). The V0, G, Lr, fy, and
t parameters, shown in red, increase the base value; meanwhile, other parameters (D and
L), depicted in blue, decrease the base value. Among them, the most crucial variable is V0.
For a specimen in Figure 10b with L = 1200.0 mm, D = 120.0 mm, t = 2.0 mm, Lr = 0.5,
fy = 468.0 MPa, G = 98.0 kg, and V0 = 6.28 m/s, the explanation is similar. However, the
most crucial variable is G.
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6. Web Application

The results obtained in this study are valuable, but developing a user-friendly web
application tool would promote GWO-XGB model adoption in engineering practice. The
web application developed in this study uses seven input parameters to directly obtain the
Wf of CHS steel members under transverse impact loads. Notably, there should be no need
for coding to display the results. This web application can also assist engineers in obtaining
accurate and fast results, regardless of the complexity of the equations. Accordingly, using
the web application can save time and effort to estimate the Wf of CHS steel members under
transverse impact load in the pre-design process. The web application can be accessed via
the link https://sakat92-wf-wf-nfdrqz.streamlit.app/ (accessed on 1 May 2023).

7. Conclusions

This study develops several hybrid ML models, combining XGB and five metaheuristic
optimization algorithms (PSO, GWO, MFO, JA, and MVO) to predict the Wf of CHS steel
members under transverse impact load. The following are the conclusions that can be
drawn from the results of this study:

1. Hybrid ML models generalize better than the default XGB model. Compared with
the default XGB model, R2 increases (by 2.201%, 2.830%, 1.572%, 1.258%, and 2.201%),

https://sakat92-wf-wf-nfdrqz.streamlit.app/
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RMSE decreases (by 27.095%, 33.263%, 19.185%, 15.419%, and 28.413%), and MAE
reduces (by 15.061%, 19.815%, 3.912%, 4.081%, and 9.466%) in the test set, respectively,
in the PSO-XGB, GWO-XGB, MFO-XGB, JA-XGB, and MVO-XGB models.

2. Among hybrid ML models, the GWO-XGB model predicts better than the others, with
the highest R2 value (0.981), the lowest RMSE (2.835 mm), and the MAE (1.906 mm)
value in the test set.

3. The SHAP method shows that V0, G, and Lr are the most influential factors in
Wf prediction.

4. A web application is developed to facilitate Wf prediction. Users can quickly visualize
the results using the GWO-XGB model, making it the best tool for promoting the
practical application of the model.

Although the results in this study are great, the developed ML models are based on
the limited database presented in Table 1. Thus, the database should be widened to enhance
the performance of the ML model. Specifically, the findings of this study are focused on
CHS steel members. Other types of members should be considered in future work.

Supplementary Materials: The following supporting information can be downloaded at: https://
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