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Abstract: With the development of the engineering construction industry, knowledge became an im-
portant strategic resource for construction enterprises, and knowledge graphs are an effective method
for knowledge management. In the context of peak carbon dioxide emissions and carbon neutrality,
low carbon emission became one of the important indicators for the selection of construction schemes,
and knowledge management research related to low carbon construction must be performed. This
study investigated a method of incorporating low-carbon construction knowledge into the bridge
construction scheme knowledge graph construction process and proposed a bridge construction
scheme recommendation method that considers carbon emission constraints based on the knowl-
edge graph and similarity calculation. First, to solve the problem of the poor fitting effect of model
parameters caused by less annotation of the corpus in the bridge construction field, an improved
entity recognition model was proposed for low-resource conditions with limited data. A knowledge
graph of low carbon construction schemes for bridges was constructed using a small sample dataset.
Then, based on the construction of this knowledge graph, the entities and relationships related to con-
struction schemes were obtained, and the comprehensive similarity of bridge construction schemes
was calculated by combining the similarity calculation principle to realize the recommendation of
bridge construction schemes under different constraints. Experiments on the constructed bridge low
carbon construction scheme dataset showed that the proposed model achieved good accuracy with
named entity recognition tasks. The comparative analysis with the construction scheme of the project
verified the validity of the proposed construction scheme considering carbon emission constraints,
which can provide support for the decision of the low-carbon construction scheme of bridges.

Keywords: knowledge graph; scheme recommendation; bridge construction scheme; low carbon
construction; knowledge management

1. Introduction

Determining a suitable construction scheme is the most critical preparation task in the
early stages of an engineering project. How to effectively use existing engineering case
data and empirical knowledge to provide decision support for construction schemes for en-
gineers is an important issue. As a key element of the construction organization design, the
construction scheme of the primary bridge project directly affects the construction efficiency
and economic benefits. However, the determination of the construction schemes of the exist-
ing bridge project relies heavily on experienced engineers and managers, which result in the
lack of a systematic summary about engineering knowledge in the decision-making process.
Additionally, carbon footprint and carbon emissions as hot words frequently appear in the
public eye, attracting scholars to carry out research on the assessment and analysis of carbon
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emissions of buildings. Ref. [1] focused on possible approaches to reduce carbon emissions
about low-carbon materials in construction sector for achieving the goal of control climate
change. A study of office buildings showed that steel structures have a certain carbon
emission advantage over concrete alternatives [2]. In the field of infrastructure, there were
relevant research results on carbon emission estimation methods [3]. Concurrently, as a
resource and energy-consuming infrastructure facility, bridges are characterized by high
energy consumption, high carbon emissions and high resource consumption throughout
their life cycle, particularly during construction. Researches on carbon emissions of bridges
includes incorporating 3D bridge model information with carbon footprint analysis for
lifecycle management [4], estimating the carbon footprint of bridges to analyze show the
trends for different bridge materials and spans [5], using a life-cycle assessment method to
analyze environmental impact [6]. Ref. [7] established carbon cost calculation model for
the bridge in the construction stage. To complete bridge infrastructure construction in a
high-quality, efficient, low-carbon and safe manner, research on methods and technologies
that can organize the use of knowledge resources and guide bridge construction in the
direction of green, low-carbon, energy-saving and emission reduction is required.

In 2012, Google formally introduced the concept of a knowledge graph, which is
a semantic network that describes the relationships between entities and allows for a
structured representation of facts such as things generated in the real world and their re-
lated relationships, which are typically defined as a collection of entities and relationships.
Knowledge graphs can be divided into generic and domain knowledge graphs. Generic
knowledge graphs are widely used, but the process of building them is difficult and com-
plex. Generic knowledge graphs are also generally built by large internet enterprises from
massive amounts of data [8]. Conversely, domain knowledge graphs are oriented toward
domain-specific knowledge requirements and require only domain-specific knowledge for
the construction of knowledge graphs, and are thus less difficult to build [9]. Although
the construction of domain knowledge graphs is currently focused on popular fields such
as finance, health care and education, research related to knowledge graphs in the field
of engineering construction was also performed. Ref. [10] constructed a domain knowl-
edge graph for shield construction projects and applied transfer learning algorithms to the
adaptive transfer of construction project knowledge. Liu T et al. [11] proposed a hybrid
BERT-BiLSTM model that combined a bidirectional encoder representation from transform-
ers model (BERT) and bidirectional long-short term memory model (BiLSTM) for the textual
intelligence analysis of water construction accidents, which provided algorithmic support
and a basis for the analysis and decision-making of water construction accidents. Ref. [12]
used entity identification and relationship extraction in power safety hazard records to
construct a knowledge graph of power safety hazards that can quickly locate hazard sites
based on intelligent reasoning model hazard equipment types and hazard phenomena in
power safety hazard scenarios. As shown in existing studies, knowledge graph technology
has good application prospects in the engineering field as a new method of knowledge
management. However, due to certain variabilities of knowledge contents involved in
different fields, specific methods and processes for processing knowledge are different.

In the field of civil engineering, there are also knowledge-based related research
and applications, Ref. [13] developed a knowledge-based risk management tool via case-
based reasoning (CBR) to capture, store, retrieve, and disseminate risk-related knowledge.
Ref. [14] compared the relative capabilities of different surrogate modeling techniques to
directly estimate seismic losses and explained advantages and disadvantages of knowledge-
based surrogate models. In the literature about knowledge graphs in bridge engineering
construction, Yang JX et al. [15] proposed an intelligent ontology model of bridge man-
agement and maintenance information based on semantic ontology; used the industry
foundation classes (IFC) standard to express bridge structural units and management
and maintenance information; analyzed the information conversion mechanism of IFC
and ontology wed language (OWL); and established an information conversion frame-
work. Ref. [16] proposed a knowledge graph construction method in the bridge inspection
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domain using a joint model based on a transformer encoder, bidirectional long- and short-
term memory (BiLSTM) network and conditional random field (CRF) for named entity
recognition and relationship extraction. However, no study investigated the application
of knowledge graphs to low-carbon construction aspects of bridge engineering. Because
a lot of project knowledge experience in the bridge construction field is scattered across
various engineering and construction units without systematic collation, the lack of public
corpus datasets leads to difficulty in constructing bridge construction scheme knowledge
graphs. Thus, the effect of drawing on different domain models for entity recognition and
relationship extraction in low-resource conditions is limited by the small amount of training
data, which can lead to poor performance problems [17]. In terms of low carbon-related
research in the bridge construction field, there was a green low carbon bridge evaluation
system [18], carbon intensity index for the entire life cycle of bridges [19], carbon emission
model for bridges [20], green construction technology [21], etc. However, there is a lack
of effective combination with knowledge management tools. Therefore, there is a need
to combine methods for effective management of bridge low-carbon construction-related
knowledge and establish a knowledge model of bridge construction schemes considering
carbon emission constraints to provide knowledge support for decision-making to achieve
intelligent construction of bridge projects.

This study, thus, analyzes the methods of extracting bridge construction scheme
knowledge and low-carbon construction knowledge in the bridge construction domain,
designs and implements entity recognition, relationship extraction and knowledge storage;
and proposes an improved model of entity recognition to meet the needs of low-resource
conditions. Based on constructing a bridge construction scheme knowledge graph, a
bridge construction scheme recommendation process is established based on the similarity
calculation. Combining the characteristics of engineering practice, bridge construction
scheme recommendations are performed under carbon emission constraints, and carbon
emission analysis is performed using low-carbon construction knowledge. Results are then
compared with existing construction scheme decision analysis methods, providing a new
solution for the intelligent application of low carbon intelligent construction of bridges.

2. Bridge Construction Schemes Knowledge Graph Construction
2.1. Knowledge of Low Carbon Bridge Construction

The bridge construction scheme must be prepared based on the technical level of the
construction and the construction experiences, considering bridge engineering, demolition
engineering, large earthwork engineering, monitoring engineering, drainage engineering
and other divisional engineering. In particular, when solving various problems that occur
during construction, technical staff will record in detail the description of the engineering
situation of the problems and the solutions, which accumulates a wealth of knowledge
and experience.

The knowledge resources accumulated by the technical staff of the construction unit
all come from engineering practice activities, and the preparation of the corresponding
construction documents can more accurately describe the knowledge value of the technical
staff of each profession [22]. Table 1 shows an example of the bridge construction scheme
knowledge on the inspection of steel trestle bridges in bridge construction. A lot of empirical
knowledge in the construction scheme is implicit in the unstructured text, and an effective
method for extracting the relevant entities, relationships and attributes of the construction
scheme from the unstructured text and transforming them into empirical knowledge must
be studied, which can provide basic support to improve the knowledge management and
application of the construction plan in the bridge engineering field.
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Table 1. Example of bridge construction scheme knowledge.

Check Item Allowable Deviation Method and Frequency of Inspection

Midline deviation of bridge
deck (mm) 100 Total station: Check places 3 to 8

Bridge width (mm) ±50 Ruler: 3 to 5 pieces per hole
Bridge length (mm) +500, −500 Total station, steel rule inspection

Connection between
centerline of approach and
centerline of bridge (mm)

30

Ruler: The centerline of the approach
and the centerline of the bridge are,
respectively extended to the long end
of the bridge on both sides to compare
their plane positions

Bridge head elevation
connection (mm) ±50

Ruler: The centerline of the approach
and the centerline of the bridge are,
respectively extended to the long end
of the bridge on both sides to compare
their plane positions

Flatness (mm) ±10 3 m ruler: Measure 3 places × 3 feet
every 100 m

In the context of carbon peaking and carbon neutrality, there is an urgent need to
introduce the concepts of green and low carbon into bridge construction plans to provide
guidance for the green and low carbon construction of bridge projects. The determination
of a low carbon bridge construction scheme requires consideration of the carbon emission
influencing factors, carbon emission calculation parameters, carbon emission calculation
models and carbon emission calculation methods during the bridge construction process,
all of which can be used as low carbon construction knowledge for knowledge management
and as a knowledge base to better serve bridge carbon emission analysis and evaluation.

(1) Factors influencing carbon emissions from bridges

Starting from the carbon emission sources in the construction process of the bridge
project in the materialization stage, by collecting relevant literature and combining with
the actual situation of the engineering project, the influencing factors of carbon emission
are summarized. In the study of prefabricated buildings, the influencing factors related to
it were explored in detail and can be summarized as six potential factors: project overview;
consumption of building materials; transportation and storage; energy consumption; con-
struction organization and management; and carbon emissions in the materialization stage
of the project [23]. The effects of carbon emission influence from a bridge construction
scheme affects material selection, usage of low carbon materials, energy mix schemes, etc.

(2) Bridge Carbon Emission Calculation Model

Due to the difficulty of obtaining data on the operation, maintenance and disposal
phases of bridge projects, the carbon calculation model for bridge projects in the production,
transport and construction phases of materials and equipment can be calculated using
emission factors. A basic model for accounting for carbon emissions in the building phase
based on the emission factor approach [24] is as follows:

Carbon emission = direct/indirect relevant data × emission factor (1)

Carbon emissions in the production stage of building materials are equal to the sum of
the carbon emissions of various construction materials in the production and manufacturing
stages, and carbon emissions are calculated as the product of the consumption or cost of
materials or equipment and its carbon emission factor.

2.2. Knowledge Graph Construction Process

Knowledge graphs are typically constructed in three ways: top-down, bottom-up and
a mixture of the two [25]. Considering that the bridge engineering field is a low-resource
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research field with a lack of knowledge resources and a lack of high-quality structured
datasets for construction schemes, this study used a bottom-up construction approach for
the construction of bridge construction scheme knowledge graphs.

The construction framework of the bridge construction scheme knowledge map is
shown in Figure 1. Unstructured text data such as the construction method, special con-
struction scheme and construction organization design were selected as data sources, and
the construction scheme knowledge graph was constructed with the help of natural lan-
guage processing (NLP) technology, including knowledge extraction, knowledge storage
and visualization and knowledge updating.
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2.2.1. Named Entity Recognition and Relationship Extraction

The effective extraction of entity-to-entity relationships from multisource text data is a
key step in building a knowledge graph of a construction scheme. However, in the field of
engineering construction, the relationship between entities is more complex and may exist
not only implicitly in sentences but also between sentences, paragraphs and even across
documents. Entity-to-entity relationships can be classified as one-to-one, one-to-many and
many-to-many.

The bridge construction scheme contains many natural language text structure data
and unstructured data, and the data must be preprocessed. For the training corpus, the
first step is to annotate it, and this paper used the BIO annotation system to annotate the
training corpus, with B-X representing the beginning of entity X, I-X representing the end
of the entity, and O representing not belonging to any type. Table 2 shows some named
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entity categories of the knowledge graph of the bridge construction scheme combined
with low carbon construction knowledge. For named entity recognition, the commonly
used BERT-BiLSTM-CRF combination model, which is obtained by combining the existing
BiLSTM with CRF and BERT, improved the original BiLSTM model feature extraction
problem and enhanced the overall performance of the model [26].

Table 2. Named entity labels.

Serial Number Type of Entity Begin of Entity Inside of Entity

1 Engineering projects B-PRJ I-PRJ
2 Divisional engineering B-DIV I-DIV
3 Construction schemes B-NAM I-NAM
4 Construction organizations B-ORG I-ORG
5 Construction technologies B-TEC I-TEC
6 Construction steps B-STE I-STE
7 Construction members B-MEM I-MEM
8 Construction machinery B-MEC I-MEC
9 Construction materials B-MAT I-MAT

10 Construction environment B-ENV I-ENV
11 Geological conditions B-GEO I-GEO
12 Construction risks B-RIS I-RIS
13 Carbon emission calculation methods B-CME I-CME
14 Carbon emission calculation rules B-CRU I-CRU
15 Carbon emission influencing factors B-CFA I-CFA

16 Carbon emission calculation
parameters B-CPA I-CPA

17 Carbon emission factors B-CEF I-CEF
18 Carbon emissions B-CEM I-CEM
19 Nonphysical words O O

Relation extraction is the determination of corresponding semantic relations between
entities obtained from text. Relationship extraction is usually built based on entity recogni-
tion. Given a sentence S, a triplet <v, r, t> containing three elements such as head entity v,
relation r and tail entity t was extracted. According to the entity recognition definition of
the bridge engineering construction scheme, the relationship classification between entities
was performed, as shown in Table 3, which defines the correspondence between different
entities of the low-carbon construction scheme. The CNN (convolutional neural network)
algorithm is applied to extract the semantic features of the construction scheme entity
relationships [27] and realize word vector representation, feature extraction and output in
the field of bridge engineering.

2.2.2. Knowledge Graph Visual Presentation

For the storage of domain knowledge graphs, there are primarily relational databases,
resource description frameworks (resource description framework, RDF), triples and graph
databases in three ways [28]. Because there is a lot of relational information about entities
and relationships in the knowledge graph, using a structured database for storage will
generate a lot of redundant stored information; thus, using a graph database as a storage
container for the knowledge graph becomes a popular choice. This study, thus, used the
widely used Neo4j graph database, which is a high-performance graph database whose
data storage structure usually contains nodes and relationships, where nodes are entities
in the knowledge graph and each node corresponds to a label to distinguish different
entity types, while entities also have their own attributes. Edges are semantic relationships
between entities, which are also distinguished by a label and have their own properties.
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Table 3. Semantic relationships between the entities.

Head Entity Semantic Relations Tail Entity

Engineering projects Contains Divisional engineering
Divisional engineering Used Construction schemes
Divisional engineering In Construction environment
Construction schemes Need Construction technologies
Construction schemes Applications Construction steps
Construction schemes Suitable for Construction environment
Construction schemes Staffing Construction members
Construction schemes Equipment configuration Construction machinery
Construction schemes Material configuration Construction materials
Construction members Belongs to Construction organizations
Geological conditions Consider Construction schemes
Construction schemes Risk Construction risks
Construction schemes Impact Carbon emission influencing factors
Construction schemes Methods Carbon emission calculation method

Carbon emission calculation method Based on Carbon emission calculation rules
Carbon emission calculation method Analysis Carbon emission calculation parameters

Carbon emission calculation parameters Corresponding Carbon emission influencing factors

The CSV and JSON format files extracted from the construction scheme text are
imported in bulk into the Neo4j graph database by generating nodes, inserting relationships
and adding attributes. The nodes and edges can be manually manipulated with Cypher
statements, and the imported data can be noise-reduced and verified to complete the
construction of the knowledge graph. The process of constructing the Neo4j graph database
is shown in Figure 2. Using the knowledge graph triad to describe knowledge, it is possible
to link construction methods, construction schemes, construction organization designs and
low carbon construction knowledge to visually represent the complex connections between
entity nodes.
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2.3. Low-Resource Knowledge Graph Construction
2.3.1. Low-Resource Named Entity Recognition

Most existing studies of knowledge graph construction assume that the entities or
relationships in the knowledge graph have sufficient instances of triples to be trained to
obtain a vector representation, thus requiring many manually annotated samples. However,
in knowledge graphs of real-world conditions, many entities or relations have only a small
number of triples; thus, there is a low resource problem [29]. In the bridge engineering
domain, many relations have only a small training corpus, which makes it difficult to
perform knowledge graph research in the bridge domain, and the low-resource problem
in the bridge engineering domain can seriously limit the efficiency and performance of
graph construction. With the continuous development of deep learning techniques, many
deep learning methods were applied to low-resource named entity recognition tasks in
recent years. Related research can be broadly classified into methods for cross-linguistic
transfer [30], data enhancement [31] and integrating automatically annotated corpora [32].

These studies of low-resource knowledge graph construction methods primarily
focused on English to Chinese data, insufficient annotation data and a lack of processing
tools. Cross-language transfer and data enhancement methods can effectively alleviate the
shortage of annotated corpora, but these methods are only applicable to languages with
rich annotation resources. The integration of automatic annotation corpus methods often
requires the development of domain-specific annotation tools, which are less applicable to
different corpus contents and entity categories and cannot be fully applied directly. Because
the Chinese dataset of low-carbon construction schemes in the bridge domain must be
constructed, this study considered incorporating the Bernoulli distribution in the loss
function of the BERT-BiLSTM-CRF model for improvement so that the model parameters
can fit the data more accurately in low-resource conditions and proposes a more general
low-resource named entity model to meet the need to construct the knowledge graph of
low-carbon construction solutions in the bridge domain.

2.3.2. An Improved CRF-Based Entity Recognition Model

The improved CRF-based entity recognition model is a BERT-BiLSTM-CRF model that
improves the CRF layer to improve model recognition. The original CRF layer is a model
of the conditional probability distribution of another set of output sequences given a set
of input sequences that is used to place restrictions on the labeled sequence outputs and
can be represented by the representation p(y|x). Where the state characteristic transfer
function can be represented in the model by a state transfer matrix, the final conditional
probability obtained is:

p(y|x) = 1
Z(x)

exp(wϕ(x, y)) (2)

Z(x) = ∑
y

exp(wϕ(x, y)) (3)

where x and y are maps of a set of eigenvectors, which are the probability that the model
obtains label sequence y under the condition of given text sequence x. The corresponding
loss function is calculated as:

L(w, x) = −∑ lgp
(

y|x(i), w
)

(4)

The CRF method can also consider the sequence label dependencies, but under the
low-resource condition limited by the size of the dataset, the parameter fitting of the model
has difficulty achieving the expected effect, resulting in the output label sequence with
the highest prediction probability not necessarily matching the real label sequence. To
obtain a better entity recognition effect, a new loss function is constructed by incorporating
the Bernoulli distribution into the conditional random field loss function [33], called the
corresponding decoding model BCRF, to combine into a new BERT-BiLSTM-BCRF model
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by incorporating the Bernoulli distribution function into the CRF and adding a distribution
function q to the original loss function calculation formula to construct a new loss function
as follows:

q
(

y|x(i), w
)
=

{
1, y 6= y∗
0, y = y∗ (5)

L(w, x) = −∑
i

lg∑ q
(

y|x(i), w
)

p
(

y|x(i), w
)

(6)

The distribution function q equals 0 or 1 and is Bernoulli distributed. The y* is the
label that the model predicts with maximum probability, indicating the true label. In
Formulas (1)–(6), when the predicted labels of words in the text message are consistent
with the true labels, the loss value obtained is smaller, and conversely, if more predicted
labels are incorrect in the text message, the loss is also larger. The structure of the improved
BERT-BiLSTM-BCRF model is shown in Figure 3. The new loss function formulation was
used for calculation, and the model parameters can be fitted better under low-resource
conditions with a limited training annotated corpus.
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3. Knowledge Graph-Based Construction Solution Recommendations
3.1. Calculation of Construction Scheme Similarity
3.1.1. Comprehensive Similarity of the Construction Scheme

Entity similarity calculation can be used to measure the similarity of key features of
the construction scheme entities such as different conditions and parameters, which is
the key to entity matching and scheme recommendation [34]. Bridge project construction
can be measured in several dimensions from constructors, machines, materials and the
environment. Taking the construction scheme of a bridge project superstructure as an
example, similarity can be analyzed in six dimensions: construction environment, con-
struction unit, construction machinery, construction materials, construction members and
construction risks.

The comprehensive similarity calculation of construction schemes based on knowl-
edge graphs calculates the similarity of entities and relationships of different construction
schemes read from the knowledge graph. The basic process is to obtain the key features
of the construction scheme; use the entity matching methods such as attribute matching
and neighbor information matching to calculate the entity similarity; obtain the influence
weight of each entity class by setting different weight combinations; and finally weight the
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calculation to obtain the comprehensive similarity of the construction scheme. The process
of calculating the similarity of construction schemes is shown in Figure 4.
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3.1.2. Jaccard Similarity Calculation

When there is more than one entity corresponding to the entity class of a construction
scheme, for example, when a construction scheme requires multiple configurations of ma-
terials, machines and members, the neighborhood matching method is used for calculation.
The Jaccard similarity [35,36] coefficient is used to compare the similarity and difference
between a finite set of samples. Given two sets A and B, the Jaccard coefficient is defined as
the ratio of the size of the intersection of A and B to the size of the concurrent set of A and
B, defined as follows:

J(A, B) =
|A∩ B|
|A∪ B| =

|A∩ B|
|A|+ |B| − |A∩ B| (7)

where J(A,B) is defined to be 1 when sets A and B are both empty.

3.1.3. Attribute Similarity Calculation

When attributes are numeric, and by considering the distances of the attribute values
and normalizing them, α is some numeric attribute, a0 and ai are the α attribute values for
the two schemes, and the numeric attribute distances are defined as:

Disαs0,si
= |a0 − ai| (8)

The result after converting the distances into similarities and normalizing is as follows:

Simα
s0,si

= 1−
Disαs0,si

max(Disα)
(9)

where Simα
s0,si

is the numerical attribute similarity of scenarios s0 and si; Disαs0,si
is the

numerical attribute distance of scenarios s0 and si; and Disα is the set of values taken for
the α numerical attribute distances.
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When an attribute is a category, as defined below:

Simβ
s0,si =

{
0, b0 6= bi
1, b0 = bi

(10)

where Simβ
s0,si is the numerical attribute similarity between schemes s0 and si; β is some

numerical attribute; and b0 and bi are the β attribute values of the two scenarios.

3.2. Recommended Method for Low Carbon Bridge Construction Schemes
3.2.1. Recommended Process for Construction Schemes

The similarity-based construction case recommendation process determines the project
engineering information and extracts the key features; retrieves the corresponding con-
struction scheme cases [37]; considers the key features of the scheme corresponding to the
entity class; and measures the similarity of the key features of the construction scheme,
which calculates the comprehensive similarity of the construction solution based on the
constructed bridge construction scheme knowledge graph. When the similarity does not
reach the threshold, there are no similar construction schemes, and the construction scheme
recommendation cannot be completed; when the similarity reaches the threshold, simi-
lar cases will be recommended according to their similarity values, a new construction
scheme will be generated by modifying and reusing the cases, and the construction scheme
knowledge graph can be updated. The specific process is shown in Figure 5.
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3.2.2. Recommended Construction Scheme Considering Carbon Emissions

The carbon emissions of various bridge construction schemes can be calculated by a
carbon calculation model, which is used as a carbon emission indicator for the analysis and
evaluation of the construction scheme. Taking the carbon emission analysis of the material
and machine production phase of the construction scheme as an example, the types and
quantities of the primary materials, energy and machines used are counted first, and the
corresponding carbon emission analysis list is listed. By matching the component names
in the parameter library and the inventory library, the carbon emission factors for energy,
materials and labor in the basic database are linked and then combined with the carbon
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emission measurement model formulae and the corresponding calculation procedures, and
the carbon emissions for the production phase of the material of different construction
schemes are quickly calculated [38].

The calculated carbon emissions of the construction scheme measured by the car-
bon emissions calculation program are used as a low carbon indicator, combined with
the similarity of the construction scheme, which can set limits on the carbon emissions
measurement results to set constraints on the recommendation of the construction scheme.
When performing the construction scheme similarity calculation, the carbon emissions are
supplemented in the form of a (scheme, calculation result, carbon emissions) triad to the
construction scheme knowledge graph, which can be calculated by matching numerical
attributes between the carbon emissions of different schemes while supplementing with
setting the corresponding weights to achieve the recommendation of low carbon bridge
construction solutions considering the carbon emission indicator and using it as a constraint.
The corresponding process is shown in Figure 6.
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4. Experiments and Applications
4.1. Dataset Production

Experimental data were primarily collected from the construction scheme informa-
tion, technical delivery information, commercial information and measurement review
information of the bridge construction projects, as well as the internet search for bridge
superstructure construction method text information, bridge engineering special construc-
tion scheme text information and construction organization design text information. The
dataset consisted of 27 bridge construction-related documents and 1 bridge carbon emis-
sion analysis report, with the help of a word dictionary to mark up the experimental
text in batch. The process of construction dataset is shown in Figure 7, which contained
8 representative bridges built by China Construction Third Bureau Group Co., Ltd. us-
ing different construction schemes. By writing a Python program and compiling with
Pycharm2021.2(Edu) software, read the corpus data in the document to achieve BIO an-
notation and obtain the dataset stored in the txt format file. The low-carbon construction
aspect of the bridge includes knowledge of carbon emission factors, calculation criteria,
calculation parameters and other low-carbon analysis in the field of bridge engineering,
involving carbon emission factors including asphalt, diesel, petrol, concrete, steel and other
common construction materials.
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4.2. Experimental Analysis

(1) Evaluation indicators

Three metrics were used to evaluate the performance of the BERT-BiLSTM-BCRF
model in entity recognition: Precision P Recall R (Recall), and F1 value. Precision is a
measure of the accuracy of positive case prediction; recall is a measure of how many true
positive cases the model can identify; the F1 value is the summed average of precision
and recall, with F1 reaching its best value at 1 and its worst value at 0. The corresponding
formula is as follows:

P =
TP

TP + FP
(11)

R =
TP

TP + FN
(12)

F1 =
2PR

P + R
(13)

where TP (true positive) is the number of positive samples that are correctly identified; FP
(false-positive) is the number of false-negative samples; TN (true negative) is the number
of negative samples that are correctly identified; and FN (false-negative) is the number of
positive samples missed.

(2) Experimental analysis

The dataset for this experiment was randomly divided into training, validation and
testing datasets in a ratio of 8:1:1, which means 80% of the bridge construction scheme data
were randomly selected for training the BERT-BiILSTM-BCRF model, 10% for validating
the model and 10% for testing its performance. The primary hardware and software
used to conduct the construction scheme entity recognition included the operating system
Windows 10 Professional, an Intel(R) Core(TM) i7-8700 CPU operating @ 3.20 GHz CPU
with 16 GB of RAM, the compilation platform Pycharm, the Python 3.8 programming
language, and the open source library TensorFlow.

Taking the model training process with epoch = 50 and batch size = 64 as an example,
the loss function changes during model training, as shown in Figure 8. It can be seen in
Figure 8b the valid loss function curve fluctuated after being trained by 10 epochs, which
indicates that the later epochs were overfitted. The optimal accuracy was reached in the
10th epoch and the final recognition effect of some entities on the bridge construction
scheme dataset is shown in Table 4.
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Table 4. Partial named entity recognition model identification results.

Entity Category
BERT-BiLSTM-BCRF

Number of Entities
P R F1

Divisional engineering 0.9563 0.9918 0.9737 486
Construction schemes 0.9683 0.9242 0.9457 66

Construction organizations 1.000 0.7143 0.8333 7
Construction technologies 0.9593 0.8519 0.9020 27

Construction steps 0.9630 1.000 0.9811 52
Construction machinery 0.9487 0.9250 0.9367 40
Construction materials 0.9869 0.9967 0.9918 302

Construction environment 0.9600 0.8276 0.8889 29
Average 0.9678 0.9039 0.9317 -

From the experimental performance results of the model shown in Table 5, the accuracy,
recall and F1 values of the hybrid BERT-BiLSTM-BCRF model proposed in this study
achieved good results during testing with the bridge construction scheme dataset. In
particular, the weighted average F1 value reached 0.9317, indicating that the BERT-BiLSTM-
BCRF model can identify multiple construction scheme type entities with high F1 values,
indicating good prediction performance between the real and predicted labels.

Table 5. Carbon footprint comparison between different schemes.

Serial
Number

Main
Supplies

Quantities
Unit

Carbon Emission (tCO2e)

Incremental
Launching

Floating
Crane

Incremental
Launching

Floating
Crane

1 Concrete 1245 1483 m3 280.125 333.675

2 Steel 1124 970 t 2472.8 2134

Total 2752.925 2467.675

4.3. Knowledge Graph of Bridge Construction Schemes

By constructing the knowledge graph of the identified entities and relations, storing
and visualizing them with the help of the Neo4j graph database, and fusing the triads
extracted from the construction scheme, the obtained knowledge graph of the bridge con-
struction scheme is shown in Figure 9. The relationship edge and the entities on both
sides form knowledge. For example, the triad of nodes and edges <“cofferdam construc-
tion”, “equipment configuration”, “excavator”> shows that “cofferdam construction” is
the construction scheme entity and “excavator” is the construction machinery entity, which
expresses the knowledge that “the cofferdam construction scheme requires an excavator as
the construction machine”.
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In addition to comprehensive consideration of bridge engineering in carbon peaking
and carbon neutral backgrounds, the bridge construction knowledge graph is comple-
mented for bridge construction carbon emission accounting methods, analysis standards,
influencing factors, calculation parameters, carbon emission factors and other related
knowledge to provide a reference basis for analyzing the green and low-carbon levels of
bridge engineering. This process is also a preliminary exploration of the construction of a
knowledge graph for low-carbon construction in the field of bridge engineering. Based on
the bridge construction scheme knowledge graph in Figure 9, a bridge construction scheme
carbon emission analysis knowledge network of construction scheme and carbon emission
influencing factors, calculation methods, calculation standards, calculation parameters
and corresponding carbon emission factors was constructed, as shown in Figure 10, to
help project managers understand the steps and knowledge involved in carbon emission
analysis and calculation of bridge construction schemes, and enhance the knowledge of
low carbon bridge construction utilization and efficiency.

4.4. Recommended Construction Schemes under Carbon Emission Constraints

After completing the construction of the knowledge graph of the low-carbon bridge
construction scheme, the corresponding construction scheme comprehensive similarity
calculation program and the construction solution intelligent recommendation system
page were developed. In the front-end page, the relevant engineering characteristics of
the recommended construction schemes were input into the database and connected to
the back-end calculation program. By reading the entities and relationships in the Neo4j
database, different similarity calculation methods were used to match and calculate the
entities related to the construction environment, construction units, construction machinery,
construction materials, construction members and construction risks, and weights were set
for each type of entity to obtain the construction schemes. The overall process is shown
in Figure 11.
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Similarly, when recommending construction schemes under carbon emission con-
straints, the carbon emission constraint was set when inputting engineering features, and
the scheme recommendation process will add the entity similarity calculation on carbon
emissions when performing similarity calculations through a knowledge graph. Then, the
construction scheme recommendation considering carbon emissions will be obtained, and
the recommendation result is shown in Figure 12.
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4.5. Comparison of Construction Schemes

To ensure the reasonableness and accuracy of the recommended results of the con-
struction scheme, carbon emission analysis and calculation were performed for the recom-
mended results without carbon emission constraints and the recommended results with
carbon emission constraints considered. According to the carbon emission calculation
model, units such as steel and concrete were transformed as necessary and multiplied by
the corresponding carbon emission factors to obtain a comparison of the carbon emissions
and energy consumption obtained for the two construction options [39–42]. The results of
the carbon emission analysis are shown in Table 5. Considering the carbon emissions of
the different construction schemes, the construction of the floating crane scheme produced
less carbon emissions, indicating that the floating crane construction option was more
advantageous in terms of low carbon construction.

The project department aimed to complete the construction of the bridge superstruc-
ture with high quality, high efficiency and safety. Based on bidding documents, bidding
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reply, construction drawings, a construction contract and a survey of the project site,
managers and engineers analyzed and compared decisions, as shown in Table 6.

Table 6. Comparative analysis of construction schemes without considering low carbon.

Schemes Feasibility Schedule Analysis
External

Environmental
Influences

Analysis of Measures

Incremental launching Feasible Overland assembly
Intermittent channel

closure for 20 days for
jacking work

Five sets of temporary piers are set
up within the river, the rest of the
piers and assembled supports are
located on the river bank, which is

less difficult to construct

Floating crane Feasible Floating assembly

Floating crane
construction requires

95 days of intermittent
cutoff

The assembled supports are all
located within the river, making

construction difficult

After a comparative analysis of the construction options with conventional low-carbon
factors not being considered, it is more advantageous to use the floating crane construction
scheme based on (1) a real analysis of the decision, which showed that using the incremental
launching construction scheme is better; and (2) similarity calculations from the perspective
of green low-carbon construction. Based on the bridge carbon emissions analysis and
calculation of the floating crane construction scheme, 2467.675 tons of carbon dioxide is
better than the incremental launching construction scheme, which verifies the reliability of
the recommendation method.

Results also show that the traditional method of construction scheme decision analysis
lacked a combination of green, low-carbon ecological and environmental protection con-
cepts. Therefore, the research of bridge low-carbon construction scheme recommendation
based on knowledge graphs conducted in this paper can provide decision-making for
construction schemes from the knowledge management perspective by combining more
bridge low-carbon construction knowledge during bridge engineering infrastructure con-
struction and can provide a solution for green bridges from the perspective of improving
the level of intelligent application. This study, thus, described a method of knowledge
management and scheme recommendation solutions for the construction of green bridges
that can improve the level of intelligent application and provides new ideas and methods
for the comparison of bridge construction schemes in engineering projects.

5. Conclusions

This paper proposed a method for recommending bridge construction schemes based
on a knowledge graph, which can recommend bridge construction schemes considering
carbon emission constraints and assist in decision-making for bridge construction manage-
ment. The primary findings of this study were as follows:

(1) This study proposed a method that combines knowledge graph technology with
scheme recommendation; proposes new knowledge management tools to organize and use
construction scheme knowledge and low-carbon knowledge in the bridge engineering field;
supplements existing construction unit knowledge management tools; and improves the
previous construction units’ inability to fully incorporate carbon emissions when making
construction decisions by considering construction scheme recommendations made under
carbon emission constraints. This study also provided a new basis for decision-making and
analysis by considering carbon constraints.

(2) The CRF model was improved by using a loss function that introduced the Bernoulli
distribution to build a BCRF model layer and proposed a BERT-BiLSTM-BCRF model for
low-resource entity recognition. Experiments were performed with the bridge construction
scheme dataset, and experimental results showed that compared with the generic methods



Buildings 2023, 13, 1352 19 of 21

of knowledge graphs in other fields, the proposed bridge construction scheme can be
performed effectively with limited datasets. Results also validated the usefulness of the
knowledge graph construction method in the low carbon bridge construction field.

(3) The similarity calculation method combined with the knowledge graph can perform
the similarity calculation based on the entities and relationships in the knowledge graph,
and by setting different combination weights, can recommend bridge construction schemes
while considering carbon emission constraints. Recommendations from the proposed
method were reasonable compared with traditional decision analysis without considering
carbon emission constraints, which can promote the intelligent development of construction
decisions in bridge construction. The proposed method can also provide a reference for the
design and application of recommendation systems in the engineering field.

The results of this study provide information that can aid the search for and visu-
alization of relevant knowledge, and future research should continue to improve bridge
construction scheme knowledge by enriching and complementing the knowledge graph,
which can provide more accurate service support for application scenarios such as original
graph application, knowledge retrieval, knowledge Q&A and intelligent recommendation
of the knowledge graph. This study also provided a comparison and selection for bridge
construction scheme decisions and implementation in real engineering project construction.
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