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Abstract: The frequently conventional assumption that bridge temperature is uniformly distributed
on long-span bridges could lead to uncertainty when analyzing temperature effects. This study
investigated the surface temperature of steel box girders on a long-span suspension bridge, empha-
sizing the distribution characteristics in the longitudinal (spanwise) direction. The girder surface
temperature distribution was monitored using the long-term structural health monitoring system
(SHMS). First, the probability density functions (PDF) of the girder surface temperature were ana-
lyzed. The results showed that the PDFs had bimodal characteristics and could be well-fitted using
the weighted superposition of two normal distributions. Meanwhile, there was an obvious difference
between the PDFs of the measuring points at different longitudinal sections of the bridge, which is
inconsistent with the assumption that the temperature was uniformly distributed in the longitudinal
direction. Subsequently, the longitudinal distributions of the girder surface temperature were sta-
tistically analyzed, and polynomial functions were introduced to fit the distribution curves along
the left and right sides of the mid-span. A correlation analysis was then performed, highlighting the
variability in temperature in the longitudinal direction. Additionally, the longitudinal temperature
distribution pattern could be summarized as (i) the highest in the mid-span, the lowest in the tower,
and increasing along the side span; (ii) there were also significant differences between the left and
right sides of the mid-span. Finally, the time- and space- distributions of the temperature were
studied, and a contour map was displayed. The results showed that the girder surface temperature
had significant three-dimensional spatial characteristics and was not only non-uniformly distributed
in space but also in time. This work is useful for a more accurate analysis of temperature effects on
long-span bridges.

Keywords: bridge temperature; non-uniform temperature field; longitudinal temperature distribution;
steel box girder; long-span bridge

1. Introduction

Long-span bridge structures can be affected by various environmental factors during their
long-term operations, among which the temperature effect is particularly significant [1–3]. In
recent years, numerous studies on bridge temperature effects have been carried out [4–7],
mostly considering uniform temperature fields. Some scholars [8,9] have studied the
influence of boundary factors such as solar radiation on the bridge temperature field.
Some scholars [10–13] studied the time-varying temperature distribution of bridges and
established a temperature gradient distribution model. There have also been numerous
scholars [14–20] who have studied the long-term measured cross-section temperatures of a
large number of bridges with different cross-section forms, observed transverse temperature
gradients and proposed two-dimensional temperature field calculation models.
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It is worth noting that the above studies are based on the assumption that the tempera-
ture is uniformly distributed along the longitudinal span direction of the bridge. However,
in actual engineering, the temperature field of large-scale structures, such as long-span
bridges, is usually non-uniform. It has been shown that the stresses and deformations
caused by non-uniform temperature distribution can be comparable to those caused by
static and live loads, which may also cause cracks and excessive deformations [21–25].

Actually, the existing standards [26–30] have neglected the influence of the longitu-
dinal non-uniform temperature distribution on bridges, assuming that the temperature
field can be represented by one-point measuring data, i.e., a uniform distribution field.
Although this assumption simplifies the analysis of bridges affected by temperature in
the two-dimensional plane, it may overestimate the temperature effects at some spanwise
locations and underestimate them at others. Moreover, the nonlinear effects caused by
temperature effects are neglected by the uniform-distribution assumption [31,32]. There-
fore, the temperature effects cannot be accurately evaluated when adopting the above
assumption. Additionally, the inability to accurately assess the temperature effects of
large-span bridges may bring uncertainty to the bridge during the design, construction and
operation stages, thus affecting the structural safety of the bridge [33,34].

Therefore, the longitudinal temperature distribution is important for the accurate
analysis of bridge temperature effects. Several studies have started to pay attention to this
topic. Abid et al. [35] investigated the temperature distribution of bridge segmental models
under the influence of solar radiation and air temperature variations through numerical
simulations. Based on the health monitoring data of the Aizhai Bridge, Hu et al. [36]
found that there were temperature differences at different measuring points along the
longitudinal direction of the bridge span. Gu et al. [37] proposed a vertical and lateral
temperature gradient model for different longitudinal positions along the bridge span.
Liu et al. [38] studied the non-uniform longitudinal distribution temperature of concrete-
filled steel tubular bridges due to the change in component inclination. Although the
above studies considered the variability of temperature distribution, it is limited to a
single or several measuring points, and the conclusions may not be well applied to actual
bridges. In this context, the longitudinal temperature distribution on the whole bridge
and its statistical characteristics was insufficient. Moreover, the role of the non-uniform
longitudinal distributions of temperature was not analyzed in depth.

Therefore, this work studies the longitudinal temperature distribution of steel box
girders based on the field-measured temperature data. The main objective was to provide a
more accurate description of the longitudinal temperature field of long-span bridges.

The paper is organized as follows. In Section 2, the bridge and its health monitoring
system are introduced. In Section 3, the probability density characteristic analysis is carried
out by selecting typical measuring points in the longitudinal direction of the bridge, and
the probability density curves are fitted; next, the temperature of all measurement points is
statistically analyzed, and longitudinal distribution curves are fitted; A correlation analysis
was then performed, highlighting variability in the longitudinal direction. Finally, the
frequency domain features were analyzed, and the space-time contour maps were given to
study the mechanisms and processes of the non-uniform distribution of temperature.

2. Description of the Bridge and Its Monitoring System

The Egongyan rail bridge is a long-span suspension bridge located in southwestern
China and across the Yangtze River. Figure 1 is a picture of this bridge, and Figure 2 shows
its elevated view. It is a five-span self-anchored suspension bridge with double towers and
double plane cables. The middle three spans are the main bridge, and the extended span
with a span of 50 m is the approach bridge. The overall length of the bridge is 1650.5 m, and
the main span is 600 m. In addition, the main girder is a closed single-box five-chamber
steel box girder structure [39–41].
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Figure 2. Elevation layout of the main bridge (Unit: m).

To monitor the operation status, a structural health monitoring system (SHMS) was
installed on the Egongyan rail bridge [42] and has been in operation since 2020. A total
of 267 sensors were installed at different parts of the bridge to collect various types of
structural and environmental information. Among them, the temperature measuring points
on the steel box girder of the main bridge were arranged symmetrically about the mid-
span, as shown in Figure 3. A total of 88 temperature sensors were installed at 11 sections
(S1–S11) along the main bridge, and there were also eight measuring points (T1~T8) inside
the surface of each section. Taking the mid-span section (S6); for instance, a plan view of
the measuring point at each section is shown in Figure 3.
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Figure 3. The layout of the temperature monitoring points. (S: Section number; T: Number of
temperature sensors arranged on each section).

The surface temperature of the box girder was monitored using a JMZX-212HAT
surface intelligent digital tandem strain gauge with built-in temperature sensors as the
testing instrument [43], as shown in Figure 4. The main technical parameters of the sensor
were as follows: Operating ambient temperature: −40 ◦C~+80 ◦C; Temperature measure-
ment range: −20 ◦C~+80 ◦C; Temperature resolution: 0.1 ◦C; Temperature measurement
accuracy: ±0.5 ◦C.
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Figure 4. JMZX-212HAT surface intelligent digital string strain gauge.

3. Probability Density Characteristics of Temperature

To display the annual variations in the girder surface temperature, the measuring
point T4 at different longitudinal positions S2, S6 and S10 was chosen, for instance. Figure 5
shows the monitoring data from 1 September 2020 to 31 August 2021. It can be observed
that the annual temperature changes all appeared to have obvious periodic patterns, and
this could be approximately described by sinusoidal functions, with lower temperatures
from December to February and higher temperatures from June to August. In addition to
the low-frequency periods, the temperature data also contained high-frequency fluctuations.
High-frequency fluctuations may be due to the effect of daily temperature changes. In
addition, it was found that the overall temperature value of S6 and its variance amplitude
were significantly larger than those of S2 and S10, and the difference was more obvious
in summer. This was a preliminary indication of the non-uniformity of the temperature
distribution along the longitudinal direction of the bridge, which is discussed later.
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Figure 5. Annual time-history of the girder surface temperature. (S-T: Sensor number T The section
number S).

In previous studies, the Gaussian distribution model [44–46] has been commonly used
for fitting the probability density function (PDF) of the temperature. However, it is obvious
in Figure 6a that the PDF cannot be properly fitted by the Gaussian distribution model due
to bimodal characteristics. By comparing the fitting results of several models, the weighted
superposition of two normal distributions was selected for fitting the current data, with its
mathematical expression as follows:

f (x) = γ f1(x) + (1− γ) f2(x) (1)

f1(x) =
1√

2πσ1
e
− (x−µ1)

2

2σ2
1 (2)

f2(x) =
1√

2πσ2
e
− (x−µ2)

2

2σ2
2 (3)

where x denotes the surface temperature of the steel box girder, f (x) denotes the probability
density model of x, fi(x) (i = 1, 2) denotes the normal distribution function with the mean
value µi and the standard deviation σi, γ is the weight of the two normal distribution
functions with 0 ≤ γ ≤ 1.
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Figure 6. Fitting of the PDFs of temperature at S2-T4 using different models: (a) Gaussian distribution
model; (b) Superposition of two normal distribution models.

The goodness-of-fit for the different models is shown in Figure 6. The R2 (coefficient
of determination, COD) of the superposition of two normal distribution models was signif-
icantly higher than that of the Gaussian distribution model. Therefore, it was reasonable
to choose the superposition of two normal distribution models to describe the probability
distribution of temperature.

The probability density histograms of measuring points S2-T4, S6-T4 and S10-T4 and
their fitted curves are shown in Figure 7. It can be seen that the fitted curves were in good
agreement with the measured ones. Meanwhile, the fitting results all passed the K-S test
with a significance level α = 0.05, indicating that the fitting curves could accurately describe
the probability density characteristics of the surface temperature of the steel box girder.
The results show that the probability density curves of each measuring point have bimodal
characteristics. This was due to the bridge being located in the subtropical humid monsoon
climate zone and its experience of a transition period between seasons. The temperatures
at the two peaks represent the temperature during the spring-summer and summer-fall
transitions and during the fall-winter and winter-spring transitions, respectively.
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Figure 7. Probability density histograms and the fitting curves of S2-T4, S6-T4 and S10-T4.

To investigate the difference in temperature distribution along the longitudinal direc-
tion of the bridge, the probability densities of T4 and T5 (on the top and bottom plates,
respectively) and at different longitudinal sections S2, S6 and S10 were fitted based on the
abovementioned model. The estimated floating parameters are shown in Table 1, and the
corresponding PDFs are given in Figure 8.
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Table 1. Estimated fitting parameters for the probability density models of typical measuring points.

Measuring
Points

Fitting Parameters

γ σ1 σ2 µ1 µ2

S2-T4 0.9360 8.9207 1.8087 21.8373 9.8373
S6-T4 0.9437 11.6900 2.3217 30.1064 16.2538

S10-T4 0.9209 8.9665 1.6595 23.0285 11.1745
S2-T5 0.9486 9.1765 1.6817 21.7870 10.6727
S6-T5 0.9301 9.9613 2.2033 29.4177 16.9026

S10-T5 0.9278 9.0896 1.6930 22.6721 11.1846
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Figure 8. Fitted PDFs of the girder surface temperatures at different longitudinal sections. (a) Top
plate measuring points; (b) Bottom plate measuring points.

From Table 1 and Figure 8, it can be seen that there was a significant difference between
the PDFs of the mid-span and side-span for both the top and the bottom plates. Concerning
the two peaks in the PDFs, the measuring point S6-T4 was mainly concentrated around
30 ◦C and 16 ◦C, while S10-T4 was mainly concentrated around 23 ◦C and 11 ◦C, indicating
that there was a significant difference in the temperature distribution along the longitudinal
direction of the bridge, and the temperature in the mid-span was significantly higher than
that in the side span. Moreover, PDFs were not the same for the side-span measuring
points, which were symmetrical along the bridge centerline, indicating a non-uniform lon-
gitudinal temperature distribution in the steel box girder. This phenomenon shows that the
assumption of uniform temperature used in previous studies and specifications [14,20,30]
is not reasonable.

4. Statistical Analyses of Temperature Distribution along the Bridge
4.1. Temperature Longitudinal Distributions

To further analyze the longitudinal gradient of the bridge girder surface temperature,
the annual temperature and annual temperature difference were statistically analyzed
by selecting one year of the temperature time history data from 11 measurement points
(S1–S11) in the longitudinal direction. The statistical analyses included the following four
aspects: annual maximum temperature, annual minimum temperature, annual average
temperature and annual maximum temperature difference for each measurement point. The
annual maximum temperature difference was the difference between the annual maximum
temperature and the annual minimum temperature.
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By taking the top and bottom measuring points, including T4 and T5; for instance,
the annual temperature and statistical analyses along the longitudinal direction of the
main bridge are shown in Figure 9. An analysis of Figure 9 shows that the distribution
of the temperature field along the longitudinal direction was non-uniform. The average
temperature was approximately symmetrical about the mid-span. On the other hand,
the annual average and maximum temperature curves showed the same patterns: the
temperature was highest in the middle of the span and lower near the bridge tower while
also rising again from there to the side span. In addition, the variation trends of the
annual maximum temperature difference were similar to that of the annual maximum
temperature. Although there was some variation in the minimum temperature between
the different measurement points, this variation was not very significant compared to
the maximum temperature. In addition, compared to the bottom plate, the temperature
variation range from the top plate was larger. Measured data show that many cities in
China have experienced extremely high temperatures over recent years. For example, the
maximum temperature in Chongqing reached 43 ◦C in 2022, and the temperature of the
steel box girder, in this case, may show a peak. We will continue to follow up on the study.
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Figure 9. Distribution of annual temperature statistic values along the longitudinal direction. (a) Top
plate measuring points T4; (b) Bottom plate measuring points T5.

To further investigate the longitudinal temperature distribution pattern, the annual
measured data for all eight temperature measuring points (T1~T8) in each section were
statistically analyzed, and the annual average temperature of each measuring point is
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shown in Figure 10. It can be seen that the surface temperature of the steel box girder
had different distributions between the top and bottom plates, as well as the left and right
sides of the mid-span. To clarify the distribution pattern, the polynomial fitting of the
longitudinal temperature distribution curve was performed below.
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Figure 10. Longitudinal distributions of annual average temperature.

First, the measured temperature of the top and bottom plates was, respectively, time-
averaged. Then, the average temperature values of different measuring points on the
left and right sides of the mid-span (S6) were separately fitted using polynomial curves
y = Ax2 + Bx + C, where y denoted the temperature value, x denoted the Longitudinal
distance from the mid-span, and the three parameters of the equation were A, B, and
C. In order to conveniently compare the fitted formulas, the horizontal axis on the left
side was set as x1 and the horizontal axis on the right side was set as x2. The fitting
results are shown in Figure 11. Meanwhile, the equations of the fitted curves are listed in
Table 2. The temperature values at any longitudinal location on the steel box girder could
be subsequently estimated from these fitted curve equations. By referring to the practice of
the specifications and other studies [8,26,30,33] on the horizontal and vertical temperature
gradient patterns, in our future research work, we should incorporate data from other
similar bridges to obtain the longitudinal temperature distribution patterns of large-span
suspension bridges.

Table 2. Longitudinal distribution of temperature fitting equation.

Position Fitted Curves Equation

Left side of the mid-span (top plate) y = 8.21× 10−5x1
2 − 5.25× 10−2x1 + 29.60

Right side of the mid-span (bottom plate) y = 8.91× 10−5x2
2 − 5.31× 10−2x2 + 29.74

Left side of the mid-span (top plate) y = 9.24× 10−5x2 − 5.58× 10−2x + 28.65
Right side of the mid-span (bottom plate) y = 9.24× 10−5x2 − 5.49× 10−2x + 28.65
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Figure 11. Fitting curves of the temperature’s longitudinal distribution (a) Top plate; (b) Bottom
plate.

From the fitted curves and the fitting parameters, it could be seen that: (1) For the top
plate temperature, the two fitting curves along the left and right spans had significantly
different parameters, with higher temperatures on the right side than on the left side,
possibly due to variations in geographic position and material properties. (2) For the
bottom plate temperature, the two fitting curves along the left and right spans had very
similar parameters, indicating that the temperature of the bottom plate was longitudinally
distributed and symmetric along the mid-span.

4.2. Temperature Longitudinal Correlation Analysis

The analysis of statistical values, such as the annual mean and annual maximum tem-
peratures, showed that there was a significant temperature gradient along the longitudinal
direction of the bridge. To investigate the connection between surface temperatures at
different longitudinal locations, correlation analysis was necessary. In order to evaluate the
non-uniformity of the longitudinal temperature distribution, for each section measurement
point (T1~T8), correlation analysis was performed with the same measurement points at
other longitudinal positions, respectively. The position of S6 (mid-span) was taken as the
reference point, where the correlation coefficient [47] could be defined as:

Rx(y) =
Cov[x(t, y1), x(t, y2)]√

Cov[x(t, y1)] ·
√

Cov[x(t, y2)]
(4)

where, x denoted the surface temperature of the steel box girder, Cov[] was the operator
of covariance, t corresponded to time, and y1 and y2 represented different longitudinal
measuring points.
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Figure 12 shows the correlation analysis results and reveals that: (1) On the main span,
the correlation coefficient decreased as the distance from S6 increased. This indicated that
S6 had a greater effect on the temperature of S5 and S7 compared to S4 and S8. (2) The
lowest correlation was found at the bridge tower. This is probably a result of the variability
in the spatial distribution of cross-sections due to differences in the duration and intensity
of the solar radiation received. The solar radiation at the bridge tower would be absorbed
more by the tower, so the correlation coefficient of the S4 and S8 cross-sections was the
lowest. (3) The sudden increase in the correlation coefficients of cross-sections S3 and S9
at the side span position indicated that solar radiation had a more dominant effect than
the shading effect on the bridge tower. (4) The temperature correlation coefficient was
generally higher on the right side of the mid-span than on the left side, meaning that the
temperature was more uniform on the right side than on the left side. In addition, the
upstream and downstream sides showed different temperature correlation characteristics.
These differences may be related to the differences in bridge orientation, section form and
material properties.
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Figure 12. Correlation analysis of the measurement points in the mid-span section with those in
other locations.

The longitudinal correlation analysis showed again that the longitudinal temperature
distribution was non-uniform. These results were more comprehensive than previous
studies with limited point comparisons. Therefore, using single-point measurement data
to represent the temperature field may lead to overestimating or underestimating the
temperature effect at different bridge spanwise locations. As a result, the temperature
effects of large-span bridges could not be assessed accurately.

5. Mapping Longitudinal Temperature Variation Contours
5.1. Power Spectral Density

Power Spectral Densities (PSDs) refer to the spectral energy distribution per unit of
time. PSDs focus on various features of the signal in the frequency domain, intending to
extract useful signals in frequency domains that are drowned in noise. Based on Fourier
transform, the PSDs of the annual temperatures of the girder surface temperature could be
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calculated. Taking a typical section S6 for an example, the results of the top and bottom
plates are shown in Figure 13.
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Figure 13. The PSD of the measured annual temperature. (a) Top plate measurement points;
(b) Bottom plate measurement points.

There are two prominent peaks that can be observed in the PSD of Figure 13. The
period of the first peak was 24 h, which was identical to the daily period. The period of
the second peak was 12 h, which was induced by the transmission from day to night. The
results of PSD analysis show that the daily temperature could be considered a representative
sample of the annual temperature. Moreover, the daily temperature could provide a more
detailed view of the temperature change process compared to the annual temperature.
Therefore, the temperature in one day can be selected to investigate the mechanisms and
processes of longitudinal temperature gradients.

In addition, the PSD generally decreased with the increase in frequency and tended
to become a horizontal line in the high-frequency region. The general decreasing trend
resulted from a reduction in the high-frequency components of temperature. When this
frequency was high enough, the temperature did not change in the corresponding short
period. Thus, the PSD was almost horizontal in the high-frequency region. These results
indicate that the surface temperature of the steel box girder was mainly controlled by
low-frequency components, and the high-frequency effect was less affected.

5.2. Contours of Daily Temperature

To further analyze the generation mechanisms and processes of the longitudinal
temperature gradient, taking into account the apparent daily periodicity of the temperature
data, the data for one day were selected for analysis. The following is an analysis of the
longitudinal temperature distribution pattern based on daily temperature curves. A total
of 11 longitudinal sections were selected, and three measurement points on each of the top
and bottom surfaces were taken for analysis. To better observe their regularity, the hourly
temperature was averaged to obtain the time history of the measured daily temperature
curves, as shown in Figure 14.

Figure 14 points out that, as summarized in the previous section, the temperature
distribution along the longitudinal direction was always non-uniform. The temperature
statistic values varied non-uniformly in spatial locations, and the temperature transients
varied non-uniformly in space as well. Thus, the non-uniform longitudinal temperature
gradient contained both spatial non-uniformity and temporal non-uniformity. Although
previous studies have investigated the effect of temperature at different longitudinal
locations on the temperature gradient of the cross-section through finite points, they have
not investigated the mechanism of this non-uniform temperature field in depth.
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Meanwhile, Sections S3, S4 and S8, S9 are, respectively, located on both sides of the east
and west main towers. The amplitude of daily temperature variation in these cross-sections
was smaller than that of other adjacent measurement points. This phenomenon is similar
to the findings of Figures 10 and 12. Additionally, this was mainly due to the shading
effect of the main tower, which reduced the temperature of this section. In addition, the
temperature of the mid-span S6 section was the highest because it was directly affected
by solar radiation. By comparing the temperature-time histories of the top and bottom
plates between different sections, it is found that there was a difference in the longitudinal
temperature distribution between the top and bottom surfaces.

If the surface temperature of any position on the box girder could be obtained, the
accuracy of the temperature effect analysis could be improved. Therefore, Figure 15 shows
the daily temperature contour maps of the top and bottom plate temperatures, respectively.
The example time instant was chosen at 17:00 because the girder surface temperature at
that time was the highest value in one day, and the longitudinal temperature distribution
of the steel box girder had obvious non-uniformity.

It can be seen from Figure 15 that: (1) The longitudinal temperature contour on the
top plate indicates that the high-temperature area slightly deviated to the right of the
mid-span. This is because the bridge is east–west oriented, and the bridge deck on the right
side of the mid-span was exposed to solar radiation for a longer time, so the temperature
would be slightly higher than the bridge deck on the left side of the mid-span. (2) The
longitudinal temperature distribution of the bottom plate was almost symmetrical about
the mid-span because the bottom plate was not directly affected by solar radiation but
was mainly affected by the environmental temperature. (3) The transverse temperature
difference of the top plate was more obvious than that of the bottom plate because of
solar radiation, and the temperature distribution had obvious three-dimensional spatial
distribution characteristics.

After analyzing the temperature distribution characteristics on other days, we could
also obtain a similar conclusion. The longitudinal distribution characteristics of daily and
annual temperature were similar, while daily temperature also had a three-dimensional
spatial distribution.

To summarize, the temperature of the long-span bridge structure was non-uniformly
distributed not only in space but also in time. The non-uniformity of the longitudinal
temperature distribution could be caused by the non-uniformity of the material and is also
related to the environmental location where the measurement points are located. When per-
forming temperature effect analysis, the temperature field of large-scale bridge structures is
usually assumed to be a one-dimensional temperature field, which erases the longitudinal
and transverse temperature gradients, resulting in large deviations between the calculated
results and the real temperature field of the bridge. Further research into the effects of
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these factors on the longitudinal temperature distributions could be useful in the design
stage of long-span bridges to effectively reduce the risk caused by the temperature effects.
Therefore, during the refinement of the temperature effect analysis for long-span bridges,
the longitudinal distribution of temperature non-uniformity needed to be considered.
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6. Conclusions

This study investigated the longitudinal distribution characteristics of the box girder
surface temperature on a long-span suspension bridge. The probability density statistics,
statistical values, cross-correlations coefficients, power spectrum densities, and time-space
contours are detailed and analyzed. The main findings are as follows:

(1) The annual temperature’s probability density curves at different longitudinal
measuring points of the bridge all have bimodal characteristics, which could be fitted by
the weighted sum of two normal distributions. This bimodal distribution was mainly
caused by the transitions between different seasons.

(2) The statistical analyses show that the distribution of the girder surface tempera-
ture along the longitudinal direction was non-uniform. Moreover, the equations of the
longitudinal distribution curves were obtained by polynomial fitting, and the distribution
pattern was the highest in the mid-span, the lowest in the bridge tower, and increased along
the side span. Therefore, the design phase should consider the non-uniform distribution
of temperature.

(3) Using the correlation analysis between the temperature measured at the mid-span
and other longitudinal sections, it was found that the correlation coefficient in the main span
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gradually decreased farther away from the mid-span section, with the lowest at the tower
section. While in the side span, the correlation coefficient increased as the measurement
points moved away from the tower. This revealed that the girder surface temperature was
influenced by solar radiation and also the shedding effects of the tower.

(4) There were two prominent peaks in the frequency domain of the annual temper-
ature, corresponding to the 24 h and 12 h time periods, respectively. This meant that the
daily temperature could be considered a representative sample of the annual temperature.

(5) By comparing the daily time histories of temperature at different longitudinal
sections, it was found that the temperature field was significantly three-dimensional and
was not only non-uniformly distributed in space but also non-uniformly distributed in time.

(6) According to the time-space contour maps of temperature, we can gain insight
into the underlying mechanisms of the generation of this non-uniformity distribution.
Combined with the statistical analyses, the statistical values of the bridge temperature at
any section could be obtained using the contour map.

In conclusion, the surface temperature of the steel box girder was non-uniformly
distributed along the longitudinal direction of the bridge. Therefore, in analyzing the
temperature effects, the traditional uniform-distribution assumption could lead to ines-
timable deviations from the real conditions. This work is helpful for a more accurate
analysis of temperature effects on long-span bridges and can also provide a reference for
the longitudinal distribution of temperature fields on other similar bridges.
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