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Abstract: The paper exposes the experience of València in applying climate‑resilient thinking to the
current revision of the city’s General Urban Development Plan. A semi‑quantitative, indicator‑based
risk assessment of heat stress was carried out on the 23 functional areas of the city sectorized by the
Plan, including modeling and spatial analysis exercises. A data model of 18 indicators was built to
characterize vulnerability. A thermal stress map was developed using the URbCLim model and a
heat index was then calculated using Copernicus hourly data (air temperature, humidity, and wind
speed) for the period of January 2008–December 2017 at a spatial resolution of 100 m × 100 m. Gen‑
eral recommendations at the city level as well as guidelines for development planning in the func‑
tional areas at risk are provided, with specifications for the deployment of nature‑based solutions as
adaptation measures. From a planning perspective, the study positively informs the General Urban
Development Plan, the City Green and Biodiversity Plan, and contributes to City Urban Strategy
2030 and City Missions 2030 for climate adaptation and neutrality. Applying the same approach to
other climate change‑related hazards (i.e., water scarcity, pluvial flooding, sea level rise) will allow
better informed decisions towards resilient urban planning.
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1. Introduction
In a scenario of population growth and usually limitedmunicipal budgets, citiesmust

face increasingly complex challenges, such as the management of land, waste, and energy,
assurance of water quality and rainwater management, reduction of air, soil, and noise
pollution, mobility management, creation of economic opportunities, maintenance and in‑
crease of biodiversity, food security, health andwell‑being, a progressivelymore inclusive,
fair, and equitable society, aswell as themore pressing need to fight and adapt to the effects
of climate change [1].

The Intergovernmental Panel on Climate Change (IPCC), already in its fifth iteration
andnowwith its sixth evaluation report, reaffirms climate change as a verifiable reality that
entails a progressive change in climate variables as well as an increase in the frequency
and severity of extreme events (i.e., floods, heat waves, storms). It also concludes that,
even if there was the economic and political will to immediately stop all greenhouse gas
(GHG) emissions that are causing the increase in global temperature and pollution, the
damages to the functioning of the climate that generates the impacts already considered is,
in many cases, irreversible and irreparable, such as the melting of the polar ice caps and
the consequent sea level rise [2,3].

On the other hand, from a disaster risk management perspective, cities have a lead‑
ing role to play in managing the risks [4] associated with climate change, such as those
due to extreme temperatures. In this sense, the Sendai Framework for Disaster Risk Man‑
agement [5] of the United Nations promotes the adoption of measures to limit exposure,
reduce vulnerability, increase capacity, and attenuate hazards in order to reduce existing
risks and prevent new risks.
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Mitigation, understood as human intervention to reduce emission sources or improve
GHG sinks, is therefore essential, sincemore than 40%of total GHGs are emitted by human
activities [2], but insufficient. Adaptation, as the process of adjusting our socio‑ecological
systems to the current or expected climate and its effects, becomes imperative [1,6].

Urban areas can be understood as complex socio‑ecological systems that are directly
and/or indirectly co‑responsible for global change through their contribution toGHG emis‑
sions and, at the same time, receptors of the usually adverse climate impacts [7]. Currently,
the share of the urban population in the world’s population has reached 56%, which is ex‑
pected to increase to 9.7 billion by 2050, with 68% of inhabitants living in urban areas [8].
Despite the fact that estimates of global urban land stated in various sources vary widely
from less than 1% to 3%, mainly due to different definitions of urban land [9], urbaniza‑
tion processes affect the sustainable use of natural resources and put important pressure on
ecosystems. Moreover, cities are supposed to be responsible formost of the emissions. The
World Resources Institute Global identified greenhouse gas emissions by sector in 2016 as
follows: energy use in buildings: 17.5% (commercial: 6.6%, residential: 10.9%); transport:
16.2%; energy use in industry: 24.2%; agriculture, forestry, and land use: 18.4%; waste
disposal: 3.2%; and industry: 5.2% [10].

The artificialization process, motorized mobility, energy demand, and loss of soil per‑
meability cause important changes in the water cycle, and thermal stress derived from the
intensification of the urban heat island effectmay also cause environmental, economic, and
social damages. These damages include impacts on health conditions, especially to elder
generations [11], harm to housing and infrastructure, loss of business or loss of productiv‑
ity, and increased household and public service energy demand, among others. Given this
situation, despite essential efforts at the global level with large‑scale international agree‑
ments, certain decisions and actions can and should be conducted at the local level.

In this context, urban planning and management can be seen as a powerful instru‑
ments through which climate action could be effectively integrated from both mitigation
and adaptation perspectives, combining coping, adaptive, and transformative capacities
to build more resilient territorial and city models [1,7].

Depending on the administrative structure and the distribution of powers and respon‑
sibilities, many local authorities have robust resources and capacity for climate action, es‑
pecially relevant from the perspective of adaptation, through the articulation of local poli‑
cies such as urban planning, drinking water supplies, sanitation networks and wastewater
treatment, the management of roads and public spaces, environmental protection, and
public health [1,12].

In this context, it is worth noting that the European Strategy for Adaptation to Climate
Change 2021 [13], like the previous 2013 strategy, recognizes spatial and urban planning
as the main disciplines through which climate action should be implemented due to their
ability to coordinate sectoral policies and land use decisions. Additionally, in the same
direction, the EuropeanCommission’s proposal for the first EuropeanClimate Law aims to
turn into law the goal set out in the European Green Deal: that the European economy and
society become climate neutral by 2050 [14]. Spatial and urban planning have a relevant
role to play in achieving this goal.

In Spain, the potential of spatial and urban planning to address climate change was
recognized at the state level by Law 7/2021 on 20 May, entitled the Climate Change and
Energy Transition Law [15]. In its fourth and final provision, the law modifies the con‑
solidated text of the Land and Urban Rehabilitation Law, approved by Royal Legislative
Decree 7/2015 on 30 October, incorporating the need to consider the risks arising from
climate change in land use planning [16]. Although it is too soon to really evaluate the
impact of this modification of the Land and Urban Rehabilitation Law, it is expected to be
a remarkable catalyst towards more resilient planning in the Spanish context.

The renaturing of cities through increased emphasis on the use of nature‑based so‑
lutions (NbS) has been gaining significance in the climate change context in recent years,
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since it offers urban areas the opportunity to deliver multiple environmental, social, and
socio‑economic benefits with blue and green non‑regret interventions [7].

NbS are conceived as interventions that use natural ecosystems or incorporate ele‑
ments inspired by nature and its processes, such as green roofs and facades or natural
lamination rafts, among others, to help society cope with climate change. This approach
values multifunctionality and the environmental, social, and economic co‑benefits of NbS
being able to simultaneously respond to different urban challenges, as well as with good
cost‑effectiveness ratios [7,17–20].

To successfully deploy NbS to address climate change, it is important to have a good
understanding of the existing environmental conditions and evaluate the spatially explicit
distribution of risks and vulnerabilities within the city in order to identify the areas in need
of priority action [1,21–24].

1.1. Context and Description of the Case Study
València is the capital city of the Autonomous Community of València. The city is lo‑

cated on the eastern Mediterranean coast of Spain and is the third largest city in the coun‑
try demographically and economically. In 2021, the population was 800,180 inhabitants,
which amounted to 1,581,057 inhabitants if its metropolitan area was included, thus being
the third most populated city in Spain after Madrid and Barcelona. Its climate is character‑
ized by hot summers and low rainfall, with episodes of heavy rain. Climate change pre‑
dictions suggest that higher temperatures, less precipitation, and more extreme weather
episodes associated with rainfall and heat wave events are likely.

The vision and development principles that guide the municipal public policies and
the plans and strategies developed by the city of València are those of a 21st century city:
healthy, free of emissions and pollution, green and natural, participatory, supportive, and
inclusive, tailored to people. This vision and these principles emerge in the city’s Urban
Agenda 2030 [25], for which the design, proposed by the municipal government, followed
a co‑participatory process in which almost all municipal departments and the representa‑
tives of the civil society were actively involved. Within Urban Agenda 2030, València also
launched València Climate Missions 2030, which proposed four axes—healthy city, sus‑
tainable city, shared city, and entrepreneurial city—to develop strategic lines that cover
the objectives of sustainable development, with an important focus on addressing climate
change and energy transition [26].

At the regional level, València has amature territorial and urban planning system that
is specified in Law 5/2012, entitled Territorial Planning, Urbanism and Landscape of the
Valencian Community. This law describes the articulation of multi‑scale planning instru‑
ments, including the Territorial Strategy of the Valencian Community, Territorial Action
Plans, the General Urban Development Plan, and other multisectoral strategic territorial
actions. The Territorial Strategy of the Autonomous Community of València also includes
specific formulas for territorial governance, which allow administrative andpublic–private
cooperation and coordination to develop dynamic projects in the territory, with a comple‑
mentary distribution of powers betweenpublic administrations at regional, provincial, and
local levels. Law 6/2022 was approved on 5 December 2022, entitled Climate Change and
Ecological Transition of the Valencian Community, which was considered a very relevant
step towards resilience in the region [27].

From the early 2000s, the city of València has joined a series of climate action initia‑
tives, startingwith the Covenant ofMayors signed in 2009, with the commitment to reduce
GHG emissions by 20% by 2020 through the approval of a Sustainable Energy Action Plan
(SEAP) 2010, followed by the Strategy Against Climate Change València 2020 in 2011. The
integration of two previous plans, the Environmental Action Plan—which formed part of
the Local Agenda 21 process—and the SEAP itself, led to new commitments in 2014 and
the Covenant of Mayors for Climate and Energy 2015. In 2017, the València 2050 Plan
for Adaptation to Climate Change was published in collaboration with the different areas
of the City Council involved. In April 2019, the municipal plenary session approved the
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Sustainable Energy and Climate Action Plan (SECAP). In September 2019, the municipal
plenary session approved the Climate Emergency Declaration. In August 2020, the City’s
Energy Transition Board, made up of representatives from all social sectors of València
(NGOs, academia, public, and private), was created to develop a participatory roadmap
towards decarbonization. In September 2020, the municipal plenary session approved the
València 2030 Strategic FrameworkAgreement, an urban agenda tool aimed at accelerating
the transition towards a more sustainable, healthier, more shared, and more prosperous
city. In February 2021, the municipal plenary session approved the ‘València neutral city’
mission aimed at achieving climate neutrality in three city neighborhoods by 2030. In
March 2021, the municipal plenary session approved adherence to the Green City Accord,
a commitment by European cities to the conservation of the environment, agreeing to take
measures to improve air quality, the use of water, and the conservation of urban biodi‑
versity, moving towards a circular economy, circular urban planning applying retrofitting
approaches and multifunctionality of spaces, and reduction of noise pollution, as objec‑
tives to be met by 2030.

1.2. Climate Change Related Hazards in València
The most relevant climate‑related hazard in València is heat stress, with an extraor‑

dinary impact on human health and well‑being that is foreseen to worsen in the com‑
ing decades due to climate change. The historical data collected for average temperature
in València in the period 1951–2022 showed an increasing trend (Figure 1). The period
1994–2021 was among the warmest years on record for surface temperature (except 2010).
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The following figures show temperature projections (based on Euro‑CORDEX) for
the future climate change scenarios RCP 4.5 and 8.5 as well as observational data. The
evaluation of all of the indicators analyzed in relation to temperature indicated a positive
trend. Notably, this increase in temperatures was even greater for the RCP 4.5 climate
scenario from 2040 onwards.

As shown in Figure 2, by the end of the century, the maximum annual temperature
may rise between 1.8 and 3.2 ◦C, with respect to the reference period (RCP 4.5 and 8.5,
respectively). In addition, climate models show that this increase would be greater for
annual minimum temperatures rising between 2.1 and 4.0 ◦C.
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In addition, climate models show a decrease in the number of days below freezing
(Tmin < 0 ◦C) that, together with the decrease in duration and frequency, predict the dis‑
appearance of cold waves in the RCP 8.5 scenario for the last half of the XXI century.

Regarding temperature‑related extreme events associated with thermal comfort and
the well‑being of the population, projections show an increase in the duration of heat
waves as well as an increase in the number of warm nights (number of days in a period in
which theminimum temperature exceeds the 90th percentile of a reference climatic period),
which may be between 2 and 3 times more frequent by the end of the present century.

On the other hand, in the last decade there has been a slight increase in the duration
and frequency of heat waves (Figure 3). This increase in the maximum duration of heat
waves may mean an average duration of heat waves of around 17 days between the years
2010 and 2039, i.e., double the average duration of the historical period 1971–1980.

1.3. The Revision of the General Urban Development Plan of València: An Innovative Approach
In 2018, the València city council started revising the General Urban Development

Plan using an innovative approach, which was awarded a prestigious national award by
the Spanish Training and Urban Development Foundation.

The revision of the General Development Urban Plan applied an innovative approach
with a strong spatial component that materialized in the delimitation of 23 functional plan‑
ning areas, as described in the Special Plan of Urban Quality Guidelines of València [28]
(Figure 4).

The 23 functional areas resulted from an analysis of historical development, physi‑
cal support, as well as administrative division of the city. However, some areas, specif‑
ically the outermost areas, exceeded the administrative boundaries of the municipality,
so existing interactions with the adjoining municipalities of Mislata and Xirivella should
be studied.
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The functional areas were characterized based on indicators of a physical, urban, so‑
cial, and environmental nature (Figure 5), which were organized around thematic fields
(land, built heritage, social identity and culture, facilities, public space, housing, and mo‑
bility) in which urban planning has the capacity to act. Under comparable parameters,
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functional imbalances could be found and corrected between functional areas, improving
accessibility to services on foot and optimizing the land, thus responding to the guidelines
of sustainability, efficiency, and satisfaction of citizen demand. The two fundamental pa‑
rameters on which the functional balance of residential areas was built were: (a) the avail‑
ability of land for pedestrians, and (b) the accessibility to public services.
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This functional delimitation generated a new structure of the city and increased the
degree of influence of its neighborhoods, which acquired the category of centrality of each
functional area andwas the starting point of the green infrastructure of the area and around
which superblocks would be available. Only a few neighborhoods, such as Mestalla (dis‑
tributed between areas 6, 7, and 9), Grao, and San Llorens, exceeded the scope of the func‑
tional areas. In the case of Mestalla, the barriers of Avenida de Aragón and Avenida del
Puerto have historically divided this neighborhood, as they are rail traffic axes and provide
access to the port.

The characterization of the functional areas was then completed with an analysis of
urban green infrastructure accessibility and connectivity, and on this basis, detailed plan‑
ning guidelines were drawn up for each functional area.

Through the functional areas, the entire city was connected at two scales: that of road
traffic, supported by the main infrastructure of the city, and that of the pedestrian, based
on the urban green infrastructure. Thus, the city was viewed as a network that connects
public services and neighborhoods.

In these functional areas, the concept of neighborhood was recovered as a space
in which the interventions for the improvement of urban quality would be most effec‑
tively implemented.

The innovative approach and planning process described above were used as a basis
for the applied research work described in this paper in the following sections.

The revision of the General Urban Development Plan represented an opportunity
to strengthen the consideration of climate risks, thus allowing better informed decision‑
makingwith regards to urban planning and riskmanagement and the deployment of green
and blue infrastructures and NbS as climate action measures.

The operationalization of climate action in the urban planning of València anticipated
the requirements of climate change laws at the state and regional levels reinforced in 2021
by the institutional Climate Emergency Declaration and the commitments made by the
local government.
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2. Materials and Methods
2.1. Study Design and Data Sources

The incorporation of the climate change perspective into the revision of the General
Urban Development Plan of the city of València constituted a step forward in the city’s
pathway towards climate action and resilience.

In this context, the Plan stands out as one of the pioneer formal planning instruments
in Spain, applying spatially explicit vulnerability and risk assessment in the planning pro‑
cess. The novelty of the Plan relies on the fact that the characterization of functional areas
was complemented with an indicator‑based risk assessment, which allowed the prioriti‑
zation of areas with the most significant risk. For those functional areas at risk, guide‑
lines and recommendations for detailed planning were defined, promoting NbS as adap‑
tation measures.

The vulnerability and risk assessment was carried out for thermal stress and its effect
on the population, as it is one of the priority climate hazards in Mediterranean cities, and
València is not an exception [29,30]. Thermal stress on the population was identified in the
city’s Strategic Agenda 2030 as well as Missions València 2030 [25].

The analytical framework for the evaluation of vulnerability and risk was that sug‑
gested in the “Guide for the elaboration of local plans for adaptation to climate change
in Spain” [29] (Figure 6), which was based on the approach proposed in the IPCC’s Fifth
Assessment Report on Impacts, Adaptation and Vulnerability [2].
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2.2. Procedures
In this study, the climate hazard was characterized by means of the heat index indica‑

tor [32], which was derived from multiple regression analysis and considered the impact
of air temperature and relative humidity on human comfort (Equation (1)) [30,32,33]. For
this, data provided by the urban climate model UrbClim [34] based on the Copernicus EU
program were taken as a reference, with a spatial resolution of 100 m × 100 m and an
hourly temporal resolution for the period between January 2008 and December 2017. The
day with the highest heat index score within the period was selected as a representative
day of the future climate in a climate change scenario [33].

ST_c = −8.78469476 + 1.61139411 T+ 2.338548839 HR− 0.14611605 T HR
−0.012308094 T̂2 − 0.016424828 HR̂2 + 0.002211732 T̂2 R

+0.00072546 T HR̂2 − 0.000003582 T̂2 HR̂2
(1)

As already stated, the evaluation of the risk due to thermal stress on the population
used an indicator‑based approach (Table 1). A semi‑quantitative, indicator‑based risk as‑
sessment was applied. For each risk component, a series of indicators was selected.
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Table 1. List of indicators used in the vulnerability and risk assessment of functional areas for thermal
stress on human population. HZ = Hazard; EX = Exposure; VU = Vulnerability; SE = Sensitivity; AC:
Adaptative Capacity. Source: Own elaboration.

Component Dimension Type Indicator Definition

HZ Heat index Heat index
EX Population Total population Number of inhabitants per functional area
VU SE Land Buildability Building coefficient per functional area

VU SE Land Efficiency of the
urban fabric

Compacity: building volume by the total surface of
the functional area

VU SE Population Population > 65
years old % of inhabitants > 65 years old in the functional area

VU SE Population Population < 15
years old % of inhabitants < 15 years old in the functional area

VU SE Public space Artificialized
areas

% of impervious land by the total surface of the
functional area

VU SE Housing Old residential
buildings

% of residential buildings > 50 years (reference
year 2020)

VU AC Social and cultural
identity Associationism Existing associations in the functional area

VU AC Public
services/equipment

Accessibility to
health centers Coverage by radius of distance from health centers

VU AC Public
services/equipment

Proximity to
public facility

ratio
Area of local public facilities per inhabitant

VU AC Public
services/equipment

Global ratio of
public facilities Global area of public facilities per inhabitant

VU AC Public space Proximity to free
spaces ratio

Area of free spaces in proximity per
inhabitant (gardens)

VU AC Public space Proximity to free
spaces ratio

Global area of free spaces per inhabitant (parks,
boulevards, and gardens)

VU AC Public space
Simultaneous
accessibility to
free spaces

Circles of coverage by radius of distance
(simultaneous accessibility to several types of

free spaces)

VU AC Public space Connectivity to
the orchard

Percentage of land covered by the areas of influence
of the orchards and pedestrian routes

VU AC Public space Density of trees Number of trees per road surface (urban comfort)
VU AC Mobility Bike lane ratio Linear meters of bike lanes by length of urban road

VU AC Social well‑being Household
income

Average household income per functional area
calculated from the average data in 2017 assigned

to buildings.

VU AC Public spaces Public fountains Number of fountains in each functional area
per hectare

Risk was understood, following the IPPC approach, as the result of the combination
of hazard, exposure, and vulnerability, the latter being divided in turn into sensitivity and
adaptative capacity [35].

The exposurewas analyzed using the indicator of total population exposed to thermal
stress in the functional areas of the city [36].

For the assessment of vulnerability, a series of indicators of sensitivity and adaptative
capacity was defined [37].

In the first step, the system of indicators used for the characterization of the func‑
tional areas for the General UrbanDevelopment Plan (Figure 5) was analyzed to determine
which ones could be used to estimate the sensitivity and adaptative capacity to heat stress
under analysis.

Subsequently, a database was structured with the selected list of indicators and com‑
pleted with additional indicators and variables of a social, economic, environmental, and
physical nature, selecting the information available in the Open Data portal of the city of
València and in the Spatial Data Infrastructure of the city of València.
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Once the database was structured and completed with the indicators’ values, the ap‑
proach by Tapia et al. [37] was used for the vulnerability assessment. A series of treatments
and statistical tests was undertaken (i.e., normalization, standardization, and rescaling)
using R data analysis software. These statistical treatments were needed to generate the
respective aggregated indexes of sensitivity and adaptative capacity, and later, by the ag‑
gregation of these, to obtain the aggregated vulnerability index of each functional area.

A weighting process was applied to obtain the aggregated indexes of sensitivity and
adaptive capacity by assigning different weights to the respective individual indicators.
Theseweightswere obtained dynamically using statisticalmethods (principal components
analysis and factor analysis, mainly) to eliminate anypotential redundancy in the data used.

Once the weights were generated, the last step was aggregating the different indi‑
cators in the sensitivity and adaptative capacity indexes of each functional area. As a
form of aggregation, weighted geometric aggregation (multiplicative aggregation) was
used instead of weighted arithmetic aggregation (additive aggregation) [38]. In this way,
specific aggregated indexes were finally obtained for each functional area. This allowed
comparative analysis among the functional areas, identifying which areas had the high‑
est relative vulnerability, thus providing additional information in order to propose local
actions aimed at reducing their sensitivity or enhancing their adaptative capacity to cli‑
mate change.

Finally, the risk was obtained by combining the hazard, exposure, and vulnerability
using an equally weighted geometric mean. That is, multiplying these components with a
weight of one‑third for each of them.

Based on the results of the risk assessment, guidelines and recommendations were
then drawn up at two planning levels: (a) structural planning at the city level aimed at
refreshing the General Urban Development Plan, and (b) development planning in the
functional areas inwhich significant riskwas observed, with specific proposals to reinforce
the deployment of NbS as adaptation measures.

Figure 7 shows the sequence of analysis for the incorporation of NbS as adaptation
measures in the urban planning of València.
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3. Results
After calculating the wind chill index for the entire modeled period, the evolution of

the heat index was analyzed and the day with the maximum wind chill value, 27 August
2010, was selected (Figure 8).
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The spatial distribution of the thermal stress is shown in Figure 9. The map revealed
that the heat index values obtained formost of the city corresponded to extreme precaution,
only 1 ◦C away from entering the danger zone according to the European Environment
Agency and the National Oceanic and Atmospheric Administration rankings.
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The resulting maps of the analysis of exposure, vulnerability, as well as the subcom‑
ponents of sensitivity and adaptative capacity are shown in Figures 10–13. The functional
areaswith the highest exposurewere 07, 03, 05, 14, and 17, while thosewith the greatest vul‑
nerability were 02, 03, 13, and 23 due to their high sensitivity and low adaptative capacity.
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Finally, the risk level was obtained after integrating the components of hazard expo‑
sure and vulnerability, as shown in Figure 14.
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Five out of the 23 functional areas presented high risk due to thermal stress on the
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For these functional areas in which the assessment revealed significant levels of risk,
an analytic summary sheet was prepared (Figure 16) describing the contribution of each
indicator to the components of risk and the values obtained in the area.

This analytic summary sheetwas a valuable tool that qualitatively examined the intrin‑
sic features of the functional areas and the neighborhoods within, explaining their risk so
that tailored actions could bedesigned to successfully reduce the risk and increase resilience.

The results of the spatially explicit risk assessment facilitated the elaboration of guide‑
lines and recommendations to inform structural (city wide) and detailed urban planning.
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The guidelines and recommendations for city‑wide structural planning could be sum‑
marized as follows:
‑ Perform tailored studies at the city scale for the analysis of climate‑related hazards

and the associated risks, prioritizing the following: flash floods, water scarcity, and
forest fires.

‑ Define and include in the General Urban Development Plan the minimum content
and basic orientations for undertaking vulnerability and risk assessments when elab‑
orating development planning instruments (partial plans, special plans, etc.), in new
development areas and/or regeneration projects.

‑ Identify the priority areas of action for the implementation of NbS, considering their
vulnerability and climate risk as well as their maximum potential for deployment
of NbS. The priority areas of action can be included in the progress documents of
the General Urban Development Plan as well as the related strategic environmen‑
tal reports.

‑ Elaborate opportunity mapping of green infrastructure and NbS deployment in the
city, including the capacity to implement different types of NbS for climate
resilience [37].

‑ Define synergetic actions between adaptation and mitigation measures.
‑ Emission proof the adaptation measures to identify potential mal‑adaptations or con‑

flicts with mitigation measures.
‑ Identify areas in the citywith increasing energy demand due to climate change‑linked

climatization/household or industry air conditioning.
Specific recommendations were also defined to inform the development planning

guidelines in functional areas for which the assessment of thermal stress revealed more
significant risk in order to reduce their vulnerability and increase their adaptative capac‑
ity, considering NbS as the main adaptation options (Table 2).
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Table 2. Summary of recommendations for detailed planning in functional areas with significant
risk for the consideration of NbS as adaptation measures against thermal stress. Please note that the
recommendations for detailed planning of the functional areas with significant risk do not address
the role of albedo, emissivity, and other physically measurable quantities of used or proposed ma‑
terials and surface of buildings. This was beyond the scope and objective of this research. Source:
Own elaboration.

Functional
Areas Diagnosis Recommendations for NbS Deployment

Historic centre,
high‑density

urban
consolidation,
compact,
residential,
commercial,

administrative
development
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4. Discussion
The vulnerability and risk assessment undertaken on the functional planning areas for

the city of València provides relevant information for the planning process in the revision
of the General Urban Development Plan, which was still under the approval process at
the time of the writing of this research, in order to prioritize those areas that may require
special attention as they show significant levels of risk in the face of adverse climatic events.
In these areas, planning could condition certain land uses and activities to reduce their
exposure or deliver NbS aimed at improving thermal comfort, therefore guaranteeing the
health of the population, mainly of the most vulnerable groups.

This applied research work focused on heat stress in urban areas, being one of the
priority areas identified by the Climate Adaptation Strategy of the city of València. The
spatial information on the climate hazard due to an increase in temperature made it possi‑
ble to generate spatial distribution maps of climatic indexes with a resolution that allowed
vulnerability and risk studies to be conducted at the urban and suburban (district) scales,
thus providing data to inform appropriate adaptation and urban intervention decisions.

Five out of the 23 functional areas presented high risk due to thermal stress on the
population. This high risk was explained by the combination of high levels of hazard,
exposure, and vulnerability. Indicators related to buildability, the efficiency of the urban
fabric, and the population over 65 years contributed to the sensitivity of these areas. On the
other hand, the level of civic association involvement, ratio of public facilities, free spaces,
connectionwith the garden, and income per household partially explained their low levels
of adaptative capacity.

Our results, together with those of other studies related to health [6,17,24,36,39], sug‑
gest that increasing the tree coverage should be combined with other interventions to pro‑
duce larger temperature reductions, thereby having greater beneficial effects on health—
particularly for cities with low cooling capacity, where increasing the tree coverage would
not substantially reduce the temperature. This implies changing ground surface materi‑
als, structural interventions, land use, mobility, and interventions in buildings. At both
the structural and development planning scales, the deployment of NbS through plan‑
ning could determine the scope of content anchored in regulations and/or ordinances or
as guidelines and recommendations.

Having said that, we recognize some limitations in the data used andmethods applied.
In relation to the characterization of hazard, other climate indexes could have been used,
such as heat waves, which would allow better assessment of extreme events. However,
considering the purpose of this research, which was the inclusion of climate change con‑
siderations into the urban planning process, the consideration of heat stress distribution
was considered more appropriate.

The lack of data on air temperature at the district level (<100 m resolution) prevented
making decisions on the heat impact on buildings, indoor comfort, and energy demand.

The database of indicators used in this research for the vulnerability assessment could
have been enhanced by including additional physical, social, and socio‑economic indictors
beyond those in the Spatial Planning Guidelines, but this would have required gathering
and processing of high‑resolution data, which was beyond the scope of the research.

The city of València currently lacks a comprehensive, spatially explicit climate risk
study that addresses, in addition to heat stress, other climate‑related hazards. This compre‑
hensive analysis would allow better informed planning and urban management decision‑
making, both in general and development planning, as well as the prioritization of cli‑
mate adaptation actions. It is suggested that studies be conducted on climate vulnerability
and the risks around the main hazards identified in the city using a spatially explicit ap‑
proach, either the functional areas defined in the PGOU or neighborhoods, districts, or
others, such as:
‑ Combined hazard studies: air quality and urban climate on population health.
‑ Water stress and footprint on economic activities (e.g., tourism)



Buildings 2023, 13, 1317 18 of 20

‑ Flooding due to surface runoff associated with extreme precipitation events affecting
population, transportation, and economic activities.

‑ Flooding due to sea level rise and waves in the urban environment.
‑ Forest fires in urban–rural fringe.
‑ Vulnerability and risk studies at the suburban level for the different impact chains

associated with climate change would allow the identification of priority action areas,
which would require municipal resources and urbanization, or regeneration inter‑
ventions aimed at reducing vulnerability and risk by implementing better informed
adaptation measures.
The assessment was carried out at a time of opportunity, not only due to the revi‑

sion process of the Plan itself but also in light of the new Green and Biodiversity Plan,
which is currently under development. In this sense, the vulnerability and risk assessment
can contribute to València’s strategic, in‑depth reflection on its climate action roadmap
towards adaptation.

The experience inValència shows that, to ensure growth towards amore pluralistic ap‑
proach, it is indisputable that urban planning teams are well positioned to assume the role
of facilitators and determinants of change. Not only do they have a broad spatial under‑
standing of the urban area in question, but they often work at the interface of both the envi‑
ronment and the market and are therefore able to explore new forms of green investment.

The renaturation of cities through a greater emphasis on the use of NbS also poten‑
tially offers urban areas the opportunity to generate multiple environmental and socio‑
economic benefits.

Local governments, therefore, have a key role in designing projects that can help trans‑
form urban areas through more sustainable solutions. However, new pathways for NbS
adoption will require substantial government commitment.

5. Conclusions
This case study, which was developed hand‑in‑hand with the involvement and val‑

idation of municipality officers of different departments, clearly exemplifies how urban
thermal stress maps combined with spatially explicit socioeconomic data can provide use‑
ful information for assessing and quantifying vulnerability and climate‑related risk. Ap‑
plying this approach to benchmark a given sample of suburban‑scale spatial units offers
crucial facts to inform urban planning processes, allowing the prioritization of where to
apply different type of measures. Among other climate adaptation options, NbS offer a
cost‑effective approach that additionally provide multiple co‑benefits [40]. Predefining
NbS classes for better integration into different urban typologies could orient urban inter‑
ventions in prioritized areas.

In the context of climate change, heat stress has high importance to many cities world‑
wide and specifically in Europe [41]. This systematic approach, therefore, could be trans‑
ferable and of use in other geographies and contexts facing the same climate challenges.

Further research could be developed in relation to: (i) applying this same approach to
address other climate hazards in urban planning; and (ii) better understanding of formal
planning mechanisms that could facilitate the deployment of this approach in different
planning frameworks.

Both the results of this research as well as the further research suggestions could feed
key current policies in Europe, such as the implementation of the EU Adaptation Strategy
and the EU Mission on Adaptation to Climate Change [42].
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